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Lec 8: Real and Reciprocal lattices

Hello students, welcome to lecture 8 of the online courses on Photonic Crystals, Fundamentals and

Applications. Today's topic will be on Real and Reciprocal Lattices



Lecture Outline

= Periodic Electromagnetic Devices

*  Two-Dimensional Lattices and Symmetry Operations
= Translational Symmetry

® Calculating Reciprocal Lattice Vectors

= Constructing Reciprocal Lattice

& Miller Indices

= Brillouin Zone
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So, here is the lecture outline. We will discuss about Periodic Electromagnetic Devices into the
details of two-dimensional lattices and the symmetry operations. Briefly touch upon translational
symmetry or discrete translational symmetry which is relevant to the study of photonic crystals. We
will look into the calculation of reciprocal lattice vectors, constructing reciprocal lattice, finding out
the Miller indices obtaining brilliant zone and then irreducible brillouin zone ok.



Periodic Electromagnetic Devices
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Periodic Electromagnetic Dévices
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So, let us first discuss periodic electromagnetic devices. As you can see on this particular slide there
are different types of you know periodic electromagnetic devices are shown here starting from
diffraction grating to waveguides wholly photonic bandgap fiber, you have band gap materials,
metamaterials, then periodic array antennas, slow wave devices and frequency selective surfaces.
So, these are all periodic devices where the property is mainly defined by the unit cell and the
periodicity



What is a Periodic Structure ?
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*  The math describing how things are periodic is the same for both atomic and larger scale.
i Sources 0 Parks al al, 13{5). T4, 2003,
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So, what is a periodic structure? So, here you can see periodicity at atomic scale.

So, these are different atoms, okay. And if you try to replicate this in your engineering design, where
you make one-unit cell and then try to repeat it periodically, you can actually get large scale
periodicity, something like this or this. So, what is fundamental here is that the math which
describes the periodicity in atomic scale or large-scale periodicity both are similar. So, let us look into
how we can describe periodic structures. So, there is an infinite number of ways a structure can be
periodic.



Describing Periodic Structufe

# There is an Infinite number of ways that structures can be periodic,
*  Despite this, we need a way to describe and classify periodic lattices. We have to make generalization to do this.

* ‘W classify periodic structiures into:

= = 230 space groups
= — 32 crystal classes
= — 14 Bravais|lattices
= — 7 crystal systems

*  Space Groups: Set of all possible combinations of symmetry operationsthat restore the crystal to itself

* Bravais Lattices: Primitive lattices — set of all possible ways a lattice can be periodic if composed of identical spheres placed
at the lattice points,

= Crystal Systemns: Set of all Bravaislattices that have the same holohedryl.e. shape of the conventional unitcell.

.ﬂr UT Cauwabat I ""_'}NP'T',EL m Sowre: B Caraos, The Equstions of Saberisls, Owford Unlversity Press. 5120,

Despite this, we will need to find a way to describe and classify these periodic lattices. So, we have
to make some generalization to achieve that. So, we can classify periodic structures into 230 lattice
into 230 space groups, 32 crystal classes, 14 Bravais lattice and 7 crystal systems. Space group are
basically the set of all possible combinations of symmetry operations that could restore the crystal
to itself. So there are too many 230 space groups so we do not deal typically with space groups.

How about Bravais lattice? Yes. So, we mainly focus on Bravais lattice and the seven crystal systems.
So, if you look into Bravais lattice, you can see that the primitive lattices are set of all possible ways a
lattice can be periodic. If composed of identical spheres which are basically placed at the lattice
points. You can also consider you know the set of all Bravais lattices okay which have the same
hollowheadry or you can say the same shape of conventional unit cell you can group them into
crystal systems.

That is why we have 14 Bravais lattices and we have 7 crystal systems. So, let us take some
examples and find out you know how do you apply all this fundamental concepts on 2 dimensional
lattices and also look into the symmetry operations which are possible



Two-Dimensional Lattices and Symmetry Operations
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Two-Dimensional Bravais Lattices
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So, here are some examples of two dimensional Bravais lattice. You can see here this is a hexagonal
lattice where the atoms or the unit cells you can say they are all arranged in a hexagonal array. They
can also so when you say a hexagonal array these two vectors t1 and t2 are basically same but of
equal length but the angle between them will be 120 degree okay.

So, in case of square you can understand that the lattice is basically square. So, the distance from
here to here and here to here will be same again. So, you can say modulus of T1 vector and modulus
of T2 vector will be equal and in this case the angle between them theta is equal to 90 degree. You
can also think of rectangular lattice where T1 and T2 will not be equal, but they will maintain that
90-degree angle. you can think of rhombic lattice like this where you can have this kind of length L
forming a diagonal pattern.

So, here basically T1 is considered to be twice cos theta times T2. okay and the angle is definitely
not 90 degree. So, these are different lattice types you can also have oblique lattice where t1 and t2
are not equal and again you know angle theta between these two vectors is not 90 degree. So, you
can understand the difference between this rhombic and oblique Bravais lattice.



Symmetry Operations

Infinite crystals are invariant under certain symmetry operations that

imvoive:
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Now, we will look into the symmetry operations that can be performed on Bravais lattice.

So, the type of symmetry in which an object moves from one position to another position with the
same orientation okay, So, in forward or backward motion that kind of symmetry is called
translation. So, you can actually think of this moving forward or backward and that will actually
replicate the same part of the crystal. So, you can think of this infinite crystal to be invariant under
translation operation. Similarly, you can also think of rotational symmetry, which is the symmetry in
which an object fits into itself while being rotated through 360 degrees. So, if you take this one and
rotate these 360 degrees, you see it actually comes back to itself.

Okay. So, these are the kind of steps you can think of. Right. And another type of symmetry is
reflection symmetry. Right. So, here you can see it is a type of symmetry in which a line could divide
an object into two coincidental parts.

So, if you can think of a line here, this part, the left and the right part are basically mirror image of
each other. So, it actually has got the mirror symmetry. right or the reflection symmetry. So, with
that we will now describe the primitive and the non-primitive lattice vectors. So, the axis vectors
okay will help us to define the shape and orientation of the unit cell and a unit cell is very important
in case of any periodic structure because that unit cell contains all the properties okay and then it
will be repeated periodically along you know 1 dimension, 2 dimension or 3 dimensions depending
on whether you are talking about 1D, 2D or 3D periodic structure.



Primitive & Non-Primitivelattice Vectors

* Axisvectors define the shape and orientation of the unit cell. They cannot uniquely describe all 14 Bravais lattices, but they do
uniguely identify the 7 crystal systems.

* Translational vectors connect adjacent points in the lattice and can uniguely describe all 14 Bravais lattices. They are |ess
intuitive to interpret

*  Primitive lattice vectors are the smallest possible vectors that still describe the unit cell.

*  Almost always, the label “lattice vector” refers to the transiation vectors, not the axis vectors,
——————= Primitive Translational Vector
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So here you can see that you know this axis vectors they cannot uniquely describe 14 Bravais lattice
but what they can do they can uniquely describe the 7 crystal systems. So, you can also think of
translational vectors like this T1, T2 and T3, okay, which connect the adjacent points in the lattice
and this can be used for describing the 11 Bravais lattice systems, okay. So, this you can understand
that this one is same for this BCC as well as simple cubic, right, and also for FCC. So, this kind of
structure so that is why you know the primitive axis vectors cannot uniquely describe 14 Bravais
lattice, but they can do the crystal systems ok

So, here you can see that when you talk about primitive lattice they are basically the smallest
possible vectors that can describe the unit cell.

almost always when we use the level of lattice vector that refers to the translational vectors like
this. We do not talk about the primitive axis vectors right and this is not the smallest one. So, this
will not be considered as a primitive translational vector. So, the primitive translational vector is
basically the smallest possible vector ok.



Translational Symmetry
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Discrete Translational Svn"lrri'éti*y

= Dizcrete Translational Symmetry in Photonic Crystals:

Photonic crystals lack continuous translational symmetry but exhibit
discrete translational symmetry,

Tranzlation invanance halds only for distances that are multiplesof a
fixed step lergth, known as the |attice constant.

# Primitive Lattice Vector and Unit Cell:

o The basic step length is the lattice constant {a ), and the primitive

lattice vector fu = “_-,-_'F'j defines the fundamental step in the ¥ iy A ikl sl il At ol
directian, EI—
boElr) =elrta) § eri=rir+ R) R=ia, where s isaninteger.
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So, here we bring back again the description or discussion about discrete translational symmetry,
okay, which you can see in case of this 1D photonic crystal that is shown here and this particular
black box, this thin box marks the unit cell, right.

So, why is this important? It is important because photonic crystals lack continuous translational
symmetry, but they exhibit discrete translational symmetry. And it means that the translation
invariance holds only for distances which are basically multiple of a fixed step length or that is also
known as the lattice constant. So, if you take you know the if this is the lattice constant and you
know in integral multiple of this lattice constant you will see that the feature is basically repeating.
So, it has got this discrete translational symmetry. Now because of this discrete translational
symmetry okay you can also write that you know the lattice vector A is basically A y by cap because
here you can see that the periodicity is extended along the y direction okay and you can also write
that epsilon r as epsilon r plus minus a.

So, this is true but then it also repeats for all the integral multiple of a. So, it is better to be written
as epsilon r equals epsilon r plus capital R where capital R is basically L a where L is an integer. right.
So, that way you can understand that discrete translational symmetry exists in the photonic crystal.
Now, because of the translational symmetry we have seen in the previous lecture also that the
Maxwell's operator theta cap okay must commute with all translational operators in the x direction
and for lattice vectors capital R which lie in the y direction and R as you have seen it is basically
represented as L Ay cap whatis Litis an integer A is the lattice constant.

So, the modes of theta cap are identified as the simultaneous eigen functions of this translational
operator represented by the plane waves which can be expressed like this okay. So, the first

equation here shows the continuous translational operator where you are moving the system by a
displacement of d. But, in this case for the periodic crystal or for the periodic system, so dx is now



replaced by capital R where capital R is basically integral multiple of the lattice constant A. So, you
can also see d is replaced by this okay. So, this way you can actually see the eigen function okay
which is represented by the plane waves.

So, what we understand here that the modes with wave vector ky and k y plus 2 pi by a they will
form a degenerate set with the same eigenvalue of Tr e to

Discrete Translational Symmetry

* Eigen functions and Plane Waves:
o Because of translational symmetries, B must commute with all translation eperators in the x direction and for lattice
vectors R = lay in the p direction,
o Modesaf @ are dentified as simultanes usElgen functions of these translation operators, represented by plane waves:
].‘-"! L:,t,r'n-‘:- = r,ikll;'r—.'f] = |:t,—|'lr,.r|']r!r'r.-_,.1-
?'-HP ik, ¥ — |?”"FI p-ig) _ {E‘ -|L'._.rrr:]ﬂ|J.'._.1'
* Degeneracy and Primitive Reciprocal Lattice Vector:
o Modes with wave vectors by and ky, + 2 fa form a degenerate set with the same eigenvalue for T-'H (e _'[}Fr”]ll

o Al mades with wave vectors If}. + mlZmfa) are degenerate, where m s an integer.
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Calculating Reciprocal Lattice Vectors
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Calculating Reciprocal Lattice Vectors

# The impermeability ij{x, ¥) = e./elx, ¥) is periodic in the transverse directions,
% and ¥, and uniform in the axialdirection 2.

iz + g,y + maas) =1z, y) (L8.1)

fior all integers my and ms,

. o
nru)= % ¥ ne exp(—iligir) expl—jlagar)  (182)

) =—na0 fy=—n

Figure: Aeclangular Lattce
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So, in this kind of a system we can think of the impermeability parameter which is 77(x, ) that is
basically ¢ ¢ . So, this impermeability is periodic in the transverse direction x and y and it is

basically uniform along the axial direction that is z. So, you can also write if you consider al and a2
as the periods in x and y direction okay. So, this is a rectangular lattice. So, the period here is al and
a2 okay.



Calculating Reciprocal Lattice Vectors

F o= 2mfay end g = 2m/a, are fundamental spatial
frequencies (radians/mm) in the X and y directions, and
Iym, and I, g, are their harmonics.

= The coefficients 1y, ;, depend on the actual profile of the
periodic function, e.g., the size of the rods.
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Fipure: (3§ The rectamguler Iattice ot wiich the mds are placed, (&) The fwo-dimensionel
Fowrter fransfors: of e fattice pomts |r another ==t of points Sorming & reciprocal
Iattice wish perindy g = Jufng and gy = Jxfng.
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Then 77(x, y) will also satisfy the translational symmetry like this okay. anything in place of x you can
write x +m,q, fory you can write y +m,a,and that the property should repeat itself. The
impermeability should repeat itself and that is how this is a periodic rectangular lattice. Now this
periodic function 77(x, y) can be represented as a two-dimensional Fourier series in this particular

form where you can say you know |1 ranges from minus infinity to infinity then you have summation
over 12 ranging from minus infinity to infinity eta |1 I2 exponential minus j 11 g1 x times exponential

minus j 12 g2 x. So, what are this gl and g2? So, g, =27 /a,and g, =27/ a,



Calculating Reciprocal Lattice Vectors

» ‘What are the optical modes of a medium with such symmaetry?
®=  Forwaves traveling in a direction paraliel to the =y plane, the modes are two-dimensional Bloch wawves:
Uz, y) = pr.w, (2, p) exp(—jKex)exp(—jKyy)  (L13.6)

wihere phe ., By, (X, ¥} is a periodic function with the same periods as the medium

*  The wave s specified by a pair of Bloch wavenumbers (K, K, ).

* Another wave with Bloch wavenumbers (K, + gy, Ky + 7] is nota new made.

Figures Hecipencal Laifice | The shaded {yeilow] sres b the
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These are the fundamental spatial frequencies. The units are radian per millimeter, okay. So, these
are the spatial frequencies in the x and y direction and I1 g1 and I2 g2 are basically their harmonics.
So you can think of this one here. So this is the rectangular lattice in which the rods are placed.

Here we have shown them with circles. You can also imagine squares because if you consider the

previous figure, they are having square cross-section. So the period along x is a,, the period alongy

is a,.okay. And this is the two-dimensional Fourier transform of this lattice points okay.

So, you are changing from the x space to k space. So, here you can see the coordinates have
changed to k x and k y and this is basically the reciprocal lattice of this one which has got periods of g
1 ok, whichis 27/ a,and g 2 equal to 277/ a, . So, this is the real lattice and this is the reciprocal
lattice. So, we understood that this is the Fourier domain load lattice which is known as reciprocal

lattice as the convention of solid state physics right. Now, in this kind of case what are the optical
modes of a medium with this kind of with such symmetry.

So, we can consider for waves travelling in the direction parallel to xy plane. The modes are basically
two dimensional block waves. So, you can write you know
U(x,y)=px x (x,¥) exp(—ijx)eXp(—jKyy) . So, what are this p, and p, they are basically

you know the periodic function with the same period as the medium. So this is how the you know
this is the two dimensional block wave it means you know the wave will also pick up the periodicity
of the crystal.



* Othersymmetries may be used to reduce the set of independent Bloch wave vectors within the Brillouin zone.

* When all symmetries are included, the result is an area called the irreducible Brillouin zone. For example, the motational
symimaetry Inherent in the square fattice results In an irreducible Brillouin zone in the form of a triangle, as shown in Figure,
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And as you can see this wave is basically specified by a pair of block wave numbers kx and ky okay.
So, another wave with block wave number K+ g, comma okay this will be k2, K+ g, will not be a

new mode okay it will be rather the same mode right. So, here you can see that a complete set of
modes in the Fourier plane has block wave numbers located at points in the rectangle shown in
yellow which is basically defined between now kx within minus g1 by 2 to g1 by 2 and ky between
plus gy plus g2 by 2 and So, k y will be from minus g 2 by 2 to g 2 by 2 right. So, as shown in the
figure a complete set of modes in the Fourier plane has block wave numbers located at the points in
the rectangle which is shown in yellow and this rectangle is defined by the boundaries of k x So, kx
will be from minus g1 by 2 to g1 by 2 and k2 will be from minus g2 by 2 to g2 by 2 okay and that
dictates the first Brillouin zone. So, when you think of this yellow square or a rectangular area as the
first Brillouin zone ok.

So, you may think of all the independent block wave vectors are basically captured here, but there
may be a lot of you know redundant ones. So, if you try to use the symmetry to further reduce the
set of independent block vectors within this Brillouin zone what you will get you will basically come
up with an area like this a triangle which is called the irreducible Brillouin zone. So, here you will find
all the independent block wave vectors which can be used to recreate this Brillouin zone. For
example, if you use rotational symmetry which is inherent to this square lattice okay you can see
that the irreducible Brillouin zone can be rotated and folded here. So, you get this particular quarter
then again you can do the mirror of it you will get this first half and then you take a mirror operation
like this you can complete this entire square.



# A two-dimensional periodic structure comprising parallel cylindrical holes. The trdangular lattice at which the holes are
placed. In this diagram the magnitudes o, =a, = aand 8 = 1207,

*  Reciprocal lattice — the shaded [yellow] area |5 the Brillouin zone, a hexagon, The irreducible Brillouin zone is the trianghe
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So, that way you can form the entire Brillouin zone from the irreducible Brillouin zone right. So in
this irreducible Brillouin zone the triangle is marked as gamma mx as | mentioned for the square
lattice these are the three important points. Now for calculating the lattice vectors okay What you
can see here, so this is basically a two-dimensional periodic structure which is comprising of parallel
cylindrical holes. And what is the lattice pattern here? The lattice pattern is triangular or hexagonal,
okay. So, at those lattice points the holes are placed.

So, here from the figure you can say that Al and A2 the two basic lattice vectors are basically equal
okay and the angle between them is 120 degrees. Right. So when you try to take this into Fourier
space, you convert x and y into kx and ky. And you can see that this yellow marked region is basically
the Brillouin zone which is basically a hexagon. So, here again when you try to find out the
irreducible Brillouin zone you can see that the you can find a triangle marked by gamma mk ok.

These are the three points which can mark the irreducible Brillouin zone. So, we will come into this
that how do you obtain this reciprocal lattice by calculation. So, here is that topic of calculating or
constructing irreducible sorry



Constructing Reciprocal Lattice
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Constructing Reciprocal/Lattice

= Given a lattice with a set of lattice vectors R, how can we determine all of the reciprocal lattice vectors (7 We need to find all
G such that G. R is some integer multiple of 2r for every R,

*  For example, on a simple cubic lattice with spacing o, the vectors R would all be of the form B = laX 4+ may + naZ, where
(I, m,n} are integers.

* The reciprocal |attice has a set of primitive vectors by; as well, so that every reciprocal lattice vector G can be written as G =
{by + mby + nby,

* Ourrequirementthat G + B = 2xN boilsdown to the primitive requirement
G-R=(fa; +ma:+na) - (I'by +m'bs +n'by) = 2aN {LB.3)
|ﬁr UT Cauwabat I ':"‘}NP'T.EL m S L 0, bpannopaiibkon @2 0l Phoiores crypetals. Mokdng the Bow of light, Primceton Unsseesiy) fress, 2008

Now, let us see how do we construct the reciprocal lattice. So, given a lattice with the set of vectors
lattice vectors capital R, our job is to now find out all the reciprocal lattice vectors which can be
denoted as capital G.

So, we need to find all g such that g dot r is some kind of integer multiple of 2 pi for every r, right.
Then only they will like satisfy the condition that they are reciprocal lattice factors. Now, for example
on a simple cubic lattice with spacing of small a. okay the vectors r would all be of the form

R =laX+may +naz.

So, where | m n are basically integers right. So, we know that every lattice vector capital R can be
written in terms of the primitive lattice vectors which are basically the smallest vectors pointing
from one lattice point to another right. So, these are the lattice vectors right primitive lattice
vectors. So, in the reciprocal lattice also they have the same set of you know similar set of primitive
vectors you can name them as small bi okay. So, that every you know reciprocal lattice vector g can

also be expressed as G = /b, +mb, +nb, again L m n are integers right. So, what is the

requirement? The requirement is that you know G-R =27 N ok.

So, n is an integer again ok. So, this is the requirement that we discussed here. So, this boils down to
the primitive requirement.



Constructing Reciprocal/Lattice

#  For all chaoices of (I, m, n), the above must hold for some N. A little thought will suggest that we could satisfy the above if we
construct tha b; sothata;. b; = 2xili = j,and0ifi = J.

*  More compactly, we write ;. b; = Zrd;;. Giventhe set {a,, a;, 33}, our taskis to find the corresponding set {by, by, by}
such that a;, by = 2wy,

*  One wayto do this is to exploit a feature of the cross product. Remembering that X. (X x ¥} = 0 for any vectors x and y, we
can construct the primitive reciprocal lattice vectors with the following recipe:

2maz x a3 2ma; x ay 2 ay % a
S . B i uonl M, st B 2 (L8.4)
ap-{az ¥ a) ap @z ¥ as) aj - laz X as)

|ﬁr T Guwahail I ':"‘}NP'TEL m S | dnannogauke £2 0l Phiviones cryerals. Molding the fiow of light, Princeton Untsersity Fress, 2008

So, if you take the form that you have thought of ok. So, you can write g dot r. So, this is basically
your r okay r vector | m n you can use different integers to represent that they are not necessarily
the same one.

So, it can be (E ) +n'b3)and that should be equal to 2 pi n. For all choices of I m n as you

have seen okay there this particular value should be true. Then only g is considered to be the
reciprocal lattice vector of capital R. Now a little thought will suggest us that we could satisfy the

above if we construct b i so that a, -bj =2 ifiandjare equal and there is it is O this product is 0 if

they are not equal ok.

So, this one is not equal yeah. So, more completely you can basically write that a, -bj =27 and
then you have 5,; right. So, this when i and j are equal é‘l.j will be 1 when i and j are not equal it will

be 0. So given the set, you have three vectors, Al, A2, A3. Our task is to find the corresponding set,
B1, B2, B3, such that this particular condition is satisfied, that a, -bj = 27[51]. . So, one way to do this

is to exploit the feature of the cross product.

So if you remember that x.(xxy) = 0 for any vector x and y. So, you can construct the primitive
lattice vectors using the following recipe. So, you can

2ra, xa, 2ra,xa, 2ra, xa,
—) —) -
a, -(a,xa,) a, -(a,xa,) a, -(a,xa,)

can obtain bl al from al, a2, a3 you can find out what is b1, b2 and b3. So, to construct the

b, = b, = b, = . using this formula. So, that is how you

reciprocal lattice what we do you first take the primitive lattice vectors al, a2, a3 and then perform
the operations using this formula and obtain b1, b2 and b3.



Constructing ReciprocalLattice

*  To construct the recipracal lattice vectars, we take the primitive lattice vectors and perform the operations of equation
(LE.4).

# Each direct lattice has a unique reciprocal lattice so knowledge of one implies knowledge of the othes.
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Direct to the Reciprocal

*=  The reciprocal lattice vectors can be calculated fram the direct lattice vectars (20 and 3D).
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= All reciprocal lattice vectors must be an integer combination of the pnmitive reciprocal lattice vectors,
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So, with that you can actually understand that each direct lattice has a unique reciprocal lattice. So,
the knowledge of one lattice will definitely tell you about the other lattice. So here you can see that
the direct lattice vectors they are using a different notation. They are using small t okay as the
notation for the direct lattice vectors, small t1, small t2 and small t3 okay. and they actually look like
this when you see this in the reciprocal lattice.

But capital T1, T2 and T3 are the primitive vectors in the reciprocal lattice. So, there has to be some
relationship between this small t1 and capital T2 and T3 with capital T1 and so on. So if you try to
understand some of the commonly known lattice, so if you take simple cubic as a direct lattice, its
reciprocal lattice is also a simple cubic. For BCC, or body centered cubic kind of lattice. The
reciprocal lattice is a FCC face centered cubic and for FCC if you look into the reciprocal lattice it is a
BCC, for hexagonal it is again hexagonal.

So, this is how a hexagonal lattice looks like, this is how a FCC looks like and this is how a BCC crystal
looks like ok. So, the blue color ones tell you about the direct lattice vectors. So, this is in 2D it means
you just have only 2 vectors t1 and t2. So, if you have small t1 and t2 known you can find out what is
capital T1 and capital T2 ok. And also other way if you know the capital T1 and capital T2 you can
find out what is small t1 and small t2 ok.

These are just different notations other than using A, B and C you can also use capital T1, T2, right.
For 3D, it is like this. So, this is the formula that we have seen there, you remember.

So, B1, so this you if you take this formula. ok. This is exactly same as this one ok. These are like just
different notations. So, different books follow different conventions. So, | am just showing you the
different two most common notations used in this kind of calculations ok. So, you can find out what
is capital T1, capital T2 and capital T3 right.

So, all reciprocal lattice vectors must be an integer combination of the primitive reciprocal lattice
vectors that makes sense because the final vector capital G is basically integral times of the ah
reciprocal primitive reciprocal lattice vectors. So, instead of G you can write capital T and you can say
that the integer con ah capital P Q and R are basically the integers. So, you can write like this okay
and capital T 1 bar T 2 bar and T 3 bar these are the primitive reciprocal lattice factors.
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Miller indices

» Miller indices identify repeating planes within the perodic structures like
crystals.

®= Recall the definition of a reciprocal vector:

| Pe=oe=L=1012
O=re—2-L0,L 2
i Bz =2 -10,1,2,- -

= P and K are the Miller indices of
the planes in direct lattice
described by the reciprocal lattice

vector Tegs (POR)

Sowrce; L O, wanncpmios ot ol PRotonic crgstals. Mclding the fos ol light. Prircetns Usiperaity Bress, 2008,
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Now let us look into Miller indices that is another interesting way of representing planes within
periodic structures like crystals. So, if you recall the definition of the reciprocal lattice vectors you
have these three integers p, g and r ok.

So, this p, g and r are basically called the Miller indices of the planes in direct lattice which is
represented by the reciprocal lattice factor t p q r and you can also represent it like this. So, if you
say 1 00 plane it means itis 1 here it is a the plane is basically having an intersection or it is crossing
the x axis at 1. and it is 0 0 means it does not intersect y and z axis.

So, it is parallel ok. So, 1 0 0 plane is typically like this. If you have 1 1 1 plane ok. So, it is basically
intersecting x y and z at 1 1 1 ok. So, this one is basically x bar ok.

So, | think it is not clearly written. So, it is basically x bar ok. So, x bar means x bar means minus 1.
So, this plane has got a cross section with the x axis at minus 1 and then it is crossing this y axisat 1z
axis at 1. So, itis 1 bar 1 1 plane ok. So, in such method you can think of 1 0 0 at this plane again this
is another notation a 1 instead of using x y z you can also put a 1 bar a 2 bar and a 3 bar ok.

These are basically the direct lattice ok planes ok. S0, 100010001 ok 1 1 0 will look like this1 01
will look like this and 0 1 1 will look like this. And you can also think of how 1 1 1 will look like. So, it
will have a you know cross section with A like this. So, the plane will typically look like this fine ok.



Constructing the Wigner®Seitz cell

# How we construct this?

Pick a point in the lattice to build the
unit cell araund,

Construct planes that bisect the region
between all adjacent points.

The unit cell is the region enclosed by
all the planes.

BOC Conventional Unit Cell WgnerSaiz Link Col
ey el i
. ™ T e P
- 5
Pt -
Ty
& ._____.- et | -
~
. g
|F;r m““ﬂﬂl @HFI‘EL sﬂ_ﬂ;ﬂl' Souncae N, W Askeraft ur al_ Solid sTate plysics, Cangag s Ceaming, 2002,

So, now let us first see how do you construct the Wigner shade cell. So, how do you construct this ok
and why it is required. So, first you have to pick a point in the lattice to build a unit cell around it ok.
So, this is the BCC conventional unit cell ok. Now, you construct planes that bisect the region
between all adjacent point. So, if you take this and these two points, this point and this point, so
there will be a plane.

| am just drawing a line, but you think of a plane, it is basically this plane, ok. This plane which bisect
that particular region and similarly you do it for all these connecting lines okay so wherever you
have two adjacent points you are basically drawing a plane that bisect the region between the two
adjacent points and when you add up all those points you basically get this wigner shades unit cell
So, this is how you got to draw it. So, you take this and this one as | mentioned you take the you
draw the connecting line and then you draw a plane that perfectly bisects that line or you can say it
bisects that region between this point and this point. And then you repeat for all those possibilities.
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Brillouin Zone

= The Brillouin zone is constructed in the same manner as the Wigner-
Seitz unit cell, but it is constructed from the reciprocal lattice,

® The Brilbouin zone is closely related to wave vectors and diffraction so
analysis of perlodic structures is often performed In “reciprocal
space.”

* The Brillouin 2ome for a face-centered cubic (fcc) lattice is a
“truncated” actahedron with 14 slides,

#=  This is the most "spherical” of all the Brillouin zones so the FCC lattice
is said ko have the highest symmetry of the Bravaislattice.
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And finally, when you add up all the points, you will get, you know, this particular Wigner shade cell.
Now, why it is important? If you think of Brillouin zone, which is very, very important for obtaining
the properties of the photonic crystals to study the band structure and other properties.

So, Brillouin zone is basically constructed in the same way as the Wagner shell only difference is that
Brillouin zone is constructed from the reciprocal lattice. So, Brillouin zone is closely related to the
wave factors and diffraction. So, the analysis of periodic structures is is often done in the reciprocal
lattice or reciprocal space. So, Brillouin zone for FCC lattice is basically a truncated octahedron with
14 sides ok or slide sides.



Brillouin Zone

Degree of Symmetry: How spherical the Brillouin zone is.
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So, this is how it looks like ok. So, this is the Brillouin zone of a FCC. You can also draw this by
yourself and try that. So, you can see that this is almost a spherical one and So, you can say that the
FCC lattice has got the highest symmetry of the Bravais lattice. So, in terms of symmetry if you put
this triclinic has got the lowest symmetry and then from simple cubic this is the Brillouin zone. then
you have what is marked inside is the irreducible Brillouin zone okay. And then for BCC this is the
Brillouin zone and this is the FCC Brillouin zone which you have seen.



Brillouin Zone: Points of Sﬁrﬁgfhetrv
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Even for diamond you can get FCC Brillouin zone. So more or less you can see that the FCC one has
got the highest symmetric Brillouin zone among the all Bravais lattice. And then if you go to pseudo
periodic structure they have the highest symmetry in terms of the brilliant zone. So, now let us
finally look into those irreducible brilliant zone and the important points of interest. So, several
points of high symmetry are of special interest. So, if you think of a cubic lattice, so this is the cubic
lattice brilliant zone, there gamma marks the center of the brilliant zone and then if you take m, m is
basically the center of an edge, r is basically a corner point and x is basically the center of a face.

So, you can think of the three primitive reciprocal lattice vectors as t1, t2 and t3 and this particular
volume here, that volume is the irreducible brilliant zone so how do you consider this as the path so
you need to traverse along the boundaries of this irreducible brilliant zone to cover this entire
volume. So, you can start with gamma, then you go to x, then to m, then to gamma. So, that covers
the bottom part and then you go to r, okay. Then you come to x or m and then you come back tor,
okay. So, that way you can actually then you again have gamma right so that will kind of complete
traversing along the boundary points So if you consider hexagonal lattice, so this is the hexagonal
lattice Brillouin zone.

So here the important point is gamma is again the center of the Brillouin zone for each case. A tells
you about the hexagonal center of hexagonal phase. H is basically a corner point. K marks the middle
of an edge which joins two rectangular faces, means you are talking about this face and this face.

These are the two rectangular faces you are joining. So, this is K. L is marked as the, you know,
middle of an edge which joins a hexagonal face with a rectangular face. So, this one is Land M is
marked as a center of the rectangular face, okay. So, M here and M here do not actually designate
the same points. So, you got to keep these things in mind.

So, these are the important points of symmetry depending on different lattice types. Similarly for
FCC, You have K, L, U, W and X. These are the important points. And this is how the irreducible



brilliant zone looks like.

And for BCC, you have few points like H. H is the corner point joining four edges. n is the center of a
face and p is basically corner point which is joining 3 edges and gamma is again the center. So, here
you can mark capital T1, capital T2 and capital T3, these are the 3 primitive lattice vectors. And if you
want to cover the BCC, the path will be gamma to h to n to gamma then to p then you can come
back to H then n and then again gamma, but we do not repeat it correct. So, we this is the path for
BCC. So why it is important to discuss about irreducible brilliant zone? Because if the field is known
at every point inside a single unit cell, then it is also known at any point in the infinite lattice.

Exploiting Additional Sym'rn'étw: The Irreducible Briliouil)fz_nne

~ If the field is known at every point inside a single unit cell, then it is also known at any point in an infinite lattice because the
fleld takes on the same symmetry as the lattice so it just repeat iteedf,

* Many times, there is still additional symmetry to exploil. 5o, the smallest velume of the space that completely describes the
electromagnetic wave can be smaller than the unit cell itself,

®  The smallest volume of space within the Brillouin zone that completely characterizes the periodic structure is called the
irreducible Brillouin zone {IBZ). It Is smaller than the Brillouin zone when there is additional symmetry to exploit.
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Because the field will just take on the symmetry of the lattice as the lattice is repeated. So many
times what happened there is still additional symmetry to be explored. So only considering the unit
cell itself is not enough. Sometimes there are symmetry within the unit cell that allows you to even
focus on a smaller region where you can find some you know very independent modes okay and
those modes can actually be you know those small region can be replicated few times to form your
unit cell and then you can repeat your unit cell periodically. So that way it will bring down the
computational requirement as well. So, the smallest volume of space within the Brillouin zone that
completely characterizes the periodic structure is known as the irreducible Brillouin zone.

So, what we understood it is a much smaller area than the Brillouin zone itself where you have
exploited additional symmetry. So, first this is the periodic lattice this is the square lattice and this
blue marked area is basically the unit cell. So, ideally you should only study the property of this unit
cell that will tell you about the property of this entire lattice. Now, within this unit cell you can see
that you can actually mark the small triangular region okay where you can if you know the property
of this triangular region you can take a you know rotational symmetry and get this particular
guarter. You can have mirror symmetry you can form this upper half you can take another mirror
symmetry and you can form the complete square.



right because the field in each of the square is a mirror image to each other right so using this
concept you can reduce the amount of computation and you can only calculate the points or
calculate the modes inside this irreducible brilliant zone So, what you understood that if you have
taken FCCLAT is this is how the overall brilliant zone looks like, but this highlighted one is basically
the irreducible brilliant zone and you can see for yourself that how small this volume is. So, the
computation load is reduced, but you will be able to get the same information. Whatever properties
you are seeing in this irreducible brilliant zone is the property there is nothing new outside it ok in
the entire brilliant zone
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So, with that we will stop here with this lecture on real and reciprocal lattices. If you have got any
doubt you can always drop an email to me at this email address mentioning MOOC and photonic
crystal on the subject line.















