
Lec 32: Temporal Coupled Mode Theory: Fundamentals and Applications 

 

 Hello students, welcome to lecture 32 of the online course on Photonic Crystals 

Fundamentals and Applications. Today's lecture will be on temporal couple mode theory. 

We will discuss the fundamentals and some analysis. So here is the lecture outline. We will 

have a brief introduction to the topic. We will discuss about the basics of temporal couple 

mode theory. 

 

 

 Then we'll take the example of a filter transmission, a waveguide band, and then 

summarize our findings. So first, an overview of this topic. So why this coupled mode theory 

is interesting, and then how this theory works.  



 

So here we'll be discussing the concept of coupled mode theories, which are basically 

essential for analyzing complex photonic systems including devices such as narrowband 

filters, web guides. So as you can see, these are basically the passive devices which are very 

important in any photonic integrated circuits. We will also draw parallels between the 

couple mode theories in photonics and also the time dependent perturbation theory in 

quantum mechanics. So, when you discuss the fundamentals of temporal couple mode 

theory, in short we will be calling it as TCMT. There we will first make an abstract 

formulation. 

 



 

 So here, unlike other methods, temporal couple mode theory will be using an abstract 

formulation rather than a concrete physical model. So it will involve expansion in exactly 

computed eigenmodes of idealized systems such as isolated waveguides and cavities. So 

basically it will work on abstract models rather than the actual physical system. So the 

concept of expansion of eigenmodes as used in temporal couple mode theory  is a 

fundamental approach  that helps in understanding and predicting the behavior of complex 

photonic systems. We'll also look into the mathematical expansion. 

 

 

 So here in the context of temporal couple mode theory, the expansion in eigenmodes will 

refer to expressing the eigenmodes that is like the electromagnetic fields within a particular 

photonic system as a sum of the system's eigenmodes. So if you want to present it 

mathematically, this is how it will look like. you can write E (r, t) okay so electric field is 

basically function of both position and time and you can write it as  ∑  𝑛 𝑎𝑛(𝑡)𝐄𝑛(𝐫). So here 

okay as you can see this is the electric field e and t are basically the eigen mode field 

distribution  and a and t are basically the time dependent coefficients and here you can see 

it is basically sum of different eigenmodes. So this is how basically you are expressing the 

electric field at any position r and t as an expansion of the system eigenmodes. So what is 

the role of the eigenmodes here? Each eigenmode basically acts as a building block. 

 

 So by knowing the eigenmodes, you can predict how the system will behave when those 

modes will get excited. So this is also crucial for designing devices that rely on specific 

optical properties, something like transmission peaks or minimal losses. The third 

important point would be like perturbation and coupling. So, in real world applications, the 

idealized eigenmodes are perturbed due to their interaction with other components  or due 



to features like bands, splits or some material inconsistencies that you will see in your 

design. So temporal couple mode theory specifically looks at how these eigenmodes would 

couple or interact in the presence of this kind of perturbations  and the coupling will alter 

this coefficients a and t which in turn will basically  affect the overall field distribution and 

hence the behavior of the system will also change. 

 

 So all these things you can analyze using the temporal couple mode theory. Now the 

question is what are the practical applications as you have seen that this is basically an 

abstract model other than actual direct modeling. So first thing is that you know we have to 

understand  how TCMT provides numerical results for specific geometrical configurations 

ok. How it can take care of those geometry specific information and give you some useful 

result and how it can help you in analyzing devices ok. That is where the application of 

TCMT will come into picture while you are discussing broad range of devices. 

 

 
 

 Next what is the advantage of using this theory? First thing is the accuracy and the 

efficiency as you understand you know we can emphasize on the advantages of using TCMT 

is its efficiency and accuracy of its prediction of the part of systems. So, it can do it very 

accurately and efficiently. So, what are the foundational components? So TCMT basically 

treats the system as a collection of fundamental components. And these components are 

analyzed by fundamental principles such as conservation of energy,  And then we will 

consider the building blocks. So there can be two types of modes that we all know. 

 



 
  

One is the localized modes. These are basically formed inside resonant cavities that trap and 

store energy. The other type of mode is propagating mode. These are the modes in 

waveguides that can transport energy. So these two are the building blocks. 

 

 And now this theory can also provide a generic framework which is applicable to a broad 

class of photonic devices and that is why this kind of system is also giving us a universal 

description. And it focuses on capturing the universal behavior of these devices. Next, how 

do you do parameterization of the quantitative analysis? The theory is basically 

parameterized by a limited number of unknowns which are crucial for modeling. First thing 

is frequencies. So, we will be talking about the natural frequencies at which the resonant 

modes oscillate. 



 
 

 And then we will also concern about the decay rates that tells us how quickly the energy in 

the resonant modes could dissipate. So these parameters are dependent on the specific 

geometry of the device and this is where the device specific information gets into the 

theoretical framework. How do you determine the parameters? This requires separate 

calculation to accurately determine the values of frequencies and the decay rates. And these 

calculations are usually complex and they depend on the detailed physical properties of the 

system. So let us start the example of applying temporal coupled mode theory to a practical 

example of narrowband filter. 



 

 
  

So here you can see the structure of figure 1. is described in temporal couple mode theory 

as a resonant cavity connected to two single mode waveguides which are leveled as 

waveguide 1 and waveguide 2 okay. So, this is basically a filter okay. So, what is this filter? 

This is a waveguide cavity waveguide filter  in a rod crystal. So, as you can see here in the 

inset ok this this dark spots are all rods ok. 

 

 So, this is a waveguide then you have a cavity then you have waveguide ok. So, this is a 

waveguide cavity waveguide kind of filter and this is based on a rod crystal ok. And what 

you see here, this is the transmission spectrum that shows around 100% transmission peak 

at the cavity resonance frequency  which comes out to be 
𝜔𝑎

2𝜋𝑐
 equals 0.3803 that is exactly 

this point. So, they have highlighted this part and actually drawn over here. 

So if you only focus on this small section, the highlighted part, this is how the transmission 

peak looks like. So you get a 100% peak over here, okay? And it has got a quality factor of 

410, okay? So this is the inset that shows the enlarged peak. And the oscillations that you 

see here at the low and the high frequencies, they correspond to the propagation which are 

outside the band gap. And the sharp dip at 
𝜔𝑎

2𝜋𝑐
  equals 0.308, it corresponds to the zero 

slope guided band edge. 

 

 And that is where there is no transmission at all at this particular point. So, on the right 

here you can see these are the electric field plots of the device. So, this is for the off 

resonance case. So, here you are considering 
𝜔𝑎

2𝜋𝑐
 equals 0.3765.  



So, this is typically here somewhere. So, here you can see the transmission is very low. So, 

this is the input port, this is the output port. practically nothing comes out at the output 

port. But if you see at the resonance that is the on resonance okay, so you look at the 

parameter here 
𝜔𝑎

2𝜋𝑐
  equals 0.3803  that is exactly where the peak is and you can see 

beautifully everything getting transferred to the output port. So, this is the electric field 

distribution telling you what is happening at off resonance and on resonance case. Now, if 

this system, this is an exact system, this has to be modeled using temporal coupled mode 

theory and this is the abstract diagram of the filter that actually helps us establishing this 

temporal coupled mode theory.  

So this abstract diagram is showing the essential features of the filters from this figure 1. 

The first thing here is a single mode input waveguide that is waveguide 1 okay and it has got 

the input and output field amplitude which is 𝑆1+ and 𝑆1− those this is input this is output 

okay. Similarly you have the output waveguide that is waveguide 2 it has got input and 

output field amplitudes given as 𝑆2+ and 𝑆2− . So, the plus ones are the inputs and the minus 

ones are the outputs okay. And then you have a single resonant mode of field amplitude A 

and frequency omega naught coupled to waveguides 1 and 2 and they have lifetimes of 

𝜏1 and 𝜏2 . So, in this particular case okay 𝜏1 and 𝜏2 are equal okay and the 𝑠ℓ± are 

normalized so that |𝑠ℓ±|
2

is basically representing the power in the waveguide ok. And A is 

basically normalized so that modulus A square is basically giving you the energy in the 

cavity. What is ℓ ? ℓ is basically 1 or 2 ok. So, with that we can start analyzing the system 

slowly. Let's first focus on the system dynamics. 

 

 
 



So the resonant cavity has a specific resonant frequency, which is denoted by omega naught. 

And what is understood that this cavity decays with lifetime 𝜏1 and 𝜏2 into each of the 

waveguides and because the waveguides are symmetrical, you can also take 𝜏1 and 𝜏2 to be 

symmetrical and that is crucial for achieving 100 percent transmission on resonance. Now, 

there are certain assumptions you need to make before applying this temporal couple mode 

theory. 

 So you have to assume weak coupling between the cavity and the waveguides, which means 

that the energy leaks slowly from the cavity into the waveguides. And the weak coupling can 

be engineered by surrounding the cavity with multiple periods of the photon crystal to limit 

the energy escape path. So that briefly you have seen. So now we will go into the basics of 

temporal couple mode theory. So we will now derive a set of equations describing the 

coupling of the cavity to the waveguides in terms of the field amplitude in those 

components. 



 
 

 

So here is the framework and the assumptions required for the derivation. First is weak 

coupling. So this is central to the derivation because it assumes minimal energy transfer 

between the components. We also consider linearity that means the system's response is 

proportional to the inputs. Time invariance, the materials and the geometry are constant 

over time. 

 Conservation of energy that means the total energy in the system remains constant. and 

time reversal invariance that means the processes are symmetric in time. So, with that we 

can make the field representation in components. The first field will be the cavity field 

which can be denoted by a variable A that determines the electric and magnetic field 



amplitudes in the cavity. So, you can  The choice is made in such a way that modulus of a 

square basically gives you the electromagnetic energy stored in the cavity. 

 

 Next important field is the waveguide field. These are basically expressed as the sum of the 

incoming that is 𝑠ℓ+
 and the outgoing that is 𝑆ℓ−

 waveguide modes for the waveguides 

which are levelled as ℓ equals 1 and 2. We have seen that previously. So the magnitudes 

which are calculated as modulus SL plus minus whole square, they basically represent the 

power in those modes. Third important parameter is the decay, decay of the cavity modes. 

 
  

So we assume exponential decay. So the cavity modes basically decays exponentially over 

time with a lifetime of tau due to weak coupling. And if the decay is negligible over one 

optical period, the behavior approximates a lossless cavity with fixed field patterns 

proportional to A and the outgoing pointing flux that is real of E conjugate times H, this is 

the cross product of the two vectors by 2 will be proportional to modulus A square. So, to 

remember that to begin with we are considering the cavity mode by itself with no incident 

power coming from the waveguides. Then comes some important quantitative requirement. 

 

 First one is the condition for tau. Your tau should be 𝜏 ≫
2𝜋

𝜔0
, that ensures the modes 

lifetime is much longer than one optical period. okay and then the quality factor Q. So, here 

you can define the quality factor 𝑄 = 𝜔0𝜏/2 that is much greater than 𝜋 and that indicates 

minimal energy loss. There can be multiple decay mechanism. So, you have to estimate the 

net lifetime. So if the cavity has got two decay mechanism with constants 𝜏1 and 𝜏2,  the net 

lifetime can be given as 
1

𝜏
= 

1

𝜏1
+

1

𝜏2
 . 



 

 
  

From that, you can obtain the differential equation for amplitude A. So in the equation form, 

you can write it as  
𝑑𝐴

𝑑𝑡
 will be − 𝑖𝜔0𝐴 −

𝐴

𝜏
 . So if you want to solve this, the solution for 

𝐴(𝑡) will have this particular form. So you can write 𝐴(𝑡)  = 𝐴(0)𝑒−𝑖𝜔0𝑡−𝑡/𝜏, where 𝐴(0) is 

basically the initial amplitude and 𝑒−𝑖𝜔0𝑡−𝑡/𝜏 basically describes the oscillatory behavior  So, 

this is the oscillator behavior and this part actually tells you about the exponential decay 

behavior. 

 

 So, now we will include the waveguides. So, when you have the waveguides, so there is an 

input energy of SL plus that can couple into the cavity. or it can be reflected into SL minus or 

both can happen, okay. So, the energy from the cavity must flow into SL minus. So, this is the 

direction of the energy flow from waveguide, from cavity to waveguide, right. So, the most 

general linear time invariant equations relating all these phenomena is given by this 

coupling dynamics equation. 



 

 

 

 So, you can write this differential equation for cavity amplitude A as  
𝑑𝐴

𝑑𝑡
= −𝑖𝜔0𝐴 −

𝐴

𝜏1
−

𝐴

𝜏2
+ 𝛼1𝑠1+ + 𝛼2𝑠2+ . So, this is equation 1 and if you try to establish the relation for 

waveguide modes, so you can write 𝑠ℓ− is basically  𝛽ℓ𝑠ℓ+ + 𝛾ℓ𝐴. 

 

 A is the amplitude of the cavity mode, okay. So, here ℓ is again it can be 1 or 2. Now, we 

have seen the two new parameters 𝛼ℓ  and 𝛾ℓ. So, these are basically the coupling strengths. 

So 𝛼ℓ and 𝛾ℓ represents the strength of cavity to waveguide coupling okay and 𝛽ℓ  is 

basically the reflection coefficient at each waveguide okay. So now let us look into the 

conservation of energy analysis. 

 



 

 

 So first determining 𝛾1 and 𝛾2 okay. So when 𝜏2 tends to infinity  that is the end you have 

𝑠1+ and 𝑠2+ both 0, the cavity decays solely through 𝜏1  So, you can understand that there is 

nothing input. So, these are the inputs from the waveguide to the cavity, they are 0, 𝜏2 is 

infinity, that means that cavity is solely decaying through this 𝜏1. So, in that case, you can 

write that equation −
𝑑|𝐴|2

𝑑𝑡
=

2

𝜏1
|𝐴|2 and this can be represented as 1 over tau  gamma 1 

square modulus okay and then you have this modulus this a square. So, from this what you 

can understand if you equate these two you can find out the relationship between the 𝛾1  

and 𝜏1 . 

 

 So, you can see that |𝛾1|2 =
2

𝜏1
 . So, that way you can obtain 𝛾1 = √

2

𝜏1
  and similarly you 

can write 𝛾2 = √
2

𝜏2
 . So that is important equation number 3. And here we are assuming 

weak coupling. that means changes in gamma 1 due to gamma 2 and vice versa are all 

neglected. 

 

 So, gamma 1 is only changing because of 𝜏1 and there is change in 𝛾2 only because of 𝜏2, ok. 

Now, we have to determine the constants 𝛼ℓ   and 𝛽ℓ that can be determined by the time 

reversal symmetry. So, if you use the time reversal symmetry,  that can be done by running 

the original solution backward in time and conjugating. So, we can derive another valid 

solution that looks like this, okay. So, here 𝐴(𝑡)  = 𝐴(0)𝑒−𝑖𝜔0𝑡+𝑡/𝜏. 



 
 

 So, that is basically representing an exponentially growing amplitude. So, here the input 

fields are  𝑠ℓ+ can be written as √2/𝜏ℓ𝐴  that assumes 0 output fields, that means 𝑠ℓ− equals 

0. So, when I am using L, I am talking about both 1 and 2, both the waveguides. So, from that 

you can derive the reflection coefficient 𝛽ℓ. So, the calculation of 𝛽ℓ  can be done using this 

time reversed condition  and  it will give you from equation 2, if you go back and see 

equation 2, yeah, this one, okay, it gives you that 𝛽ℓ  equals minus 1. 

 

 And how do you interpret 100 percent reflection? So, when you have 𝜏ℓ  going to infinity 

that means you know the relationship will be something like this between the two input and 

the output becomes like this. So, 𝑠ℓ− = −𝑠ℓ+ that means whatever is getting incident is 

basically getting reflected that means total input. total reflection is taking place. Next, we 

determine the coupling coefficient 𝛼ℓ . So first, we consider the special case where you are 

taking 𝜏2 to be infinity. 



 
 

 That means you just move it away or disconnect your waveguide 2. So in this case with no 

input energy, so you are considering that this input and this input both are 0. So the decay of 

the cavity mode provides a clear solution. So, how do you find out the expression for 𝛼1 ? So, 

whenever I am say 𝛼ℓ, so there will be 𝛼1 and 𝛼2. So, when you plug this A(t) into equation 

1, so you have seen equation before, you can see that it comes out to be 𝛼1√2/𝜏1𝐴 =
2𝐴

𝜏1
 . So, 

if you simplify this expression, you will get  𝛼1 = √2/𝜏1. 

 

 So if you generalize this expression for alpha L, it will be 𝛼ℓ = √2/𝜏ℓ .  Or you can say this is 

same as 𝛾ℓ . So this is the generic expression for 𝛼ℓ and gamma L for both the coefficients. So 

finally, we have obtained the temporal coupled mode equations for the system that is shown 

in the figure. So next we shall consider the two cases where this theory is applied to explain 

the behavior of some waveguides. 

 



 

 

 So these are the two important equations. So, we have seen  
𝑑𝐴

 𝑑𝑡
= −𝑖𝜔0𝐴 −

∑  2
ℓ=1 𝐴

𝜏ℓ
+

∑  2
ℓ=1 √

2

𝜏ℓ
𝑠ℓ+ . So, this is how you  write the expression for 

𝑑𝐴

 𝑑𝑡
 that tells you about the time 

varying amplitude ok. And the relationship between the input and outputs of the 

waveguides are given as this. So, 𝑠ℓ− = −𝑠ℓ+ + √
2

𝜏ℓ
𝐴 .  So, these expressions are valid for 

any filter satisfying the the assumptions that we have made  okay and the details will matter 

only in determining the values of omega naught and tau L. 

 

 So this approach is generalized to include more than two waveguides, radiative losses and 

so on. 



 

 Now we will see how can we use this theory to find out the filter transmission. So the 

previous two equations if you remember the coupled mode equation number 4 and 5,  from 

those you can obtain the transmission spectrum of any weakly coupled waveguide cavity, 

waveguide kind of system. okay and if you set up the scenario the transmission spectrum 

can be defined like this 𝑇(𝜔) will be 
|𝑠2−|2

|𝑠1+|2  . 

 

 
 



 So, this is the input and this is the transmitted. So, this is the filtered output. So, this is what 

you are bothered about. So, this you have to calculate when there is no input from the right 

that means S2 plus will be 0. Regarding frequency conservation in a linear system, if the 

input oscillates at frequency omega,   then all parts of the system will also oscillate with e to 

the power minus i omega that means it will lead to 
𝑑𝐴

𝑑𝑡
= −𝑖𝜔𝐴 okay. 

 

 So, this is fine. Now, let us apply coupled mode equations. So, first adjustment that you 

make in the expression is that you put 𝑠2+ equals 0. that will help us modify the equations. 

Now, the equations will look like this −𝑖𝜔𝐴 = −𝑖𝜔0𝐴 −
𝐴

𝜏1
−

𝐴

𝜏2
+ √

2

𝜏1
𝑆1+ ok. So, this 

becomes your equation 6 from that you can find out the relationship between the reflected 

beam in the first waveguide  that is  𝑠1− = −𝑠1+ + √
2

𝜏1
𝐴  and 𝑠2− that is the final output will 

be simply √
2

𝜏2
𝐴 . 

 

 
  

 So, these are your equation 6, 7, 8 and that tells you the transmission characteristics. Now, 

if you solve for the transmission spectrum  you relate 
𝐴

𝑠1+
 . So, from equation 6, so from this 

equation you solve for 
𝐴

𝑠1+
 using the expression okay  and you get 𝐴 =

√
2

𝜏1
𝑠1+

𝜔−𝜔0+𝑖(
1

𝜏1
+

1

𝜏2
)
 . This 

is pretty simple maths, it is not a complicated one, you just try it on paper and from that you 

can derive what is T that is the transmittance, okay. So, you substitute the solution for A that 

you have found here into the formula for S2 minus of equation 8. So, you put it here, okay. 



So, that will help you to get a relation expression  of S2 minus and S1 plus and from that you 

can  have this one that is your transmittance you can simplify and you can get this particular 

expression, okay. So, here also you can see that when you know omega equals omega 

naught this guy blows up and it becomes very very large transmission, right. 

 

 
  

This becomes 0, okay and then you can do the maths and find out how it works. So, the 

transmission formula is basically this one. So, you can put omega which is a variable and 

when omega equals omega naught you will have the peak transmission. So, this is the 

expression for transmission spectrum that is your equation 9. So, it actually gives you a 

Lorentzian peak with a maximum at omega equals omega naught. So, however the reflection 

formula from this kind of theory you can also find out what is the reflection or reflectance. 



 
 

 So, 𝑅(𝜔) will be simply 
|𝑠1−|2

|𝑠1+|2 . So, only difference is that here you are interested in the 

power that is coming out of the waveguide 2, here you are basically interested in the power 

in the case of reflection. you are interested in the power that is coming back to waveguide 1. 

So, this is how the expressions are related. So, what are the conditions for perfect 

transmission? As you can see, if I want that T at omega naught to be equals 1 means you 

want 100 percent transmittance. 

 



 

 That means that can occur only when you will have 𝜏1 = 𝜏2 𝑡hat means you should have 

equal decay rate into the two waveguides. And at 𝜔0, the 𝑅(𝜔0) should also be 0 and that 

should come from the destructive interference between the direct reflection and light that is 

decaying backwards from the cavity. Those two things should cancel out the reflection so 

that you get 100 percent transmission. Now, how do you represent quality factor? Quality 

factor  The total quality factor is Q and the total lifetime here is represented as 
1

𝜏
 which is 

nothing but 1/𝜏1 + 1/𝜏2 and we have seen that for perfect transmission you want 𝜏1 and 

𝜏2 to be equal. 

 

 So, you can write 
2

𝜏1
  and hence, you can represent 𝑄 =

𝜔0𝜏

2
 . So, that actually allows you to 

write 
1

𝜏1
 , which is also equal to 

1

𝜏2
  to be  

𝜔0

4𝑄
 . So, why you are looking here? Because it is 

sometimes useful to write the transmission spectrum in terms of the quality factor instead 

of using tau. So if you do that in that case your equation 9 the transmission formula will 

change in terms of quality factor  and it will look like this 𝑇(𝜔) =

1

4𝑄2

(
𝜔−𝜔0

𝜔0
)

2
+

1

4𝑄2

 . 

 So, that way also you can. So, these are same things just that you know tau and Q are related 

and that way the formula also now appears in the in terms of Q quality factor. Now if we 

were to plot that equation 11 that we have seen in the figure like this that is possible by 

plug-in in the omega naught and the Q as determined. So, it would nearly give you a very 

indistinguishable from what has been computed here, okay. So that is how you will see that 

the theory pretty much works well for temporal couple mode theory predicting the 

waveguide, cavity, waveguide kind of filters. So what is the main design criteria for narrow 

end filter? The first thing is the system should be symmetric, waveguide, cavity, waveguide 

configuration. 



 

 
 

 The waveguides must be single mode, so is the cavity, and it should be free from other loss 

mechanisms such as radiation or absorption. Now, what is the role of the photonic crystal 

here? Ideal for minimizing losses as it will prohibit the radiative modes beyond its band gap. 

Thus, it will enhance the performance of the system as a narrowband filter. So to 

summarize, we have basically derived the sufficient conditions for us to achieve a 

narrowband filter with 100% transmission. So that is the goal of using temporal couple 

mode theory to develop a narrowband 100% transmission filter based on photonic crystal. 

 



 
 

 Next, we'll move on to designing a waveguide bend. The applicability of temporal couple 

mode theory to the photonic crystal filter  has been clear now. So, similar ideas can help us 

to understand the situations that seems very different at first. So, another such example 

would be you know how do you depict a sharp 90 degree bend  okay in our missing rod 

waveguide. So, here you can see that figure 3 here shows a sharp 90 degree band made of 

missing rows of rods. 

 

 So, that is a right angle band. for a waveguide, okay. And here you can see this has been 

modeled using that temporal couple mode theory where you have waveguide 1,  you have a 

resonator cavity and then you have waveguide 2 giving you that 90 degree band. Okay, so 

what are the assumptions here you have considered in like T1 tau 1 equals tau 2 by 

symmetry and that's 100% transmission, which is although a low Q.  Okay, because you 

want it to be broad. 

 

 Okay, and you are actually able to achieve it. So this is how. the theory and the experimental 

ones overlap and gives you pretty good match right so the dots here the red dots here 

basically tells you the experimental transmission for a 90 degree bend okay  and it is 

basically made in a square lattice where  You have used alumina rods which have 

permittivity of 8.9 and the latest period is basically a 1.27 millimeter. So, what are the 

effects of bending in a ordinary dielectric waveguides? We have discussed this earlier as 

well. 



 
 

 First thing is the reflection and the radiation loss. So, bending a dielectric waveguide would 

result into both reflection of some light and then radiation loss. The influence of the band 

sharpness comes from the fact that sharper the band the greater will be the radiation loss. 

And there is a contrast dependence as well. So low contrast optical fibers experience 

significant radiation losses with band radii less than a few centimeters, potentially resulting 

in a nearly complete radiation loss. And this is the reason why when you have low contrast,  

your mode the majority of the mode energy is not confined only in the core. 

 

 If you have a high contrast means the refractive index difference between the core and the 

cladding is very high. In that case the mode is mainly concentrated within the core. So, only 

the tails of the mode goes to the  So, there is they may leak out when you bend they may not 

satisfy the condition for total refraction. But if you are using low contrast optical fibers then 

the modes are significantly going out towards your cladding and in that case when there is a 

sharp bend modes will simply leak out. So high contrast waveguides on chips, they have 

shown minimal radiation loss even for bands close to the wavelength scale. 

 



 
 

 So what are the advantages of photon crystal waveguides? So these are photon crystal 

waveguides. We have discussed before that they  prohibits radiation loss. So, the band gap 

that is inherent to the photon crystal waveguides will help you prevent the radiation loss 

which is a significant improvement over the ordinary dielectric waveguides. And it is also 

possible to manage and potentially eliminate reflection losses. So, that gives exceptional 

transmission efficiency. So, at specific frequencies, photon crystal waveguides can achieve 

100 percent transmission and this high efficiency is attainable  even when the band radius 

is smaller than the wavelength of the light passing through. 

 

 So, here you can actually see that how photon crystal waveguide can  eliminate the 

reflection losses and you can see nothing basically reflects and nothing leaks out. So, you 

almost have 100% transmission even under this tight bending condition. Now, you can 

conceptualize the band as a resonant cavity. So, the band's corner, this part is analogous to a  

weak that is a low Q resonant cavity within the waveguide spectrum. So, you can write this 

as waveguide 1, waveguide 2 similar kind of input and output powers okay S1 plus, S1 

minus, S2 plus, S2 minus okay. 



 
 

 So, this cavity is also connected to the two waveguides Okay, the geometry of the band, big 

band does not impact the core analysis derived from the couple mode theory. So, you could 

have had it in different angles as well. But right now, we just put it in this way to match it 

with the kind of system you are designing. So, by symmetry the corner resonator must 

decay at equal rates into both horizontal and the vertical waveguides  and there are no 

additional radiation channel available that means the energy solely goes into the connected 

waveguides. So, what are the resonance and coupling impacts? So, first of all remember we 

will be assuming with coupling that means the system is predicted to exhibit transmission 

peaks at 100 percent on resonance  and the resonance will likely to be broad that is 

attributed to the low quality factor of this resonant cavity. 

 



 
 

 So, what are the limitations there in coupled mode theory for band analysis? First thing is 

the band in the waveguide does not constitute a weak coupling to the waveguides. that 

sometimes contradicts the kind of basic assumptions you made into the coupled mode 

theory because here the coupling has to be strong to continue the light propagation. Second 

thing is the cavity that is the band does not trap light for extended periods because the light 

propagation should continue like this. So, it should ideally exhibit a very low quality factor, 

the quality factor should be less than 10. 

 

 So, in that case you can actually think about the quantitative and qualitative versus 

quantitative accuracy. So, we can understand that while couple mode theory may not 

provide quantitatively accurate results due to these deviations, but its qualitative 

predictions remain valid. So, we can also think of advanced theoretical modeling.  



 

So, a more precise model is suggested by treating the problem as essentially one 

dimensional where the light can only move forward or backward. So, this kind of scenario is 

basically similar to the quantum mechanical model of scattering from a symmetric one 

dimensional potential well, which are known for exhibiting 100 percent transmission 

characteristics. So based on that, you can also do some empirical validation, which is shown 

here. So this illustrates the predicted transmission spectrum theory one in the blue. We 

have also already discussed this using this more accurate one dimensional model. So that 

supports the theoretical calculations. So what do you understand from here that similar to 

the filter, the high transmission is primarily facilitated by the waveguides single mode 

nature and the symmetry of the band. 

 

 However, unlike the filter the low quality factor in this case is essentially becoming a good 

thing because it means a high transmission can be achieved over a large bandwidth.  



 

So, let us now summarize the things that we understood. So, here is the summary of the key 

concepts. So, first thing  Temporal couple mode theory provides a robust framework for 

understanding and predicting the behavior of photonic systems,  especially in 

configurations involving resonant cavities and waveguide bands. There are some practical 

applications that we have seen that the theory has proven particularly valuable in designing 

and analyzing transmission filters and waveguide bands and demonstrating how geometry 

and coupling could influence the system performance. 

 
 

 So, what are the implications and future direction? So, you need to keep this in mind that 



the theory basically provides qualitative insights  So, further refinement is necessary for 

quantitative accuracy  and future research could enhance the models precision expanding 

its applicability into more complex photonic systems. So, to conclude this lecture we 

summarize the entire analysis into all these important key points. So thank you that is all for 

this lecture if you have any queries or doubt regarding this lecture you can always drop an 

email to me at this particular email address  mentioning MOOC and the lecture number on 

the subject line. Thank you. 


