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Welcome to this lecture. The equations of induction machine in phase variable; that is in 

a b c variables, a b c variables of the stator and a b c variables of the rotor. We have also 

derived the expression for the torque in a b c variable which was little complicated. Now 

if you see the equation for the torque in a b c variable. 
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Let us see this slide. We have the energy stored in the field W f is half i a b c s transpose 

L s s minus L l s I in to i a b c s plus i a b c s L s r prime in to i a b c r prime plus half i a 

b c r prime transpose of L r r prime minus L l r prime into i matrix multiplied by i a b c r 

prime. So, this equation is the equation for energy stored in the coupling field. Now, we 

have assumed at the very beginning that the system is linear. It means the magnetic 

circuit is a linear magnetic circuit; there is no saturation. Hence, we can assume that the 

energy is equal to the co-energy. So, we can say that W f is the energy stored in the 

magnetic field is same as W c is the co-energy of the magnetic field. 

And we also know that if you want to find out the torque; the torque is the derivative of 

the co-energy with respect to theta r that is given by this particular expression; that T e is 



the torque generated by the machine is equal to p by 2 is multiplied, because we have 

assumed theta r is the electrical speed. W c is expression that we are already seen, and it 

is d w c by d r at constant current. So, we can assume that all the current of the stator and 

the rotor are keep constant. When we are doing the differentiation; this is a partial 

derivative with respect to theta r. Now if we differentiate this equation, this equation has 

got three distinct torque. One is the self inductance part; that is L s s minus L l s into i.  

Now we are subtracting the leakage, because leakage flux does not help in the energy 

transfer. In other words the leakage flux is not present in the coupling field. The coupling 

field is the field due to the mutual flux; the flux that links both the stator and the rotor. 

So, one component of the flux is due to the primary; that is half of L l s in to L l s I i a b 

c s, and the other component is the flux which is the mutual flux, and the third 

component is the rotor self inductance flux. So, out of these three components we can see 

this is the first component. The stator self induction flux, and then this is the rotor self 

induction flux. And the third component here is the mutual flux; the energy stored due to 

the mutual flux, and when we differentiate these various with respect to theta r we will 

see that the first term, the term one and the term two term three. 

These two terms are independent of theta r; they are not function of theta r, only the 

mutual term that is term two is the function of theta r, okay. Now this term is the 

function of theta r. So, the differentiation of the first term and the third term will be 

equaled zero. So, we will just differentiate the second term. So, this is the differentiation 

of the second term with respect to theta r, and then we differentiate and simplify because 

the currents are constant; i a b c s and i a b c r, these two currents are constant. So, you 

have to only differentiate the matrix that is L s r prime, and L s r prime is the mutual 

inductance matrix between the rotor and the stator. And this matrix is, obviously, a 

function of theta r as we have seen in the previous lecture. Now when we differentiate 

this matrix with respect to theta r and simplify we get the following expression for the 

torque. It is minus of p by 2 in to L m s into this expression. 
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Now we see that this expression is a complex expression which involves both the stator 

and the rotor currents. The stator currents are i a s, i b s, i c s, and the rotor currents are i 

a r, i b r, i c r, and also this involves sin theta r and cos theta r. As we can see here we 

have sin theta r component here, we have cos theta r component here, we have i a r 

prime, i b r prime, i c s the stator component of current, the phase c; i b s is the phase b 

of the stator current, i a s is the phase d of the stator current, and similarly we can see this 

also contains rotor current, the stator current and this little complex. So, we have already 

seen that the torque expression can be derived, but it is complex. So, when we stimulate 

the machine in a b c frame we can do it, and we can do it exactly. 

We can do it as if we are energizing a real 3-phase machine. We can apply the three 

voltages v a, v b, v c, and we can observe the six currents; that is the three for the stator 

and three for the rotor. i a s, i b s, i c s for the stator, and i a r, i b r, i c r for the rotor, and 

then we can derive the torque equation. And from the torque equation we can find out the 

equation for the speed; T e is equal to J d omega r by d t by p by 2, because omega r is 

the electrical speed plus B by p by 2 into omega r. B is the coefficient of viscous friction; 

omega r is the electrical speed plus the low torque. So, when we solved this equation we 

can find out the expression for the rotor speed; that is omega r. Omega r is the electrical 

speed of the rotor, and theta r can be obtained by the integration of omega r, and this 

theta r can be substituted back to evaluate the induction matrix and also the expression 

for the torque. 



So, this basically goes in iterative process, and we have to solve these equations by 

numerical method using computers, and after the first iteration we can evaluate the 

torque, the speed and the rotor angle that is theta r. And theta r can be substituted back to 

recalculate the inductance matrix and the expression for the torque. So, this goes in an 

iterative process till we reach the final time, the time to stop the stimulation. So, this is 

possible, but this involves lot of complexities, and this is going to consume lot of 

computer CPU time.  

Now to simplify the stimulation we can go for d q modeling which means we can 

transform the a b c variables into d q variables, and then without stimulating in actual a b 

c variable we can stimulate the machine in d q variables, you get the expression for the 

torque and the speed. So, we will go for the transformation right now. Now to be able to 

do that we have to transform the a b c variable in to d q variable. So, we will discuss the 

transformation in induction machine. 

(Refer Slide Time: 08:53) 

 

So, we will take a normal 3-phase machine with phase a, phase b and phase c in the 

stator. This is phase a, this is phase b, this is phase c of the stator, and in similar way you 

can take the rotor. This is the rotor; this is phase c of the rotor, and this angle is the rotor 

angle that is theta r. A rotor is rotating at a speed of omega r in the anticlockwise 

direction. So, this is basically our 3-phase machine that we are talking about. This is our 

a r, b r and c r. Now what we would like to do we would like to transfer this machine into 



a d q machine. This is a rotor, and we have two rotor windings. There is the pseudo 

stationary winding one in the d axis, and the other one in the q axis. So, this is our d axis, 

and this axis is the q axis. 

So, we have the d axis stator, we have a d axis rotor, we have a q axis stator, and we have 

a q axis rotor. So, we can call this to be d s, this to be d r and these two windings are 

coupled. So, we can have dot here, dot here, and this is q s, and this winding is q r. This 

winding is coupled with this winding. So, we can show some polarity marking here. So, 

this is what we have, okay alright. Now in this case the objective is that we have to 

transform the original machine in to d q machine. So, what we do here the original 

machine has got the number of turns per page is N s here, and this number of turns we 

can call this to be also N s. 

So, we can assume that the number of turns of the actual machine is same as the number 

of turns of the d q machine. D q machine is hypothetical machine. It does not really exist 

in practice but for our own convenience we are transforming the a b c machine in to a d q 

machine and we have equalized the number of turns N s in the stator in the 3 phase 

machine, and the same number of turns power phase for the 2 phase machine or 2 axis 

machine. So, here also we have N s in this case. The rotor is N r number of turns. Here 

also we have N r here and N r here. We can now write down the m m f balance equation 

whatever is realized by a 3-phase machine has to be realized by 2 phase machine. So, 

first of all what we do here we equalize the ampere turns equalize the m m f s. So, what 

we do here we can write down the equation of the m m f in the d axis. 
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So, we can say that N s i d s is the d axis m m f produce by the d q winding in the stator, 

and that is equal to N s into i a plus i b cos 120 plus i c cos of 240 degree. Now if you see 

the m m f produced by the d axis stator will be same as the m m f produced by the a b c 

stator in the d axis. So, we can resolve this m m f produced by b phase and c phase onto 

this d axis here. This is also the d axis, and this axis is the q axis. We have defined this 

two axis and we are talking about stationary d q axis. This d q axes are stationary in the 

space. They are not moving; they are stationary with the stator. So, if we resolve this m 

m f this will be this current is i a s in the stator, this current is I b s, this current is I c s. 

So, what we do here we project the phase b m m f and phase c m m f and phase a m m f 

all along the d axis which is aligned along phase g of the stator, and we equalize the m m 

f of the d q machine and the a b c machine in the stator. 

So, that is what we have written here cos 120 for phase b and cos 240 for phase c. Now if 

we simplify this, what we have here is the following; that is equal to N s into i a cos 120 

is minus root 3 by 2 i b, and this is plus root 3 by 2 i c. So, this is N s into i d s. So, if we 

simplify this we can say that, yeah there is one simple thing. So, this is actually minus 

half and minus half, this is half and minus half. So, we can simplify this i d s equal to i a 

minus half i b minus of half i c. So, the stator currents are i a s, i b s I c s. So, we can 

make these currents are i a s, i b s and i c s. So, this is i d s. In a similar fashion we can 

equalize the m m f in the q axis. 



So, what can we say here is that N s into i q s that is equal to N s. Now if you simplify 

this this will be i b s root 3 by 2 minus i c s root 3 by 2. So, what we are trying to do here 

we are equalizing the m m f in the q axis. So, what we can do here is that we can project 

all this m m f in the q axis and equalizing with that of the d q machine. So, we get the 

following expression that N s in to i q s is equal to N s in to i b s into root 3 by 2 minus i 

c s into root 3 by 2. N s and N s will be canceled. We can say that I q s equal to i b s root 

3 by 2 minus i c s root 3 by 2. So, this is actually the stator transformation. 

It means we are able to transform the current a b c into d q current or the d q machine, 

and in addition to the d q component we can sometimes also have the zero sequence 

component i o s, and that is equal to one-third of i a s plus i b s plus i c s. So, i o s is the 

zero sequence component, and here that is equal to one-third of i a s plus i b s plus i c s. 

So, we have i d s, we have i q s, we have i o s. Now when we transform sometimes you 

know we can have this transformation and transform the a b c into d q axis machine, and 

we can get i d s, i q s and i o s. 

Now what we do in addition to that; we always aim that this transformation will not alter 

the parameters of the original machine. Actually the parameters are all given in the 

power phase of the actual 3 phase machine, and when we transform this into a b c 

machine the power phase parameters should not change. So, the objective here is that 

while transforming we are keeping the power phase exactly same. It means the power 

phase of the a b c machine should be same as the power phase of d q machine. 
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So, we can write this in a matrix expression that we have got i d s, i q s and i o s, and 

these are basically obtained from the original machine currents. And these currents are i 

a s, i b s and i c s, and what is this matrix? We assume this is 1, minus half, minus half, 0, 

root 3 by 2, minus root 3 by 2, and here it was one-third, one-third and one-third. So, we 

will just multiply here the factor of 2 by 3, and here we will have half, half and half. So, 

this is the transformation matrix that is C s. Now the question is that how did we obtain 

this 2 by 3? Now this 2 by 3 comes into picture to equalize the power phase variables. It 

means the power phase current and power phase voltage should be the same, and we 

have to use the same transformation for the current, voltage and flux linkage. 

So, if this is my C s I can also write down i d q o s that is equal to C s i a b C s. So, the 

transformation is valid for the current. It means it can transform i a b c s into i d q s. The 

same transformation can be used for the voltage. So, I can use the same transformation 

for the voltage. I can also use the same transformation for the flux linkage. So, these are 

all vectors. The flux linkage, the voltage and the current are all vectors. So, we are using 

the transformations matrix; that is C s to transform the current voltage and flux linkage 

into that of the d q machine. And since we are talking about power phase power 

invariants and power phase variables should not change. 

It means power phase impedances should be the same, power phase current should be the 

same, power phase voltage should be the same, and power phase flux linkage of the 3 



phase machine is same as the power phase flux linkage of the d q machine. We choose 

this factor as 2 by 3. It is basically a constant that we are choosing, and this constant in 

general would have been a constant k. And when we take power phase power invariants, 

keeping the parameters exact to the same, this constant k turns out to be 2 by 3, okay. So, 

this is for the stator and what about for the rotor? Similarly we can also have for the 

rotor. So, for the rotor we can have a similar transformation, but that transformation will 

involve the rotor angle. 
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Now we can now do the rotor transformation, and similarly the rotor if you see that we 

are transforming this a r, b r, c r to d r and q r; again the rotor is also transformed into a 

2-axis model. So, we have to project the m m f s in the d and q axis respectably and find 

out the d q current for the rotors as well as we have down for the stator. So, let us see 

how it comes out. So, we can write down here N r i d r that is equal to cos tan k into N r i 

a r cos theta r; we are equalizing the m m f in the d axis; that is why we have got in the 

left hand side N r i d r, in the right hand side we can project the m m f of a b c onto the d 

axis plus i b r cos of theta r plus 2 pi by 3 plus i c r cos of theta r minus 2 pi by 3. 

Similarly in the q axis some cos tan k N r i a r sin theta r, here the cos will be replaced by 

psi i b r sin of theta r plus 2 pi by 3 plus i c r sin of theta r minus of 2 pi by 3. And further 

we have the zero sequence component, we can straightforward write i o r equal to one-

third of i a r plus i b r plus i c r. Again we choose k equal to 2 by 3 for power phase 



power invariants, and we write down the matrix expression i d r, i q r, i o r to be equal to 

two-third of cos theta r cos theta r plus 2 pi by 3 cos theta r minus 2 pi by 3 sin theta r sin 

theta r plus 2 pi by 3 sin theta r minus 2 pi by 3 half half half. This is i a r, i b r, i c r. 

This is the rotor transformations, so we have the rotor currents, and this matrix here is 

called the rotor transformation matrix that is C r. So, what we have done here we have 

been able to find out the transformation matrix for the stator and transformation matrix 

for the rotor, and having found that we can transform the equation in a b c variable into 

the equations in the d q variable. So, this transformation i a b c r can be transformed into 

i d q r. 
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So, we can say and this is valid for the voltage as well; also for the flux linkage we can 

say here psi d q r also equal to C r psi a b C r. So, the same transformation can be used 

for the current, voltage and flux linkage; that is the uniqueness of this transformation 

matrix that is C r when we choose k equal to 2 by 3. Now with this help let us transform 

the a b c equation into d q equation. So, we start with the stator; first of all we start with 

the stator equations. We can write down here V a b c s that is equal to r s i a b C s; r s is 

the matrix plus p psi a b c s, and we can we can pre-multiply this equation with C s. So, 

we can say that is C s v a b C s equal to C s r s. We can have C s inverse into C s I a b c s 

plus C s p psi a b c s. So, we can write down this matrix in the stator equations, okay. 



And the left hand side will be v d q s that is equal to C s r s C s inverse; right hand side in 

this case would be i d q s, because this is C s in to i a b c s that is i d q s and C s being 

constant, it can be taken inside the derivative torque. So, we can say here that is p C s psi 

a b c s. Now let us try to expand this, okay. Now what is psi a b c s? Psi a b c s is the 

stator flux linkages in the phase a, phase b and phase c. So, these consist of two terms; 

the flux linkage due to the self inductance and the flux linkage due to the mutual 

inductance between the stator and the rotor. So, we can write down this as follows; that 

is L s s the matrix into i a b c s plus L s r into i a b C r. 

Now here when we write we refer everything to the primary side, and hence we have this 

prime factor coming to picture, because all the variables are referred from the primary 

side. So, when they are referred in the primary side they are multiplied by suitable 

number of terms, and hence we have the prime variable here. So, these have to be 

transformed. So, we can pre-multiply this equation by C s; C s pi a b C s that is equal to 

C s L s s C s inverse in the C s i a b c s plus C s L s r prime, and we can have C r inverse 

in the C r i a b C r. 

So, this equation that we have written just now will transform the inductances of the a b 

c machine into the inductances of the d q machine. Now we will see very interestingly; 

actual a b c machine inductances some inductances are function of theta r. Now when 

you transform this inductance into d q machine all inductances will be constant; they are 

independent of the rotor position, that is the theta r. Theta r is the rotor position that all 

independent of the rotor position theta r. 
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So, we will evaluate this inductance first. Now C s L s s C s inverse just evaluate this 

inductance; now this inductance with the stator self inductance. The stator self 

inductance this is independent of theta r. Now when we transform this into d q model this 

will be again independent of theta r, but we sum new factors coming to picture as 

follows. Now if you see this that is equal to 2 by 3. I can write down what is C s. C s is 1 

minus half minus half, 0 root 3 by 2 minus root 3 by 2, half half and half. What is L s s? 

If you recall the L s s had the diagonal terms which were constant, and they also have the 

mutual terms, okay. The diagonal terms are L l s plus L m s, L l s plus L m s, L l s plus L 

m s. 

Now the mutual terms are minus of half L m s, minus of half L m s, minus of half L m s, 

minus of half L m s, minus half L m s, minus half L m s. So, these are the mutual 

inductance between the two phases of the stator, stator a and stator b, and then we will 

post-multiply this inductance matrix by C s inverse; this is the case inverse. So, if you 

calculate what is C s inverse this is 1 minus half minus half, 0 root 3 by 2 minus root 3 

by 2, and then what we have here is 1 1 and 1. So, if you multiply C s and C s inverse we 

get the i matrix, alright. So, this is what we have here, and then we can simplify this one, 

and when the simplify this we get the inductance matrix of the d q machine, and that is L 

l s plus 3 by 2 L m s 0 and 0, 0 L l s plus 3 by 2 L m s 0, 0 0 and L l s. 



This is an interesting matrix in the sense that you know most of the elements are zeros 

here; only the diagonal elements are present. All the off diagonal elements are 0, and that 

is happening because there is no coupling between the d and q axis. Now if you see a d q 

machine in this case we have transformed the original a b c machine into d q machine, 

and when we find out inductance of the d matrix or the d axis inductance the d axis 

inductance is independent of the q axis inductance. The d and q axis are orthogonal to 

each other, and they are perfectly decoupled, and hence the off diagonal elements are 

becoming 0. 

And then in addition to the d q inductance we also have the zero sequence inductance, 

and what is the zero sequence winding? The zero sequence winding does not have any 

coupling with d and q axis. It can be assumed that it is a winding in the z direction or in a 

plane perpendicular to the plane of the slide, okay. So, we can think like that that this is 

the zero sequence inductance. This is the inductance of the q axis stator. So, we can call 

this to be q s, this is o s and what about this? This is the inductance of the d axis stator 

that is L d s, okay. So, we have already seen that this is the inductance matrix of the 

stator in the d q model which does not have any off diagonal terms. 

And we also see that L d s equal to L q s. L d s equal to L q s we can say that is equal to 

L s the stator inductance of the d and q axis. So, that is equal to L l s plus 3 by 2 times 

and L m s. Now if we see this 3 by 2 term is coming because of the fact that this is the 

equivalent of a 3-phase machine. So, L m s is the individual maintaining inductance of 

the a b c machine. When you transfer this a b c machine into a d c machine because of 

the coupling of a b c phase this coupling is reflected as 3 by 2 time of L m f in the d q 

machine. And normally when you have an induction machine we do various ways to find 

out the parameter. 

We do the no load test to find out the parameters like magnetizing inductance, and we do 

the low test or block outer test to find out the inductances the leakage inductances of the 

stator and rotor, also the resistance of the rotor. So, this inductance which is the 

magnetizing inductance calculated in the no-load test it is not L m s it is 3 by 2 times L 

m s. This 3 by 2 times come although it is a power phase magnetizing inductance the 3 

by 2 terms is coming because of the coupling between a b and c. So, this shows the effect 

of coupling of a b and three phases of the stator. 
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So, similarly we can evaluate the user inductance. We can transform this else C s L s r 

prime into C r prime. Now if we simplify this C s is 2 by 3. This is 0 root 3 by 2 minus 

root 3 by 2, half half and half. Now what is L s r? L s r is the mutual inductance between 

the stator and the rotor. Now this inductance is a function of theta r. So, if we see this 

inductance this inductance we have derived in the last lecture, and this induction was a 

function of theta r in a following fashion. So, this is cos theta r cos theta r plus 2 pi by 3 

cos theta r minus 2 pi by 3, cos theta r minus 2 pi by 3 cos theta r cos theta r plus 2 pi by 

3, cos theta r plus 2 pi by 3 cos theta r minus 2 pi by 3 and cos theta r. And this is post-

multiplied by C r inverse. 

Now what is C r inverse? C r inverse is the following. This is cos theta r cos theta r plus 

2 pi by 3 cos theta r minus 2 pi by 3, sin theta r sin theta r plus 2 pi by 3 sin theta r minus 

2 pi by 3, and 1 and 1 and 1. So, this is the last column of this particular matrix. Now if 

you simplify this, this will turn out to be the following matrix. It is 3 by 2 time L m s 0 

and 0, 0 3 by 2 L m s 0, 0 0 0. So, this is the matrix which is independent of theta r; 

although, we have seen that originally the mutual inductance matrix between the stator 

and the rotor it is a function of theta r. After transformation into d q system we see that 

the inductance matrix that we obtained is independent of theta. 

Hence, it is worthwhile to stimulate the machine in d q model, because the inductances 

are independent of theta r as you have seen in the following expression. So, this is the 



magnetizing inductance of the d axis, this is the magnetizing inductance of the q axis, 

and this is corresponding to the zero sequence component. And since the zero sequence 

component does not produce any coupling; it does not have any magnetizing inductance 

that is corresponding to 0. So, this is obviously coming because of the transformation, 

and in the d q model we have seen where the inductances are not function of the rotor 

position that is independent of theta r. So, with this background we can write down the 

equation of the induction machine in a stationary reference frame or in the stator 

reference frame. 
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So, we can write down equations of induction machine in stator d q axis reference frame. 

So, we can write down the equation for the stator and equation for the rotor in the 

following fashion. V d s is equal to r s i d s plus p psi d s. V q s is equal to r s i q s plus p 

psi q s. V o s equal to r s i o s plus p psi o s. V d r prime equal to r r prime i d r prime 

plus p psi d r prime. All the variables are referred from the prime side plus omega r psi q 

r prime. V q r prime equal to r r prime i q r prime plus p psi q r prime minus omega r psi 

d r prime. V o r prime is equal to r r prime i o r prime plus p psi o r prime. Now these are 

the equation of an induction machine in stationary d q reference frame. Now if you see 

this flux linkages psi d s psi q s can be expressed in terms of the inductances, because we 

have been able to find out the inductances, and then these flux linkage also can be 

written in term of the inductances. 



And we have seen that the rotor is rotating, and hence there will be rotationally induced c 

m f in the rotor. These are the rotationally induced c m f, alright, and the rotor is rotating 

in which direction? If we see the direction of the rotation, the direction of the rotation is 

from a to b to c, phase a phase b of the stator, phase c of the stator. We are assuming that 

the revolving field is rotating from a to b to c. So, the revolving phase field in 

anticlockwise direction and the rotor is trying to catch up with the rotating field, and that 

is rotating in the anticlockwise direction. This anticlockwise direction is in opposition to 

the convention that we have already set for the cross primitive machine model. 

In the cross primitive machine model the rotor was rotating at a speed of omega r in the 

clockwise direction, alright. So, hence if you see here due to that we have flux in the d 

axis that is omega r into psi q r, and then we have minus in the q axis equation omega r 

into psi d r which was in opposition to the direction of the rotationally induced c m f of 

the cross due to the machine, but that does not matter. If the direction is reverse the 

direction of the rotational c m f will also be reversed. Nothing else will be changing, only 

the direction of the rotational induced c m f will change. So, we can write down the flux 

linkages in terms of the inductances. 
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Now what are the flux linkages? We have a psi d s; now what is psi d s? Psi d s is equal 

to L s i d s plus L m i d r. Now what is L m? L m is 3 by 2 times of L m s, and what is L 

s? L s as we have already obtained that is equal to the linkage inductance of the stator 



plus 3 by 2 times the magnetizing inductance of the power phase of the b c machine. So, 

this is L f the stator inductance of the d q machine. Similarly we can write down the flux 

linkage in the q axis, psi q s is equal to L s i q s plus L m I q r. Psi d r is equal to L r i d r 

plus L m into i d s, and psi q r is equal to L r i q r plus L m into i q s. 

Now here the air gap is uniform. In case of our induction machine there is no salience 

here. The stator is cylindrical; the rotor is also a cylindrical structure. The air gap is 

absolutely constant throughout the periphery of the rotor, and hence the inductance for 

any given position of the rotor is constant. The rotor is rotating no doubt, but inductance 

of the d and q axes are constant. And L d s equal to L q s due to the fact that there is no 

salience in an induction machine. So, we can say that we have the same inductance in the 

d axis rotor, the same inductance in the q axis rotor, the same inductance in the d axis 

stator, the same inductance in the q axis stator. 

Now what about L r prime? L r prime is equal to in L l r prime plus 3 by 2 times of L m. 

So, we have all this inductance matrixes and from the flux linkages the flux linkages can 

be expressed in terms of inductance and current; as you have shown here these are 

basically the flux linkages. They are expressed in terms of the current and we can 

substitute this back into the original, and we have the 0 sequence winding in this case, 

the 0 sequence in the stator and the 0 sequence in the rotor. This 2 component can be 

neglected so far the torque production is concerned. The 0 sequence components do not 

take part in production of the torque, and hence the 0 sequence equations can be 

conveniently avoided while calculating the machine torque and machine speed. 

So, we can say that is can be avoided can be ignored for torque calculations, and 

furthermore the zero sequence components would have been coupling with either d 

active or q axis. Since, the 0 sequence component do not have any coupling I mean if 

you ignore that particular equation you do not need i o r anywhere; we do not need i o s 

anywhere. So, since i o s and i o r are not required in the equations for the calculus in the 

torque, or otherwise we can avoid the computation of 0 sequence currents in the stator as 

well as in the rotor. Now why then we show them in the equation form? Now we show 

them in the equation form because to reconstruct back the a b c equations if you want to 

transform i d i Q into a b c you have to take help of the 0 sequence component. The zero 

sequence component although does not take part in torque production will be helpful in 

calculating back the a b c variables, okay. 



So, we can now write down the expression for the voltages, and we can write them in a 

matrix form V d s, V q s, V d r and V q r. We just have four variables for the first two 

variable six variable in the a b c frame. So, we can just write down the currents and fill 

up this impedance matrix i d s, i q s, i d r, i q r. We have a 4 by 4 matrix, and we can 

write down this just by inspection; we do not have to remember. The first one is the 

stator resistance torque, the stator self-inductance torque. So, we can say it is r s plus L s 

p. Now the stator d axis rotor is coupled with the d axis stator. So, we have L m p, and 

then the stator does not have any rotational induced c m f so we can make the other terms 

equal. 

You see that the first row has been evaluated. Similarly the second row we have r s plus 

L s p in the q axis stator, the resistance is the same. The inductance of the d and q axisare 

the same, then we have coupling with the q axis rotor. There is no rotational induced c m 

f. So, we can make this element equal to 0. In the rotor we have the rotor resistance 

torque, the rotor inductance torque, and then we have coupling with the d axis stator. 

Then we have to write down the elements corresponding to the rotationally induced c m 

f. So, this is in the d axis. So, we have omega r here into L m, omega r here into L r 

prime, this is q axis one is coming to picture here. So, as far as our previous equation this 

is positive. So, we have this positive sign here. 

So, then here also we have plus sign in this case, and for the fourth row we have r r plus l 

r prime p. Now this is the magnetizing inductance L m p then we have the rotational 

induced c m f here and rotationally induced c m f here. The rotationally induced c m f is 

negative. So, this is the equation of an induction machine in d q model in the stationary 

frame. In the stationary frame the d and q axis are not moving; they are stationary with 

respect to the machine stator. So, from this we can also evaluate the torque equation. 

How do we find out the torque equation for the primitive machine? We find out the 

torque equation by having this p by 2 i transpose G i. So, this is my z matrix or z 

primitive. From this we can evaluate what is G matrix. G matrix that part of the matrix 

which is associated with omega r torque; so we can evaluate what is the g matrix. 
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So, G matrix we can evaluate, and we can rewrite this matrix G 4 by 4 matrix. There is 

no speed term in the first row, no speed term in the second row; the additional speed 

term here, and this is L m, and this is L r. And this is minus of L m, and this is minus of 

L r, and these are all zeros, okay. So, we can see here we have minus L m and minus L r 

here, and here we have the speed terms plus L m and plus L r. So, these are present in 

this case plus L m plus L r minus L m and minus L r. Now we can find out the 

expression for the torque; T e equal to p by 2 i transpose G into i. So, if you simplify this 

we can calculate the expression for the torque. This is the d q equations which have d q 

here. So, i d q is equal to i d s i q s i d r i q r transpose. So, these are the various currents. 

Now if you pre-multiply this and post-multiply this we can find out the expressions for 

the torque. Now when you find out the expressions for the torque we can evaluate the 

speed also the speed can be evaluated from the electromechanical equation, T e is equal 

to J by p by 2 into d omega r by d t plus B by p by 2 into omega r plus T L. So, we can 

simulate an induction machine in the d q reference frame. In the stationary reference 

frame the d q axis are stationary; they are not rotating. They are stationary, and we have 

the voltage equations here. 

These are the voltage equations, and from this we can find out i d s i q s i d r and i q r, 

and then we can substitute this to find out the torque of the induction machine. And the 

torque can be substituted here to find out the speed, and see in the induction matrix in 



this case is not a function of theta r. This calculation is much faster than calculation in 

the a b c model. So, if you simulate an induction machine a b c, model and if you 

simulate an induction machine in d q model an induction machine simulated in d q model 

will be much, much faster than an induction machine simulated in a b c model. And after 

having simulated this a b c equations and in the d q model we appreciate that d q model 

is definitely better. And whenever we have d q currents we can transform them back into 

the a b c current. 

It means i d and i Q can be transformed back into i a i b i c. So, we are not losing any 

thing in terms of the actual machine part ones, but on other hand we are able to gain 

some computing time, because in d q model the machine is stimulated much much faster 

than an a b c model. And from the a b c I mean from the d q equation we can get back 

the a b c equations as well. So, in this lecture we have seen how to stimulate an index 

machine in d q model, we have also derived the equation for the torque this expression.  
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And in the next lecture we will see how our induction machine can be stimulated in other 

reference prime which is not stationary which will be rotating in the space at any 

arbitrary speed omega, omega minus omega r in to psi q s; V q s equal to this is omega s 

into psi q s.  


