
Lec 6: Electromagnetism as an Eigenvalue Problem 

 

 

Hello students welcome to lecture 6 of the online course on Photonic Crystals Fundamentals 

and Applications.  

 

Today's lecture we will cover the scaling properties of Maxwell's equations. Here is the 

lecture outline we will first look into the macroscopic Maxwell's equation this is basically a 

recap. And then we will introduce this scaling property of Maxwell's equations. We will 



discuss about discrete versus continuous frequency ranges and also we will discuss 

electrodynamics versus the quantum mechanics.  

 

So, macroscopic Maxwell's equations. 

 

 So, we have seen that all of the macroscopic electromagnetism including the propagation of 

light in a photonic crystal is governed by the four macroscopic Maxwell's equation. that is 

this metaphor equations which you have been seeing over the last couple of lectures. So, 

quick repetition 𝛻.E=𝜌𝑣/𝜀 that is Gauss law and 𝛻. 

 

H=0 that is Gauss law for magnetism. You have Faraday's law which is written as 𝛻×E=−𝜇 

𝜕H/𝜕𝑡 and then you have Maxwell's Ampere law which is written as 𝛻×H=J+𝜕E/𝜕𝑡. So, you 

can also write this as 𝜕D/𝜕𝑡. So, here E and H are basically the macroscopic electric and 

magnetic fields, whereas capital D okay and B are the displacement and the magnetic 

induction fields, rho and J are the free charge and the current densities okay.  

 

 

 

 

 

 

 



 

So now we'll move into the topic of scaling of Maxwell's equation. 

 

 So one interesting feature of electromagnetism in dielectric media is that there is no 

fundamental length scale other than the assumption that the system is macroscopic. In 

atomic physics, the spatial scale of the potential function is generally set by the fundamental 

length scale of Bohr radius. So, that is the picture of Niels Bohr who was a Danish physicist 

and he made foundational contributions to the understanding of atomic structure and 

quantum theory for which he also got the Nobel Prize in physics in 1922. So, what I mean to 

say here is that in atomic physics there is a spatial scale of the potential function and it is set 

by the fundamental length scale of Bohr radius. So, consequently configurations of materials 

that differ only in their overall spatial scale nevertheless have very different physical 

properties. 

 

 

 

 

 

 

 

 

 



 
 But for photonic crystals when you see there is no fundamental constant with the 

dimensions of length and the master equation is basically scale invariant. So, this is the 

master equation where you can see we have seen this in the previous lecture how it is 

obtained. So, it is called of 1 by 𝜀(𝐫). times you know 𝛻×𝐇(𝐫) will be equal to (𝜔/𝑐)^2 𝐇(𝐫). 

So, this is the master equation and this leads to simple relationships between the 

electromagnetic problems that differ only by a contraction or expansion of all distances. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 So, we will see that scaling, scaling means you are squeezing the space or expanding the 

space okay. So, suppose for example we have an electromagnetic eigenmode 𝐇(𝐫) of 

frequency 𝜔 in a dielectric configuration which is given by 𝜀(𝐫). Again we go back to the 

master's equation and we put all these parameters here. We know that epsilon is basically 

𝜀(𝐫), the eigenmode is 𝐇(𝐫) and then you have got the frequency 𝜔 of the particular 

eigenmode. Now suppose that the harmonic mode in a configuration of dielectric 𝜀(𝐫) that is 

just a compressed or expanded version of 𝜀(𝐫). 

 

 In that case the new one  you can say 𝜀′(𝐫)  is basically 𝜀(𝐫/𝑠) where 𝑠 is some scale 

parameter. So let us make a change of variables in the master equation where we consider 

𝐫' = 𝑠𝐫 and and  𝛻' is basically 𝛻/𝑠. So if you do that you can actually write everything in 

terms of you know so this nabla or del operator can be written as 𝛻' times s. So, s 𝛻' like this 

okay, this one can be replaced by this okay. So, it is basically epsilon. 

 

 

 

 

 

 

 

 



 
 So, r is basically r' by s okay so on. So, this is how the new master equation looks like. which 

is again reproduced here from the previous slide. So, here you can carefully see that 𝜀(r'/𝑠) 

is none other than 𝜀'(r') right. So, if you put that you know dividing out throughout by 𝑠'𝑠, 

you will see that you actually obtain this particular equation where 𝑠 actually enters into 

this particular 𝜔 term. 

 

 So there you can rewrite a equation okay in the normal form by considering 𝐇'(𝐫' ) as a new 

parameter which is basically this one okay 𝐇(𝐫′/𝑠) okay and you consider a new frequency 

𝜔' which is basically omega by 𝜔/𝑠 . So what it means that the new mode profile and its 

corresponding frequency can be obtained by simply scaling the old mode profile and its 

frequency. So this is what you are doing, right? So the solution of the problem at one length 

scale determines the solution at all other length scale. So that's something amazing.  

 

 

 

 

 

 

 

 

 



 

So we again, you know, put this equation here and we can state this important observation 

that the solution of the problem at one length scale determines the solution at all other 

length scales. 

 

 This simple fact is of considerable practical importance, right? For example, the 

microfabrication of complex micron scale photonic crystals can be quite different and 

difficult. But models can be easily made for testing purpose. And you can test those in 

microwave regime, which is at a much larger length scale, typically of the order of 

centimeters. If materials can be found that have nearly same dielectric constant at both 

those frequency range. And that is where if you remember that the first experimental 

demonstration of  photonic crystal was done in the microwave range. 

 

 So, these considerations guarantee that the model will have the same electromagnetic 

properties.  

 

 

 

 

 

 

 



 

So, just as there is no fundamental length scale, there is also no fundamental value of the 

dielectric constant. So, suppose the harmonic modes of a system with dielectric 

configuration 𝜀(𝐫) and the modes of a system with dielectric configuration that differs by a 

constant everywhere  So, that you can write 𝜀'(𝐫) is nothing but 𝜀(𝐫)/𝑠2. So, here the 

parameter is 𝑠2. So, now if you substitute 𝑠2𝜀(𝐫) instead of 𝜀(𝐫) in the master equation, you 

will see that you actually obtain this. 

 

 So, what you are doing you actually have this 𝑠2 and you are pushing that into this 

particular 𝜔 term. So, what do you conclude from here? You can see that the harmonic mode 

𝐇(𝐫) of this new system remains unchanged, but what is changed? The corresponding 

frequency got scaled by a factor of s. So, the new frequency you can write as 𝜔′ which is 

basically 𝑠𝜔. And that happens when you know the dielectric constant get a scale by this 

kind of factor. So, this is what numerically we can understand that if we multiply the 

dielectric constant everywhere by a factor of 1 by 4. 

 

 

 

 

 

 

 



 

 
 So, what will happen? that is like s2, right? If you do that calculation from here, the mode 

patterns will remain unchanged, but their frequency will become 2𝜔, that is the frequencies 

will double. Thus, if we scale epsilon by s2 and also rescale the coordinates by s, so what will 

happen in that case? In that case, the frequency will remain unchanged. So, this is something 

like called this simple scaling invariance is a special case of more generalized you know 

coordinate transformation. So, this is an important observation that if you scale the 

permittivity by s2 and then rescale the coordinates by s your frequencies will remain 

unchanged and we will see  you know coordinate transformation later in this course, but 

you see that in coordinate transformation you can actually you know any material from one 

coordinate system can be translated or transformed into another shape or coordinate 

system by replacing the values of 𝜀 and 𝜇.  

So it turns out that any coordinate transformation can be replaced simply by a change of 𝜀 

and 𝜇 while keeping the 𝜔 fixed. 

 

 And this can be a very powerful conceptual tool because it allows one to wrap and distort a 

structure in complicated ways while retaining a similar form of the Maxwell's equation. 

However, in general this kind of change in 𝜀 and 𝜇 is not just a mere multiplication rather 

you have to deal with Jacobian matrix and all those things we will see later on in this course. 

But just remember that the change is not simply multiplying you know 𝜀 and 𝜇 by a constant 

it is slightly more rigorous than that. Now let us look into you know  where you see discrete, 

where you see continuous frequency ranges. So, frequency ranges are important when you 

want to study the spectrum of a photonic crystal, right? And the spectrum of a photonic 

crystal is the totality of all the eigenvalues 𝜔. 

 



 

 

 

 So, what does this spectrum look like? Is it a continuous range of values like a rainbow or 

do the frequencies form discrete sequence, something like 𝜔0,𝜔1, . . and so on, okay? Like the 

vibrational frequencies of a piano string. The answer is it depends on the spatial domain of 

the mode profile H(r) that is the vector magnetic field or electric field. So, if the fields are 

spatially bounded either because they are localized around a particular point or because 

they are periodic in all three dimensions. 

 

 okay and therefore represent a bounded profile which is repeated indefinitely then the 

frequencies 𝜔 form a discrete set. Otherwise they can form a single continuous range, a set 

of continuous values or a combination of continuous ranges and discrete sets something like 

for combination of localized and extended modes 

 

 

 

 

 



 
 So an intuitive explanation for the relation between the bounded special domain of the 

eigenmodes and the discrete nets of the frequency spectrum  is discussed here. So, let us 

suppose that we have a continuous range of eigenvalues. So, that we can vary the frequency 

omega continuously and get some eigenmode which is expressed as 𝐇ω(𝐫)  for each of this 

frequency ω. 

So, we can now argue that this continuum cannot be the spectrum of the spatially bounded 

modes. and it is reasonable to suppose that as we change ω continuously the field H_ω can 

be made to change continuously as well. So, that any arbitrarily small amount of change that 

is 𝛿𝜔 will also have a corresponding small change in the vector field 𝛿H. So, any district 

difference in the field would correspond to a very different value of the electromagnetic  

energy functional and hands of the frequency. So, on the other hand you will see that two 

spatially bounded modes𝐇 and 𝐇+ δ𝐇 they are arbitrarily similar cannot also be 

orthogonal. 

 

 

 

 

 

 

 

 



 
 So if you take the inner product okay which will be inner product of (𝐇,𝐇)+(𝐇, δ𝐇). So here 

the first term is positive and the second term is arbitrarily small for integration over a finite 

domain that is where a system has got spatially bounded modes. So, thus the continuous 

spectrum is basically incompatible with the required orthogonalities of the modes unless 

the modes are unbounded spatial extent.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

So, what happens you know when you compute this spectrum we understood that you 

know you get discrete ranges. So, you try to find out the propagation of electromagnetic 

modes in photonic crystal and that is where you can also try to draw an analogy between 

electrodynamics and quantum mechanics. 

 

 So, as we mentioned the main soul, hardened soul of the photonic crystal is basically about 

the propagation of electromagnetic wave in a dielectric medium.  

 

 

 

 

 

 

 

 

 

 

 



 

So, in a sense quantum mechanics is also a study of wave propagation although the waves 

are a bit more abstract in that case. So, there you know at the atomic scale particles such as 

electrons began to display wave like properties including interference and non-localization 

and that function  contains the information about the particle okay obeying the 

Schrodinger's equation which bears some sort of resemblance to the wave equation that is 

there for the photonic crystal. But it therefore comes as no surprise that the study of 

quantum mechanics in periodic potential contains direct parallels to our study of 

electromagnetism in periodic dielectric medium. So since the quantum mechanics of 

periodic potential is the basic theory of solid state physics,  The field of photonic crystal can 

also inherit some of the theorems and terminologies of the solid state physics in a slightly 

modified form. 

 

 In quantum mechanics, the lowest eigenstates typically have the amplitude of the wave 

function concentrated in the regions of low potential. While in electrodynamics, the lowest 

modes have the electric energy  concentrated in the regions of high dielectric constant. Both 

of these statements are made quantitative by a variational theorem which have been 

discussed also in the previous lecture. So, finally you can see that in quantum mechanics  

There is usually a fundamental length scale that prevents us from relating solutions to 

potential that differ by a scale factor. But on the other hand, electrodynamics is basically 

free from any such length scale. 

 

 So, the solutions that we obtain can be easily scaled up or scaled down in length scale and 

frequency.  

 

 



 

So, these are the you know differences between electrodynamics and quantum mechanics. 

But then there are some similarities as well because in with quantum mechanics there are 

similarities between the formulation of electrodynamics in dielectric media and the 

quantum mechanics of non interacting electrons. So, if you tabulate those you can see that 

how do you express field in quantum mechanics and this is how you express field in 

electrodynamics they have very similar form ok this is the  wave equation of potential. This 

is the potential function and this is the magnetic vector field  Eigenvalue problem can be 

written like this. 

 

 Here it is written as this one that is also a eigenvalue problem. The Hermitian operator is 

basically the Hamiltonian in the case of quantum mechanics and this is the form of this 

operator Θ cap in case of electrodynamics. So, in both cases we decompose the field into 

harmonic modes that oscillate with the phase factor of 𝑒(−𝑖𝜔𝑡) that is correct. In quantum 

mechanics, the wave equation, the wave function in quantum mechanics, the wave function 

is a complex scalar field. Whereas in electrodynamic the magnetic field is a real vector and 

the complex exponential is just a mathematical convenience. 

 

 

 

 

 

 



 
 So, in both the cases the modes of the systems are basically determined by a Hermitian 

eigenvalue equation. quantum mechanics the frequency 𝜔 is related to the eigenvalue that is 

H equals E equals ℏ𝜔 which is meaningful only up to an overall additive constant of 𝑉0 that 

is the potential okay. However, in electrodynamics the eigenvalue is proportional to the 

square of the frequency and there is no arbitrary additive constant. So, one difference which 

is apparent from this comparison is that in quantum mechanics the Hamiltonian is 

separable if V(r) is separable. 

 

 

 

 

 

 

 

 

 

 

 



 
 So, it comes here ok fine. So, rest all form it looks very much similar in quantum mechanics 

and electrodynamics. if you take an example of V(r) as a sum of one-dimensional vectors 

okay or functions sorry for example if you consider V(r) as sum of one-dimensional 

functions like 𝑉𝑥 (𝑥) + 𝑉𝑦 (𝑦) + 𝑉𝑧 (𝑧) then we can write Ψ(𝐫) the wave function as a product 

of Ψ(𝐫) given as 𝑋(𝑥)𝑌(𝑦)𝑍(𝑧) okay and the problem separates into three more manageable 

problem one for each direction. right. In electrodynamics such a factorization is generally 

not possible because the differential operator Θ cap couples the different coordinates even 

if you know 𝜀(𝐫) is separable. So, this makes you know analytical solutions pretty rare in 

case of electrodynamics and generally those analytical solutions are confined to very very 

simple systems. 

 

 

 

 

 

 

 

 

 

 



 
 So, let us compare electrodynamics and quantum mechanics in more details in different 

aspects. So, what is the key function that contains all of the information in quantum 

mechanics in a periodic potential which can be thought of a crystal? The answer is the scalar 

wave function Ψ(𝐫,𝑡). And if you consider electromagnetism in a periodic dielectric, which is 

basically a photonic crystal, the key function that contains all the information is magnetic 

vector field, which is given as H(𝐫,𝑡). How do you separate the time dependence of the 

function from the spatial dependence? So, the way in quantum mechanics is expand in a set 

of energy eigenstates. So, you can write Ψ(𝐫,𝑡) in this particular form where the spatial and 

time dependence can be separated. 

 

 In electromagnetism also you can expand in a set of harmonic modes which are basically 

frequency eigenstates and you can have 𝐇ω(𝐫) though that is for particularly for particular  

frequency okay that is why they are called frequency eigenstates and then you have the time 

dependence separated out. What is the master equation that determines the eigenstates of 

the system? In the case of quantum mechanics, it is the Schrodinger's equation and this is 

how it is written. So, this is the H cap parameter in Schrodinger's equation and this is the 

Maxwell's equation in case of electromagnetism and this is a master equation that you have 

all seen. Are there any other condition on the key function? Yes, the scalar wave field must 

be normalizable. And in case of electromagnetism, yes, the vector field must be both 

normalizable and transverse. 

 

 

 

 



 
 So, 𝛻.H should be equal to 0. What does the periodicity, where does the periodicity of the 

system enter? So in quantum mechanics, it enters through the potential. So V(r) is basically 

written as V(r + R), where this is for all lattice vectors at position R. And in case of photonic 

crystal, electrodynamics, the periodicity enters through the dielectric function. So you can 

write ε(𝐫) is basically ε(𝐫+R) for all the lattice vectors R. Is there any interaction between 

normal modes? Yes. 

 

 In quantum mechanics, there is an electron-electron repulsive interaction that makes large-

scale computation difficult. And in electromagnetism, in the linear regime, the 

electromagnetic modes do not interact, so you can calculate them independently. What 

important properties do the normal modes have in common? In quantum mechanics, 

eigenstates with different energies are orthogonal. They have real eigenvalues and can be 

found through a variational principle. Whereas in case of electromagnetism in photonic 

crystal, you can say the modes with different frequencies are also orthogonal. 

 

 They have non-negative real eigenvalues and they also can be found through variational 

principle. What are the properties of the master equation that guarantee that these 

properties of the normal modes? So, in quantum mechanics, it is basically the Hamiltonian H 

cap is a linear Hermitian operator. and in the case of electromagnetism the Maxwell 

operator which is Θ cap this part okay Θ cap okay is a linear positive semi-definite 

Hermitian operator. So, you can actually see what is you know Maxwell operator Θ cap. 

Going further, what is the variational theorem that is used to determine the normal modes 

and frequencies? So you can see this is E_var which is the inner product of Ψ(H cap Ψ) over 

(Ψ,Ψ) is minimized when Ψ is the eigenstate of H cap. 

 So this is how you can actually use the variational theorem. So, for electromagnetism it is 

basically you know the electromagnetic energy U_var can be obtained as inner product of 

(H, Θ cap H) over (H,H) inner product of H is minimized when this H is in eigen state of Θ 



cap. What is the heuristic that goes along with the variational theorem? So, the wave 

function concentrates in potential well without oscillating too fast while maintaining 

orthogonal to lower energy states. In case of electrodynamics, electromagnetic fields 

concentrate their energy in high permittivity region again without oscillating too fast while 

maintaining orthogonal to the lower frequency modes. So, what is the physical energy of the 

system? Eigen value E of the Hamiltonian that gives you the physical energy of the system. 

 

 In case of electrodynamics the time average electromagnetic energy U is obtained like that 

ok. So, you take the modular square of the electric field and the magnetic field and you know 

take the volume integration and that you get it. Is there a natural length scale to the system? 

Usually in case of quantum mechanics there is the physical constraints such as Bohr radius 

will set that length scale and in photonic crystal in electrodynamics there is no such length 

scale. So, the solutions are generally scale free. So, what is the mathematical statement that 

says A is the symmetry of the system? Okay, you can say that A cap commutes with the 

Hamiltonian. 

 

 So, you can write this as 0 and in electrodynamics also you can say A commutes with the 

Maxwell's operator. So, this also becomes 0. How do you use the symmetries of the system 

to classify the eigenstates? In quantum mechanics, you can distinguish them by how they 

transform under a symmetry operation of A cap and the same happen in case of 

electrodynamics as well. Now, if the system has a discrete translational symmetry as a 

crystal does, how can the modes be classified? Now that is something interesting and that is 

applicable for both electromagnetics as well as quantum mechanics by wave vector k you 

can do it. 

 

 So, you write the wave function in Bloch form. So, you can write Ψk(𝐫) equals uk(r) e to the 

power ikr. So, this is where the periodicity comes in. You can also write the harmonic 

modes. in case of electrodynamics as Hk(r) equals u k(r) e to the power ikr. So, it is very very 

similar what you do in quantum mechanics and what you do in electrodynamics. 

 

 So, what are the non redundant values for the wave vector k? They basically lie in the 

irreducible Brillouin zone in reciprocal space and the same concept is applied here. So you 

only need to actually study the irreducible Brillouin zone to obtain the information of the 

band diagram and all. So that will drastically minimize your computational requirements. 

You can also further compare them in terms of what do you mean by the term bench 

structure. So, the functions e and k which is a set of continuous function that specify the 

energies of the eigenstates. 

 

 So, band structure basically tells you about the energies of the eigenstates. In 

electromagnetism, you can use the function 𝜔 and k, a set of continuous functions that also 

tells you about the frequencies of the harmonic modes. So, there is eigenstates, energies of 

the eigenstates, here is the frequency of the harmonic modes. What is the physical origin of 

the band structure? quantum mechanics in normal crystal is the electron wave scatters 



coherently from different potential regime right. In electromagnetic it is basically the 

electromagnetic fields scatter coherently at the interface between different dielectric 

interface or dielectric region. 

 

 So, that is how here what different potential region is doing here different dielectric region 

is emulating the same. what properly characterizes a gap in the band structure. So it tells 

you that within that range,  of energies, there are no propagating electron states regardless 

of the wave factor. So in any direction, propagation is not allowed. In electromagnetism, in 

photonic crystal, it also means the same that within that range of frequencies, there are no 

propagating electromagnetic modes regardless of the wave factor or polarization. 

 
 So there is something additional over here. So, that makes this vector and this is a scalar 

thing. We are talking about the wave potential which is scalar, you are talking about 

magnetic vector potential that is where the polarization gets into picture. What are the 

terms for bands that are immediately above and below a band gap? for semiconductor 

crystal you know that those are conduction band which is above the gap and the one below 

is valence band okay in case of photonic crystal the band above is called air band  and the 

band which is below the gap is called the dielectric band so how are the defects introduced 

in the system so in normal crystal in quantum mechanics you can see that By adding foreign 

atoms to the crystals, you can break the translational symmetry of the atomic potential and 

that is how you can introduce defects. And in case of photonic crystal, by changing the 

dielectric constant of a particular location, you are again breaking the translational 

symmetry of the dielectric function and that is how you can introduce a defect. What is the 

possible result of introducing a defect? So, in crystals, it may create an allowed state within 

a band gap. 

 

 Therefore, permitting a localized electron state to exist in the vicinity of the defect. And it is 

very similar what happens in photonic crystal also. So, there also it actually creates an 



allowed state within the gap. So, you are actually permitting a localized electromagnetic 

mode to exist in the vicinity of the defect. So how do you classify different types of defects? 

So in crystals you can think of donor atoms which pull states from conduction band down 

into the gap and you can also have acceptor atoms which push states from the valence band 

up into the gap and that is how you know defects  effect your crystal band diagram. 

 

 In case of photonic crystal, if you have dielectric defects, they also do the same thing. They 

pull states from the air band into the gap and if you have air defects, they push states from 

the dielectric band up into the  So this is very important. What do you want to do? Okay. 

Always remember the band that is above the gap is called air band and the band that is 

below the gap is called the dielectric band. So in short, what is studying the physics of the 

system? Why is in short, why is studying the physics of the system important? So we need to 

know the system well to tailor the electronic properties of the materials to our need. 

 

 And we do the same thing in case of photonic crystal so that we can tailor the 

electromagnetic property or optical property of the material to our needs. So, with that we 

come to an conclusion to this lecture.  

 

 

So, we will start the discussion on symmetries for classification of EM modes in the next 

lecture. If you have got any queries regarding this particular lecture, you can always drop an 

email to me mentioning MOOC and photonic crystal on the subject line and this is my email 

address deb.sikdar@iitg.ac.in. Thank you 


