
 

 

Lec 8: Real and Reciprocal lattices 

 

 Hello students, welcome to lecture 8 of the online courses on Photonic Crystals, Fundamentals and 

Applications. Today's topic will be on Real and Reciprocal Lattices 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

So, here is the lecture outline. We will discuss about Periodic Electromagnetic Devices into the 

details of two-dimensional lattices and the symmetry operations. Briefly touch upon translational 

symmetry or discrete translational symmetry which is relevant to the study of photonic crystals. We 

will look into the calculation of reciprocal lattice vectors, constructing reciprocal lattice, finding out 

the Miller indices obtaining brilliant zone and then irreducible brillouin zone ok. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

So, let us first discuss periodic electromagnetic devices. As you can see on this particular slide there 

are different types of you know periodic electromagnetic devices are shown here starting from 

diffraction grating to waveguides wholly photonic bandgap fiber, you have band gap materials, 

metamaterials, then periodic array antennas, slow wave devices and frequency selective surfaces. 

So, these are all periodic devices where the property is mainly defined by the unit cell and the 

periodicity 

 

 

 

 

 

 

 

 

 

 

 

 



 

So, what is a periodic structure? So, here you can see periodicity at atomic scale. 

 

 So, these are different atoms, okay. And if you try to replicate this in your engineering design, where 

you make one-unit cell and then try to repeat it periodically, you can actually get large scale 

periodicity, something like this or this. So, what is fundamental here is that the math which 

describes the periodicity in atomic scale or large-scale periodicity both are similar. So, let us look into 

how we can describe periodic structures. So, there is an infinite number of ways a structure can be 

periodic. 

 

 

 

 

 

 

 

 

 

 

 

 



 

Despite this, we will need to find a way to describe and classify these periodic lattices. So, we have 

to make some generalization to achieve that. So, we can classify periodic structures into 230 lattice 

into 230 space groups, 32 crystal classes, 14 Bravais lattice and 7 crystal systems. Space group are 

basically the set of all possible combinations of symmetry operations that could restore the crystal 

to itself. So there are too many 230 space groups so we do not deal typically with space groups. 

 

 How about Bravais lattice? Yes. So, we mainly focus on Bravais lattice and the seven crystal systems. 

So, if you look into Bravais lattice, you can see that the primitive lattices are set of all possible ways a 

lattice can be periodic. If composed of identical spheres which are basically placed at the lattice 

points. You can also consider you know the set of all Bravais lattices okay which have the same 

hollowheadry  or you can say the same shape of conventional unit cell you can group them into 

crystal systems. 

 

 That is why we have 14 Bravais lattices and we have 7 crystal systems. So, let us take some 

examples and find out you know how do you apply all this fundamental concepts on 2 dimensional 

lattices  and also look into the symmetry operations which are possible 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

So, here are some examples of two dimensional Bravais lattice. You can see here this is a hexagonal 

lattice where the atoms or the unit cells you can say they are all arranged in a hexagonal array. They 

can also so when you say a hexagonal array these two vectors t1 and t2 are basically same but of 

equal length but the angle between them will be 120 degree okay. 

 

 So, in case of square you can understand that the lattice is basically square. So, the distance from 

here to here and here to here will be same again. So, you can say modulus of T1 vector and modulus 

of T2 vector will be equal and in this case the angle between them theta is equal to 90 degree. You 

can also think of rectangular lattice where T1 and T2 will not be equal, but they will maintain that 

90-degree angle. you can think of rhombic lattice like this where you can have this kind of length L 

forming a diagonal pattern. 

 

 So, here basically T1 is considered to be twice cos theta times T2. okay and the angle is definitely 

not 90 degree. So, these are different lattice types you can also have oblique lattice where t1 and t2 

are not equal and again you know angle theta between these two vectors is not 90 degree. So, you 

can understand the difference between this rhombic and oblique Bravais lattice. 

 

 

 

 

 

 



 

 

Now, we will look into the symmetry operations that can be performed on Bravais lattice. 

 

 So, the type of symmetry in which an object moves from one position to another position with the 

same orientation okay, So, in forward or backward motion that kind of symmetry is called 

translation. So, you can actually think of this moving forward or backward and that will actually 

replicate the same part of the crystal. So, you can think of this infinite crystal to be invariant under 

translation operation. Similarly, you can also think of rotational symmetry, which is the symmetry in 

which an object fits into itself while being rotated through 360 degrees. So, if you take this one and 

rotate these 360 degrees, you see it actually comes back to itself. 

 

 Okay. So, these are the kind of steps you can think of. Right. And another type of symmetry is 

reflection symmetry. Right. So, here you can see it is a type of symmetry in which a line could divide 

an object into two coincidental parts. 

 

 So, if you can think of a line here, this part, the left and the right part are basically mirror image of 

each other. So, it actually has got the mirror symmetry. right or the reflection symmetry. So, with 

that we will now describe the primitive and the non-primitive lattice vectors. So, the axis vectors 

okay will help us to define the shape and orientation of the unit cell and a unit cell is very important 

in case of any periodic structure because that unit cell contains all the properties okay and then it 

will be repeated periodically along you know 1 dimension, 2 dimension or 3 dimensions depending 

on whether you are talking about 1D, 2D or 3D periodic structure. 

 

 

 



 

 

So here you can see that you know this axis vectors they cannot uniquely describe 14 Bravais lattice 

but what they can do they can uniquely describe the 7 crystal systems. So, you can also think of 

translational vectors like this T1, T2 and T3, okay, which connect the adjacent points in the lattice 

and this can be used for describing the 11 Bravais lattice systems, okay. So, this you can understand 

that this one is same for this BCC as well as simple cubic, right, and also for FCC. So, this kind of 

structure so that is why you know the primitive axis vectors cannot uniquely describe 14 Bravais 

lattice, but they can do the crystal systems ok 

So, here you can see that when you talk about primitive lattice they are basically the smallest 

possible vectors that can describe the unit cell. 

 

 almost always when we use the level of lattice vector that refers to the translational vectors like 

this. We do not talk about the primitive axis vectors right and this is not the smallest one. So, this 

will not be considered as a primitive translational vector. So, the primitive translational vector is 

basically the smallest possible vector ok.  

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

So, here we bring back again the description or discussion about discrete translational symmetry, 

okay, which you can see in case of this 1D photonic crystal that is shown here and this particular 

black box, this thin box marks the unit cell, right. 

So, why is this important? It is important because photonic crystals lack continuous translational 

symmetry, but they exhibit discrete translational symmetry. And it means that the translation 

invariance holds only for distances which are basically multiple of a fixed step length or that is also 

known as the lattice constant. So, if you take you know the if this is the lattice constant and you 

know in integral multiple of this lattice constant you will see that the feature is basically repeating. 

So, it has got this discrete translational symmetry. Now because of this discrete translational 

symmetry okay you can also write that you know the lattice vector A is basically A y by cap because 

here you can see that the periodicity is extended along the y direction okay and you can also write 

that epsilon r as epsilon r plus minus a. 

 

 So, this is true but then it also repeats for all the integral multiple of a. So, it is better to be written 

as epsilon r equals epsilon r plus capital R where capital R is basically L a where L is an integer. right. 

So, that way you can understand that discrete translational symmetry exists in the photonic crystal. 

Now, because of the translational symmetry we have seen in the previous lecture also that the 

Maxwell's operator theta cap  okay must commute with  all translational operators in the x direction 

and for lattice vectors capital R which lie in the y direction and R as you have seen it is basically 

represented  as L A y cap what is L it is an integer A is the lattice constant. 

 

 So, the modes of theta cap are identified as the simultaneous eigen functions of this translational 

operator represented by the plane waves which can be expressed like this okay. So, the first 

equation here shows the continuous translational operator where you are moving the system by a 

displacement of d. But, in this case for the periodic crystal or for the periodic system, so dx is now 



replaced by capital R where capital R is basically integral multiple of the lattice constant A. So, you 

can also see d is replaced by this okay. So, this way you can actually see the eigen function okay 

which is represented by the plane waves. 

 

 So, what we understand here that the modes with wave vector k y and k y plus 2 pi by a they will 

form a degenerate set with the same eigenvalue of T r e to 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

So, in this kind of a system we can think of the impermeability parameter which is ( , )x y that is 

basically / ( , )o x y . So, this impermeability is periodic in the transverse direction x and y and it is 

basically uniform along the axial direction that is z. So, you can also write if you consider a1 and a2 

as the periods in x and y direction okay. So, this is a rectangular lattice. So, the period here is a1 and 

a2 okay. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Then ( , )x y will also satisfy the translational symmetry like this okay. anything in place of x you can 

write 
1 1x m a+ for y you can write 

2 2y m a+ and that the property should repeat itself. The 

impermeability should repeat itself and that is how this is a periodic rectangular lattice. Now this 

periodic function ( , )x y can be represented as a two-dimensional Fourier series in this particular 

form where you can say you know l1 ranges from minus infinity to infinity then you have summation 

over l2 ranging from minus infinity to infinity eta l1 l2 exponential minus j l1 g1 x times exponential 

minus j l2 g2 x. So, what are this g1 and g2? So, 
1 12 /g a= and 

2 22 /g a=  

 

 

 

 

 

 

 

 

 

 

 



 

 

These are the fundamental spatial frequencies. The units are radian per millimeter, okay. So, these 

are the spatial frequencies in the x and y direction and l1 g1 and l2 g2 are basically their harmonics. 

So you can think of this one here. So this is the rectangular lattice in which the rods are placed. 

 

 Here we have shown them with circles. You can also imagine squares because if you consider the 

previous figure, they are having square cross-section. So the period along x is 
1a , the period along y 

is 
2a . okay. And this is the two-dimensional Fourier transform of this lattice points okay. 

 

 So, you are changing from the x space to k space. So, here you can see the coordinates have 

changed to k x and k y and this is basically the reciprocal lattice of this one which has got periods of g 

1 ok, which is 
12 / a and g 2 equal to 

22 / a . So, this is the real lattice and this is the reciprocal 

lattice. So, we understood that this is the Fourier domain load lattice which is known as reciprocal 

lattice as the convention of solid state physics right. Now, in this kind of case what are the optical 

modes of a medium with this kind of with such symmetry. 

 

 So, we can consider for waves travelling in the direction parallel to xy plane. The modes are basically 

two dimensional block waves. So, you can write you know 

( ) ( ),( , ) ( , ) exp exp
x yK K x yU x y p x y jK x jK y= − − . So, what are this 

xK
p


and 

yK
p they are basically  

you know the periodic function with the same period as the medium. So this is how the you know 

this is the two dimensional block wave it means you know the wave will also pick up the periodicity 

of the crystal. 

 

 



 

And as you can see this wave is basically specified by a pair of block wave numbers kx and ky okay. 

So, another wave with block wave number 
x 1K g+ comma okay this will be k2, 

x 2K g+ will not be a 

new mode okay it will be rather the same mode right. So, here you can see that a complete set of 

modes in the Fourier plane has block wave numbers located at points in the rectangle shown in 

yellow which is basically defined between now kx within minus g1 by 2 to g1 by 2 and ky between 

plus gy plus g2 by 2 and So, k y will be from minus g 2 by 2 to g 2 by 2 right. So, as shown in the 

figure a complete set of modes in the Fourier plane has block wave numbers located at the points in 

the rectangle which is shown in  yellow and this rectangle is defined by the boundaries of k x  So, kx 

will be from minus g1 by 2 to g1 by 2 and k2 will be from minus g2 by 2 to g2 by 2  okay and that 

dictates the first Brillouin zone. So, when you think of this yellow square or a rectangular area as the  

first Brillouin zone ok. 

 

 So, you may think of all the independent block wave vectors are basically captured here, but there 

may be a lot of you know redundant ones. So, if you try to use the symmetry to further reduce the 

set of independent block vectors within this Brillouin zone what you will get you will basically  come 

up with an area like this a triangle which is  called the irreducible Brillouin zone. So, here you will find 

all the independent block wave vectors which can be used to recreate this Brillouin zone. For 

example, if you use rotational symmetry which is inherent to this square lattice  okay you can see 

that the irreducible Brillouin zone can be rotated and folded here. So, you get this particular quarter 

then again you can do the mirror of it you will get this first half and then you take a mirror operation 

like this you can  complete this entire square. 

 

 

 

 



 

So, that way you can  form the entire Brillouin zone from the irreducible Brillouin zone right. So in 

this irreducible Brillouin zone the triangle is marked as gamma mx as I mentioned for the square 

lattice these are the three important points. Now for calculating the lattice vectors okay  What you 

can see here, so this is basically a two-dimensional periodic structure which is comprising of parallel 

cylindrical holes. And what is the lattice pattern here? The lattice pattern is triangular or hexagonal, 

okay. So, at those lattice points the holes are placed. 

 

 So, here from the figure you can say that A1 and A2 the two basic lattice vectors are basically equal 

okay and the angle between them is 120 degrees. Right. So when you try to take this into Fourier 

space, you convert x and y into kx and ky. And you can see that this yellow marked region is basically 

the  Brillouin zone which is basically a hexagon. So, here again when you try to find out the 

irreducible Brillouin zone you can see that the you can find a triangle marked by gamma mk ok. 

 

 These are the three points which can mark the irreducible Brillouin zone. So, we will come into this 

that how do you obtain this reciprocal lattice by calculation. So, here is that topic of calculating or 

constructing irreducible sorry 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Now, let us see how do we construct the reciprocal lattice. So, given a lattice with the set of vectors 

lattice vectors capital R, our job is to now find out all the reciprocal lattice vectors which can be 

denoted as capital G. 

 

 So, we need to find all g such that g dot r is some kind of integer multiple of 2 pi for every r, right. 

Then only they will like satisfy the condition that they are reciprocal lattice factors. Now, for example 

on a simple cubic lattice with spacing of small a. okay the vectors r would all be of the form 

ˆ ˆ ˆla ma na= + +R x y z . 

 

 So, where l m n are basically integers right. So, we know that every lattice vector capital R can be 

written in terms of the primitive lattice vectors which are basically the smallest vectors pointing 

from one lattice point to another right. So, these are the lattice vectors right primitive lattice 

vectors. So, in the reciprocal lattice also they have the same set of you know similar set of primitive 

vectors you can name them as small bi okay. So, that every you know reciprocal lattice vector g can 

also be expressed as 
1 2 3G l m n= + +b b b  again L m n are integers right. So, what is the 

requirement? The requirement is that you know 2 N =G R ok. 

 

 So, n is an integer again ok. So, this is the requirement that we discussed here. So, this boils down to 

the primitive requirement. 

 

 

 

 



 

So, if you take the form that you have thought of ok. So, you can write g dot r. So, this is basically 

your r  okay r vector l m n you can use different integers to represent that they are not necessarily 

the same one. 

 

 So, it can be ( )1 2 3m n + +b b b and that should be equal to 2 pi n.  For all choices of l m n as you 

have seen okay there this particular value should be true. Then only g is considered to be the 

reciprocal lattice vector of capital R. Now a little thought will suggest us that we could satisfy the 

above if we construct b i so that 2i j  =a b if i and j are equal and there is it is 0 this product is 0 if 

they are not equal ok. 

 

 So, this one is not equal yeah. So, more completely you can basically write that 2i j  =a b and 

then you have 
ij right. So, this when i and j are equal 

ij will be 1 when i and j are not equal it will 

be 0. So given the set, you have three vectors, A1, A2, A3. Our task is to find the corresponding set, 

B1, B2, B3, such that this particular condition is satisfied, that 2i j ij =a b . So, one way to do this 

is to exploit the feature of the cross product. 

 

 So if you remember that .( ) 0 =x x y for any vector x and y. So, you can construct the primitive 

lattice vectors using the following recipe. So, you can 

( ) ( ) ( )
2 3 3 1 1 2

1 2 3

1 2 3 1 2 3 1 2 3

2 2 2
, , .

    
= = =

     

a a a a a a
b b b

a a a a a a a a a
using this formula. So, that is how you 

can obtain b1 a1 from a1, a2, a3 you can find out what is b1, b2 and b3. So, to construct the 

reciprocal lattice what we do you first take the primitive lattice vectors a1, a2, a3 and then perform 

the operations using this formula and obtain b1, b2 and b3. 

 

 



 

 

 

 

 

 

 

 

 



So, with that  you can actually understand that each direct lattice has a unique reciprocal lattice. So, 

the knowledge of one lattice will definitely tell you about the other lattice. So here you can see that 

the direct lattice vectors they are using a different notation. They are using small t okay as the 

notation for the direct lattice vectors, small t1, small t2 and small t3 okay. and they actually look like 

this when you see this in the reciprocal lattice. 

 

 But capital T1, T2 and T3 are the primitive vectors in the reciprocal lattice. So, there has to be some 

relationship between this small t1 and capital T2 and T3 with capital T1 and so on. So if you try to 

understand some of the commonly known lattice, so if you take simple cubic as a direct lattice, its 

reciprocal lattice is also a simple cubic. For BCC,  or body centered cubic kind of lattice. The 

reciprocal lattice is a FCC face centered cubic and for FCC if you look into the reciprocal lattice it is a 

BCC, for hexagonal it is again hexagonal. 

 

 So, this is how a hexagonal lattice looks like, this is how a FCC looks like and this is how a BCC crystal 

looks like ok. So, the blue color ones tell you about the direct lattice vectors. So, this is in 2D it means 

you just have only 2 vectors t1 and t2. So, if you have small t1 and t2 known you can find out what is 

capital T1 and capital T2 ok. And also other way if you know the capital T1 and capital T2 you can 

find out what is small t1 and small t2 ok. 

 

 These are just different notations other than using A, B and C you can also use capital  T1, T2, right. 

For 3D, it is like this. So, this is the formula that we have seen there, you remember. 

 

 So, B1, so this you if you take this formula. ok. This is exactly same as this one ok. These are like just 

different notations. So, different books follow different conventions. So, I am just showing you the 

different two most common notations used in this kind of calculations ok. So, you can find out what 

is capital T1, capital T2 and capital T3 right. 

 

 So, all reciprocal lattice vectors must be an integer combination of the primitive reciprocal lattice 

vectors that makes sense because the final vector capital G is basically integral times of the ah 

reciprocal primitive reciprocal lattice vectors. So, instead of G you can write capital T and you can say 

that the integer con ah capital P Q and R are basically the integers. So, you can write like this okay 

and capital T 1 bar T 2 bar and T 3 bar these are the primitive reciprocal lattice factors. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 



 

Now let us look into Miller indices that is another interesting way of representing planes within 

periodic structures like crystals. So, if you recall the definition of the reciprocal lattice vectors you 

have these three integers p, q and r ok. 

 

 So, this p, q and r are basically called the Miller indices of the planes in direct lattice   which is 

represented by the reciprocal lattice factor t p q r and you can also represent it like this. So, if you 

say 1 0 0 plane it means it is 1 here it is a the plane is basically having an intersection or it is crossing 

the x axis at 1. and it is 0 0 means it does not intersect y and z axis. 

 

 So, it is parallel ok. So, 1 0 0 plane is typically like this. If you have 1 1 1 plane ok. So, it is basically 

intersecting x y and z at 1 1 1 ok. So, this one is basically  x bar ok. 

 

 So, I think it is not clearly written. So, it is basically x bar ok. So, x bar means x bar means minus 1. 

So, this plane has got a cross section with the x axis at minus 1 and then it is crossing this y axis at 1 z 

axis at 1. So, it is 1 bar 1 1 plane ok. So, in such method you can think of 1 0 0 at this plane again this 

is another notation a 1 instead of using x y z you can also put a 1 bar a 2 bar and a 3 bar ok. 

 

 These are basically the direct lattice ok planes ok. So, 1 0 0 0 1 0 0 0 1 ok 1 1 0 will look like this 1 0 1 

will look like this and 0 1 1 will look like this. And you can also think of how 1 1 1 will look like. So, it 

will have a you know cross section with A like this. So, the plane will typically look like this fine ok. 

 

 

 

 

 



 

So, now let us first see how do you construct the Wigner shade cell. So, how do you construct this ok 

and why it is required. So, first you have to pick a point in the lattice to build a unit cell around it ok. 

So, this is the BCC conventional unit cell ok. Now, you construct planes that bisect the region 

between all adjacent point. So, if you take this and these two points, this point and this point, so 

there will be a plane. 

 

 I am just drawing a line, but you think of a plane, it is basically this plane, ok. This plane which bisect 

that particular region and similarly you do it for all these connecting  lines  okay so wherever you 

have two adjacent points you are basically drawing a plane that bisect the region between the two 

adjacent points and when you  add up all those points you basically get this wigner shades unit cell 

So, this is how you got to draw it. So, you take this and this one as I mentioned you take the you 

draw the connecting line and then you draw a plane that perfectly bisects that line or  you can say it 

bisects that region between this point and this point. And then you repeat for all those possibilities. 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

And finally, when you add up all the points, you will get, you know, this particular Wigner shade cell. 

Now, why it is important? If you think of Brillouin zone, which is very, very important for obtaining 

the properties of the photonic crystals to study the band structure and other properties. 

 

 So, Brillouin zone is basically constructed in the same way as the Wagner shell only difference is that 

Brillouin zone is constructed from the reciprocal lattice. So, Brillouin zone is closely related to the 

wave factors and diffraction. So, the analysis of periodic structures is  is often done in the reciprocal 

lattice or reciprocal space. So, Brillouin zone for FCC lattice is basically a truncated octahedron with 

14 sides ok or slide sides. 

 

 

 

 

 

 

 



 

 

So, this is how it looks like ok. So, this is the Brillouin zone of a FCC. You can also draw this by 

yourself and try that. So, you can see that this is almost a spherical one and  So, you can say that the 

FCC lattice has got the highest symmetry of the Bravais lattice. So, in terms of symmetry if you put 

this triclinic has got the lowest symmetry and then from simple cubic this is the Brillouin zone. then 

you have what is marked inside is the irreducible Brillouin zone okay. And then for BCC this is the 

Brillouin zone and this is the FCC Brillouin zone which you have seen. 

 

 

 

 

 

 

 

 

 

 

 

 



 

Even for diamond you can get FCC Brillouin zone. So more or less you can see that the FCC one has 

got the highest symmetric Brillouin zone among the all Bravais lattice. And then if you go to pseudo 

periodic structure they have the highest symmetry in terms of the  brilliant zone. So, now let us 

finally look into those irreducible brilliant zone and the important points of interest. So, several 

points of high symmetry are of special interest. So, if you think of a cubic lattice, so this is the cubic 

lattice brilliant zone, there  gamma marks the center of the brilliant zone and then if you take m, m is  

basically the center of an edge, r is basically a corner point and x is basically the center of a face. 

 

 So, you can think of the three primitive reciprocal lattice vectors as t1, t2 and t3 and this particular 

volume here, that volume  is the irreducible brilliant zone  so how do you consider this as the path so 

you need to traverse along the boundaries of this irreducible brilliant zone to cover this entire 

volume. So, you can start with gamma, then you go to x, then to m, then to gamma. So, that covers 

the bottom part and then you go to r, okay. Then you come to x or m and then you come back to r, 

okay. So, that way you can actually  then you again have gamma right so that will kind of complete 

traversing along the boundary points   So if you consider hexagonal lattice, so this is the hexagonal 

lattice Brillouin zone. 

 

 So here the important point is gamma is again the center of the Brillouin zone for each case. A tells 

you about the hexagonal center of hexagonal phase. H is basically a corner point. K marks the middle 

of  an edge which joins two rectangular faces, means you are talking about this face and this face. 

 

 These are the two rectangular faces you are joining. So, this is K. L is marked as the, you know, 

middle of an edge which joins a hexagonal face with a rectangular face. So, this one is L and M is 

marked as a center of the rectangular face, okay. So, M here and M here do not actually designate 

the same points. So, you got to keep these things in mind. 

 

 So, these are the important points of symmetry depending on different lattice types. Similarly for 

FCC,  You have K, L, U, W and X. These are the important points. And this is how the irreducible 



brilliant zone looks like. 

 

 And for BCC, you have few points like H. H is the corner point joining four edges. n is the center of a 

face and p is basically corner point which is joining 3 edges and gamma is again the center. So, here 

you can mark capital T1, capital T2 and capital T3, these are the 3 primitive lattice vectors. And if you 

want to cover the BCC, the path will be gamma to h to n to gamma then to p  then you can come 

back to H then n and then again gamma, but we do not repeat it correct. So, we this is the path for 

BCC. So why it is important to discuss about irreducible brilliant zone? Because if the field is known 

at every point inside a single unit cell, then it is also known at any point in the infinite lattice. 

 

 

Because the field will just take on the symmetry of the lattice as the lattice is repeated. So many 

times what happened there is still additional symmetry to be explored. So only considering the unit 

cell itself is not enough. Sometimes there are symmetry within the unit cell that allows you to even 

focus on a smaller region where you can find some you know  very  independent modes okay and 

those modes can actually be you know those small region can be replicated few times to form your 

unit cell and then you  can repeat your unit cell periodically. So that way it will bring down the 

computational requirement as well. So, the smallest volume of space within the Brillouin zone that 

completely characterizes the periodic structure is known as the irreducible Brillouin zone. 

 

 So, what we understood it is a much smaller area than the Brillouin zone itself where you have 

exploited additional symmetry. So, first this is the periodic lattice this is the square lattice and this 

blue marked area is basically the  unit cell. So, ideally you should only study the property of this unit 

cell that will tell you about the property of this entire lattice. Now, within this unit cell you can see 

that you can actually mark the small triangular region  okay where you can if you know the property 

of this  triangular region you can take a you know rotational symmetry and get this particular 

quarter. You can have mirror symmetry you can form this upper half you can take another mirror 

symmetry and you can form the complete square. 



 

 right because the field in each of the square is a mirror image to each other right so using this 

concept you can reduce the amount of computation and  you can only calculate the points or 

calculate the modes inside this irreducible brilliant zone  So, what you understood that if you have 

taken FCCLAT is this is  how the overall brilliant zone looks like, but this highlighted one is basically 

the irreducible brilliant zone and you can see for yourself that how small this volume is. So, the 

computation load is reduced, but you will be able to get the same information. Whatever properties 

you are seeing in this irreducible brilliant zone is the property there is nothing new outside it ok in 

the entire brilliant zone 

 

 

 

So, with that we will stop here with this lecture on real and reciprocal lattices. If you have got any 

doubt you can always drop an email to me at this email address mentioning MOOC and photonic 

crystal on the subject line. 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 


