
Intelligent Systems and Control
Prof. Laxmidhar Behera

Department of Electrical Engineering
Indian Institute of Technology, Kanpur

Module – 1 Lecture – 9
Recurrent Networks: Back Propagation through Time

This is lecture 9 of module I – neural networks in this course on intelligent control.

(Refer Slide Time: 00:36)

In this course, today, we will cover what is recurrent network, unfolding in time of a

recurrent network. What is a recurrent network? A feed-forward network without

feedback connection, recurrent network with feedback connection. Unfolding in time,

that is a recurrent network, when unfolded in time, can look like a feed-forward network.

Then, back propagation through time. This is the learning algorithm for recurrent

network. What is a recurrent network?

Earlier, we said that if there is a neuron and there is another neuron, if I connect this

neuron to this neuron, then this connection was not allowed in feed-forward network,

whereas in a recurrent network, we allow not only the feedback connection but also self-

feedback. This is called recurrent network. When we have two neurons in any feed-

forward network – multilayer network or radial basis function network, if I connect in a

forward direction, the backward direction connection is not allowed, whereas in recurrent

network, not only the forward and feedback connections are allowed but also self-

feedback. This is known as self-feedback (Refer Slide Time: 02:46). This kind of

structure is a recurrent network.

(Refer Slide Time: 02:53)

Recurrent network includes feedback connections in their architecture. What are the

characteristics of a recurrent network? Representation of time: sequence is important. I

would like to explain this particular thing in detail.

(Refer Slide Time: 03:24)

What is the meaning of sequence? Imagine we have five patterns – 1 0 1, 1 1 1, 0 0 1, 1 0

0, and 1 1 0. The meaning of sequence is that this pattern follows this pattern, this pattern

follows this pattern (Refer Slide Time: 03:55), this pattern follows this pattern, and this

pattern follows this pattern. Imagine there is a display board and I want to display this

pattern first, this pattern second, this pattern third, fourth, fifth and rotate it clockwise. In

that sense, the sequence is important here. In this case, sequence is important.

(Refer Slide Time: 04:48)

Another example of sequence is the time series prediction, any kind of time series

prediction. Let us say rainfall in a year or in a decade or in a century. Let us say rainfall

month-wise in a year – January, February and so on up to December. The pattern of a

rainfall in a year is a sequence. This is say in mm. So, some mm in January, some mm in

February, some mm in December and maybe in September, it is a maximum in a

particular place. When we are dealing with patterns in which time is intrinsic, this is

called temporal patterns, that is, in a year, I want to see how the pattern of rainfall is.

There is a time involved in this. This particular notion of sequence is important,

representation of time: sequence is important, I can explain this particular concept in

another way (Refer Slide Time: 06:32).

(Refer Slide Time: 06:45)

For example, I have a data pattern, this is a data set. In this data set 1, 2, 3, 4, 5, 6, the

data, which are stored in this particular stack, are in a sequence. Data are stored in a

sequence. If data is stored in a sequence, then when I have to represent this data to a

network, I can only represent them in a sequence. In a multilayer network, if I have a data

set, I can always select any of these data randomly and present to the network because the

sequence is not important. I will tell this point in detail in a system identification example

because this is an intelligent control course. I will explain using a relevant example in

detail.

(Refer Slide Time: 08:01)

Characteristic is representation of time where sequence is important. The other thing is

rich temporal and spatial behaviors, that is, this network is dynamically very rich. It has

stable, unstable fixed points, it exhibits limit cycles, chaotic behaviors, and it has many

other rich dynamic behavior that any dynamic nonlinear system exhibits, which a static

network like a multilayer network or radial basis function network do not manifest (these

networks do not manifest rich dynamical characteristics). The applications of recurrent

networks are of course system identification and control, associative memory, time series

prediction, temporal pattern recognition: signal classification and speech recognition.

Signal classification and speech recognition are all temporal pattern recognition terms.

(Refer Slide Time: 09:24)

Now, we will talk about the architecture of a recurrent network. These two architectures

are partial recurrent network. Partial means the main body of the network is like a

multilayer network, where there are feed-forward structures layer-wise, but at the input,

you can see that there is a temporal sequence. The input to the network is x t, x t minus 1,

this one is x t minus 1, this is one delay further, x t minus 2 until x t minus n. This is

normally known as time delay network.

Imagine we are trying to model a function like y t plus 1 is function of x t, x t minus 1

and so on. When this is the dynamic model, then this kind of network is selected (Refer

Slide Time: 10:44). In many system identification examples, another kind of network is

used where you see that this is a multilayer network structure – main body, but then, the

input to the multilayer network in one sequence is the delayed version of x t. So there is x

t, x t minus 1 up to x t minus n. Similarly, this is a delay, so the response is y t up to y t

minus m. Why do we say partial recurrent? It is because the main body of the network

resembles a multilayer network, the feed-forward network. This kind of network has been

used particularly in system identification and time series prediction.

(Refer Slide Time: 11:53)

Here, these are fully recurrent networks. Earlier, we saw a partially recurrent network but

this is a fully recurrent network. In a fully recurrent network, you see that the input to this

neuron (Refer Slide Time: 12:13) is coming from this neuron as well this neuron. We can

easily see that this one is given here and again, this one is given here. The input to this

neuron is coming from the other two neurons. Similarly, this neuron's inputs are coming

from this neuron and this neuron. This is this neuron and this is the other neuron and

similarly, this neuron, which is this one (Refer Slide Time: 12:51), and this neuron, which

is this one….

In that sense, this is a fully recurrent network. Each neuron is connected to all other

neurons in the network. Normally, Hopfield network has this structure. There is a little

mistake here. The branches are missing (Refer Slide Time: 13:27). This is another fully

recurrent network. This network and this network are almost the same. The only

difference between this network and this network is that there is a self-feedback. The

output from this network is again fed back to the same unit. These two architectures are

called fully recurrent. Each neuron is connected to all other neurons. One is without self-

feedback and the other is with feedback. But we can have various…. These are very

simplistic models that I am introducing to you. There are also many other complex

models – we will not be discussing them.

(Refer Slide Time: 14:40)

Once you have an architecture, obviously, you would like to use it. As you know, once

we talk about neural network, it means the weights have to be learned, they have to be

trained. There are various learning algorithms but what we will mainly focus in this class

and in this course are back propagation through time, another is real-time recurrent

learning. There are others also: extended Kalman filtering and many other learning

algorithms that are there in the literature. We will not be taking up those things now.

(Refer Slide Time: 15:08)

Let us take a discrete dynamic equation, which is y t plus 1 is f of y t plus g of y t into u t,

where y and u are output and input, respectively, and f and g are arbitrary nonlinear

functions. Let us say that this particular dynamic that we have written here y t plus 1 is f

y t plus g y t u t represents some nonlinear system. Now, I want to model using a feed-

forward network as well as the recurrent network the dynamics of this equation, let us say

this equation. If I want to use a feed-forward network, what I will do is….

(Refer Slide Time: 16:59)

In feed-forward network…. This is called a feed-forward network. My input will be y t as

well as u t and output is y t plus 1. This is actually predicted output of the network (Refer

Slide Time: 17:28) and y t is actually the input to the network, but is obtained from the

actual system. If I really want to capture this particular dynamics that we are looking at

(Refer Slide Time: 17:50) y t plus 1 is f y t plus g y t into u t using a feed-forward

network, what I do is that my inputs are y t as well as u t and the output is y t plus 1 (this

is the predicted one), whereas this y t is taken from the actual system.

I observe the state of the system at t, y t and give an input u at t. Then, my output y t plus

1 is predicted by the feed-forward network, but a recurrent network, on the contrary, only

takes the input u t and the output is y t plus 1, that is, it is possible because a recurrent

network allows feedback connection from output to input, the internal states. So,

recurrent network is much like a dynamic system, whereas a feed-forward network is a

static system. This is very important to understand – a feed-forward network is a static

system, because….

While training a feed-forward network, we really do not worry; we really do not care

about the order of the pattern. Given a pattern, that is, input/output data set, I can select

any pattern, give the input of that pattern to the network, forward pass that input, find

what is the output, compare with the desired one, back propagate the error, update the

weight – that is the feed forward network, whereas, in a recurrent network, the sequence

of data to be presented in the network must be preserved.

How will I present data to this recurrent network? u 0 y 1, then u 1 y 2, so the sequence

has to be like this: u 0 y 1 first, then u 1 y 2 second and so on, but I cannot arbitrarily

select any of these sequences and present to the recurrent network. There is a

representation of time in a recurrent network, the sequence is important, whereas time

does not play any relationship in feed-forward network – it is a static map.

(Refer Slide Time: 21:16)

The normal training algorithms that are used for a recurrent network is back propagation

through time and real-time recurrent learning. These two are very popular algorithms

available in the literature, but there are also other like extended Kalman filtering, but in

this course, we will only learn or I will only take up these two learning algorithms – back

propagation through time, which is offline, and real-time recurrent learning, which is an

online learning algorithm. Today, this lecture will focus on back propagation through

time. In back propagation through time, we unfold the recurrent network in time to reach

a feed-forward network architecture.

(Refer Slide Time: 22:05)

What is that unfolding? The unfolding is…. Let us take a simple recurrent network that

consists of only a single neuron, the input is x t, the input to the neuron – the weight is w;

there is a feedback from the output to the self-feedback and the weight is g. This is a very

simple network, because it consists of only one neuron. The first part is that before we

talk about unfolding this network in time…. This is the feedback structure and the

objective is how to convert this feedback structure to a feed-forward structure. We want

to do this. I want to convert this feedback structure to a feed-forward structure. How do I

do it?

(Refer Slide Time: 23:24)

It is very easy to do. Before we can do that, we must write down the forward response of

the network. What is the meaning of forward response? Given x t, what is y t plus 1? Let

us say this neuron has sigmoidal activation function, that is, y t plus 1 is w x t plus g y t.

You can easily see that this is the feedback, so we assume that when I do not put anything

on this connection, it means that there is a delay of 1 unit. So, the y th t plus 1 sampling

instant is a function of w x t, the summation of all the inputs – the w into x t plus g into y

t. This is the total summation and the summed input at the input of this neuron and then

sigmoidally activated, where f z is as usual… the sigmoidal activation is e to the power

minus z. This is our simplest network and to this simplest network, how do you unfold

this network?

(Refer Slide Time: 25:18)

Let us see this forward response that we wrote, which is y t plus 1 is f of w x t plus g y t.

This is the forward response of the simplest network that we took. If I write recursively,

what do I do? I write y 1 is f of w x 0 plus g y 0. Similarly, y 2 is f of w x 1 plus g y 1.

Look at this equation. I simply put t = 0, then I get the first equation; if t = 1, I get the

second equation; if t = 2, then I will get the third equation and so on. We can go on like

this. How do we construct a feed-forward network looking at these equations? What I

will do is in my network, I create a node. In every node, I compute what is y 1 as a

function of x 0 y 0, y 2 as a function of x 1 y 1 and y 3 as a function of x 2 and y 2. This

is what is here.

(Refer Slide Time: 26:58)

This is what we have given. Here, you see that y 1 (Refer Slide Time: 27:02) is w x 0

plus g y 0. Similarly, y 2 is w x 1 plus g y 1 and sigmoidally activated. This neuron is

sigmoidally activated.

(Refer Slide Time: 27:20)

Thus, if you look at our recursive equations here, f of this summation…. (Refer Slide

Time: 27:24). That means you should not forget what is the meaning of f. f is always a

sigmoidal activated function. That is what we are doing here.

(Refer Slide Time: 27:40)

y 1 is f of w x 0 plus g y 0, y 2 is f of w x 1 g y 1 and so on. This is called rolling the

network in time. Now, if you look at this network that I discussed now, if rolled over t =

5, then for t = 1, this is the first expansion (Refer Slide Time: 28:08), for t = 2, this is the

second expansion. So, the first expansion y 1 in terms of y 0 x 0, the second expansion y

2 in terms of x 1 y 1, third y 3 in terms of x 2 y 2, similarly fourth y 4 in terms of x 3, y 3

and five y 5 in terms of x 4 y 4. This is how the network is unfolding over time and we

can go ahead depending on the situation or demand.

Once we unfold, now this is a feed-forward network. If you look at this, this is a feed-

forward network. This feed-forward network is actually MLN – multilayer network. With

how many layers? I can say this is one layer, this is the first layer (Refer Slide Time:

29:12) – the first layer of weight, this is the second layer of weight, this is the third layer

of weight, fourth layer and fifth layer. So, this is an MLN with five layers of weights.

Given this structure, once I convert the recurrent network into a feed-forward network,

the objective would be now to apply… because this is now a feed-forward network, so I

apply the back propagation through time – standard back propagation, generalized delta

rule to update the weights.

How do I do it? Now I already have the dynamic equation here (Refer Slide Time:

30:07): y t plus 1 is f w x t plus g y t. This is the dynamic equation. What I do is that

given y 0 and the sequence of x 0, x 1.… These are all external input – x 0, x 1, x 2, x 3,

x 4 (these are all external inputs). Given this external input and initial condition, which is

y 0, let us compute what is y 1, y 2, y 3, y 4 and y 5. This is the first step.

(Refer Slide Time: 30:54)

The first step is given the sequence x 0, x 1 and so on up to x 4 and initial condition…

this is the initial condition and these are external inputs, compute y 1, y 2 … y 5. This is

how we generate the data.

(Refer Slide Time: 31:45)

Once we generate the data, what I can do is that I now forward propagate my signal.

Initial condition is y 0. Initially, this w and g are the same values but random values.

Whatever w, initially, these ws are all same but all random values, some random values.

Similarly, gs are all random. Then, what I do is I take the initial condition y 0 and x 0 is

the input and compute what is y1; take x 1, compute y 2; take x 2, compute y 3; take x 3,

compute y 4; take x 4, compute y 5. Once given x 0, x 1, x 2, x 3, x 4 and given the initial

values of w and g…. These w and g values are all the same in the initial network;

actually, they are the same always, because for all layers, w and g are same at any given

instant; they are not different.

Given y 0 and this sequence we can compute y 1, y 2, y 3, y 4, y 5. From this model, we

get the actual y 5, y 4, y 3, y 2 and y 1. Obviously, we can compute at every target – in

this target e 1 (Refer Slide Time: 33:21), in this target e 2, this target e 3, this target e 4

and this target e 5. What is e 5? The response of the network is subtracted from the actual

response of the network, which is y 5. This e 5 is y d 5 minus y 5, e 4 is y d 4 or y desired

4 minus y 4 and so on. Similarly, y desired 3 minus y 3 is e 3. We compute these errors at

every target. Now, apply the back propagation through time. How do I do it? Let me

explain in this manner.

(Refer slide tine: 34:19)

Let us take a very simple thing, that is, only two layers. This is my x 0, y 0, this is y1, this

is y2 and x1. Obviously, this is w, this is w, this is g and this is g. What is y2? y2 is f of w

x1 plus g y1. How do I update this w and this g? This is my second layer. I will write

delta w 2, the change in delta w 2, using the gradient descent back propagation algorithm.

How do I write this? This delta w 2 is eta delta… this is the output layer, so I put delta2 –

the error back propagated from the second layer, output layer and input is x 1. This is the

standard delta rule. Similarly, delta g in the second layer….

I say this is the second layer (Refer Slide Time: 36:04) and this is the first layer. In the

second layer, delta g due to the error from here is eta delta2 and input is y 1. What is

delta2? delta2 is obviously the error here, which is e2 into y2 into 1 minus y2. What is y2

into 1 minus y2? We assume that f dash, which is df by dt is y2 into 1 minus y2, when f z

is sigmoidal activation function. We have earlier mentioned this point that if f z is 1 upon

1 plus e to the power of minus z, then f dash is z into 1 minus z. That is what we are

writing. What is e2? e2 is y2 desired minus y2. This is the first layer. Similarly, second

layer will be again delta w in the first layer.

(Refer Slide Time: 37:42)

We can again do this for the first layer now. delta w 1 is eta delta1 x0 and delta g 1 is eta

delta1 y0, because this is a standard delta rule. What is delta1? delta1 is obviously not

only error back propagated from here, there is also error here (Refer Slide Time: 38:22),

and that error is e1, the error here and the back propagated error is delta2, back

propagated through g – that is the delta error back propagated and this is your y1 into 1

minus y1. So, this represents delta1 (Refer Slide Time: 38:58).

Like that, using simple delta rule, given the data sequence, we can compute what is delta

w 1, delta g 1, delta w 2, delta g 2 and finally add the changes in weight in every layer

and sum that, and finally, w is updated as w new is w old plus sigma delta w r in every

layer, because now, the same weight has been updated in every layer, but the weight is

same weight. So, all those updates according to back propagation, the infinitesimally

small change in weight that we get, we add over all the layers and then add to the old

weight and that becomes the new weight. That is the objective here. For the network with

t = 5, I just showed you t = 2.…

(Refer Slide Time: 40:30)

t = 5. Compute the response of the sequence y 1 to y 5, given the sequence x 0 to x 4 and

y 0. We are talking about the network that we have already talked about here (Refer Slide

Time: 40:45). This is my total feed-forward network constructed from the recurrent

network by rolling over time and for this, we are showing the error. Computed error e 5 is

y d 5 minus y 5, delta y 5 is eta delta 5 x 4, delta g 5 is eta delta 5 y 4. We can easily see

here what we are trying to do (Refer Slide Time: 41:22). e 5 is y d 5 minus y 5. This delta

w, the change in this weight, is obviously eta delta 5 x 4, the change in this weight g is

eta delta 5 into input is y 4. That is what we are writing here (Refer Slide Time: 41:45),

where delta 5 is the differentiation of the activation function or derivative of the

activation function and the error at the output.

But when I come to the layer 4, my error at the layer 4 is e 4 is already there and the

back-propagated error is delta 5 into g, which we will talk about now here. The error here

(Refer Slide Time: 42:20) is e 4 plus back-propagated error from this layer, which is delta

5 into this weight g. Like that, we have to compute. This is for fourth layer.

(Refer Slide Time: 42:39)

This for third layer (Refer Slide Time: 42:43), and finally, this is the first layer and this is

the second layer. This is the way we apply the generalized delta rule to this feed-forward

network that has been constructed from the recurrent network by rolling the recurrent

network over time. Finally, after finding delta w over all the layers, delta g over all

layers, what do we compute? w new equal to w old and we add over all layers delta w.

Similarly, g new is g old plus delta g i over all layers; we add them because there are five

layers of weights, we add and then we find g new. We talked about a simple network.

Now, let us go to a little complicated network. Is a complicated network very difficult to

roll over time? No, it is not. Once we understand the principle, rolling over time is not

very difficult.

(Refer Slide Time: 44:14)

For example, you see here, this is a fully connected network, we have three neurons and

two external inputs X1 and X2 and one output is Y. Let us say the output of this neuron is

this is X3, this is X4, this is X5. So, Y is X5. If I look at the forward response, if you look

at the normal convention, if you look at the weight connections, the weights that are

being connected here, this weight from the input 1…. You see the connection X1, X2, X3,

X4 and X5.

Convention-wise, the weights are…. This is the node to which the connection is coming

from 1. Obviously, the weight that has been named is w31. w31 means the weight that

connects the node 3 from node 1. Similarly w33, by just looking at this weight, you can

say this is a self-feedback weight, that is, this weight connects node 3 to itself. Similarly,

w35, you can see that this weight is coming from the node 5 and connecting to 3.

Similarly, w45, if you look at this one, this is coming from 5 and connecting 4. Similarly,

w55 is a self-feedback weight.

This is the convention of designating the weights and this is a fully connected network.

What is the forward response? Forward response is what the output of each neuron is

given X1 and X2 and the present state X3 t, Y5 t and X4 t. So, X3 t plus 1 is the response

of the node 3 at the next time instant is a sigmoidal activation function f of the

summation of w3i Xi t. Similarly, X4 t plus 1 is w4i Xi t and X5 t plus 1 is w5i Xi t,

because each node is connected to every node – all the five nodes (two input nodes and

three neurons, total 5 nodes).

You can easily see that X3 t plus 1 is function of S3 t plus 1. What is S3 t plus 1? S3 t plus

1 is summation that is w31 X1 plus w32 X2 plus w33 X3 and so on w35 X5. We are

inserting this particular item here (Refer Slide Time: 48:08), which is known as w3i Xi t.

This has to be t (Refer Slide Time: 48:15). Time has to be there; we cannot do away with

time in a recurrent network like we have done in the feed-forward network.

(Refer Slide Time: 48:29)

For the same network, once I know this forward response, I can easily write down here, I

can unfold the same network in time here. Obviously, this is my X3 0, this is X3 1. So,

X3 1, X3 at time 1 is a function of X1 and this is w31; for X2, this has to be w32; this is for

X3. The best way to look at it is like this.

(Refer Slide Time: 49:09)

I have two input nodes and this is the initial state. This is X1 0, X2 0 and these are all

initial states. Based on this initial state, the new states are X3 1, X4 1 and X5 1. How do I

compute X3 1? X1 0 w31 is the weight connecting X1 0. From X2 0, this is w21. From X3

0, it is w31, from X4 0, it is w41 and from X5 0, it is w51. The forward response X3 1 is a

function of summation w3i x 0. Based on that, we found out the connection between X3

1, and these initial states in the previous instant. Similarly, X4 1 and X5 1. That way, we

can roll this network over time (Refer Slide Time: 50:53).

(Refer Slide Time: 50:57)

Let us take one example today to illustrate what we have learned. Let us take a simple

linear network, linear dynamics. y t plus 1 is minus 0.5 y t minus y t minus 1 plus 0.5 u t

–a simple discrete dynamic equation. It is a linear dynamic equation, discrete dynamic.

We can represent this particular equation in terms of this (Refer Slide Time: 51:37). y t

plus 1 is w1 y t plus w 2 y t minus 1 plus w3 u t, where w1, w2 and w3 are unknown

weights (we do not know) and this is the recurrent network to represent that.

We give x t, output is y t plus 1 and you see that there are two feedback connections here,

self-feedback with one delay and this is two delay. Obviously, if I write the forward

response of this network, then this is the forward response (Refer Slide Time: 52:25). The

forward response is y t plus 1 is x t into this is w3 x t into w3, this quantity (Refer Slide

Time: 52:42). Actually, we say x t but in this case, it is u t (x t is u t). So, x t into w3 or u t

into w3 plus w1 into y t is one delay and plus w2 into y t minus 1 is two delay. This is my

recurrent network and activation function here f is linear. So f is linear.

(Refer Slide Time: 53:23)

If I take this network, similarly from the forward response, I can write what is y 2. y 2 is

w1 y 1 plus w2 y 0 plus w3 u 1 and y3 is w1 y 2 plus w2 y 1 plus w3 u 2 and so on. This is

the corresponding unfolding in time.

(Refer Slide Time: 53:47)

We apply this back propagation through time using generalized delta rule. We generated

100 data points, where the input u t was selected randomly between 0 and 1, and given

the dynamic equation that we represented, we gave for data generation, we used this

particular equation for data generation (Refer Slide Time: 54:21). If you look at this data,

the circles represent the output, the cross is u t and the circle is y t plus 1 (Refer Slide

Time: 54:39). This is the input data generated.

(Refer Slide Time: 54:44)

Then with back propagation through time, we trained it. When you trained, let us see how

the training took place.

(Refer Slide Time: 54:56)

This is RMS error over number of epochs. You can see how the RMS error reduced.

There were almost 3,000 epochs.

(Refer Slide Time: 55:14)

These are the weights. This is our w3, this is our w1, and this is our w2. w3 has reached

0.5, w1 has reached minus 0.5, and w2 is ―1. If I go back and look at the equation that

was given to us (Refer Slide Time: 55:47), you can see this was my w3, which is 0.5, w2

also I got ―1 and w1 is ―0.5.

(Refer Slide Time: 55:56)

The error surface is the plot of cost function E versus the weight vector W. You can see

how finally we reached the global minimum. Since this is the linear dynamics, we can

easily reach the global minimum and that is not a problem.

(Refer Slide Time: 56:16)

To conclude, in this lecture, we learned about the architecture of a recurrent network,

unfolding a recurrent network in time to make it a feed-forward network, training of a

recurrent network using BPTT algorithm and we showed an example of a system

identification of a linear discrete dynamic. Using BPTT, we showed that the actual

parameters are learned. Thank you very much.

