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Lec 23: Different types of defects in Photonic Crystal Slabs

Hello students, welcome to lecture 23 of the online course on photonic crystals, fundamentals and
applications. Today's lecture we will be discussing about different types of defects in the photonic
crystal slabs.

Lecture Outline

® |inear defects in slabs

= Paint defects
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So, here is the lecture outline, we will be discussing linear defects in slabs in details and then we will
just touch upon point defects in this lecture and in the next lecture we will have more discussion
about point defects. So, we have briefly discussed already we know how point defects look like in a
photonic crystal and with that you can create waveguides and other kind of devices.
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Figure 12 Twoviews of 3 reduced-radius waveguide fabricated in a rod slab . Figure 2: Projected band disgram af Thi-like {2-odd) states in @ linear
wavegubde in the rod slab of figure 2(left), forrmed by reducng the radiies of
a row af rods [inse), as a function of the waee weclar kalong the defect

* Moedification of Rod Radii: Specifically, the radius of all the rods in a particular row (5 shrunk, as demonstrated in the
fabricated example shown in figure 1.

* Band Diagram Analysis: In figure 2, the projected band diagram is plotted for various shrunken radiisizes, focusing specifically
an Th-like modes.
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Today we will go into more details of it. So, | hope you remember from the previous lecture where
we saw in the video tutorial that you know when you create a line defect that can change the band
diagram right.

So, it basically introduces a guided mode in the band and all the frequencies in the guided mode can
propagate along the defect thereby creating a waveguide. So, however, the localization of
waveguide modes relies on both the bandgap within the plane of the periodicity and also on index
guiding in the vertical dimension and this will restrict the kind of modes that you know we can guide
through this kind of waveguide. So, in our discussion of 2 and 3 dimensional crystals we have formed
a waveguide by removing a you know row of rods as we have seen in the previous lecture and in



this case right in this particular slide we will show you that you know we will remove the row
gradually okay and that is by shrinking the radius of the rods okay and we will show you how the
defect mode basically forms so look here on the slide on the first figure that is figure one it gives
you the views of reduced radius web guide fabricated in a rod slab so you can see the You know, this
one, this particular whip guide is formed by having rods of reduced radius and these are the
material, okay. And you can see they are also having bit of tapered shape for all of the nanorods,
okay.

They are not proper cylinders. So, the structure was basically designed to couple the reduce radius
waveguide via adiabatic taper to dielectric strip waveguides at the ends. So, both ends you can see
there is dielectric strip waveguides and there is adiabatic taper that actually helps you couple this
waveguide to those dielectric strips. And now this is the fabricated sample and the bar here the
white bar shows the dimension that is 2 microns for this much length of the sample. Now look at
figure 2, figure 2 basically is showing in the projected band diagram of Tm like that is Z odd states in
a linear waveguide in the rod slab of the figure that is shown here you can see and that is formed by
reducing the radius of the row at the centre.

Linear defects in slabs

* Meode Localization and Band Gap:
The extended modes of the crystal are highlighted in the dark blue region of
the diagram.

o

The band gap is represented in light blue, where a single guided band for each
radius choice is obsenved.
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The TM-like waveguide mode, localized to the line defect within the band gap,
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is depicted in figure 3. Wi vaci i afks
L
* Coupling Characteristics: i -
The localized mode cannot couple to the extended modes within the crystal - ‘
due to its placement within the band gap.
-
-
It also cannat couple to extended modes in the air because its frequency is 'L" L -
below the light line, ' B - ——r
Figure 3: E, field crods sections i reduced-radius line-

defect wavaguide from figure 2, for & defect rod radius
ol r=0. 14a o1 a waee wectar kaf2n =0.42.
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So, the inset shows you that this particular row has a lower or smaller radius than the other rods and
here also you can see the plot ok. So this is a band diagram. So you actually have frequency and
wave factor and it is for the finite height or thickness. So you have got this you know light cone at a
slope of 1 okay. So it is 0.5 here 0.5 you can see this is actually this line tells you the boundary of the
light cone okay and the blue dark blue shaded region which are below the light line shows you the
extended modes which are supported by the crystal and the rods in the bulk crystal they have radius
of 0.2a. And what we have done here we have seen that when so usually this is the band gap ok. So,
between these two dark blue regions you will have band gap if the entire crystal is made of 0.2 A
radius rods, but now if you introduce a defect by changing the centre row to different different row
radius okay. So, you will see that localized waveguide bands will be introduced within the gap. So,
they will actually allow propagation okay for certain frequencies. So, that is how you can see that
when the rod radius is usually r equals 0.2a, from that you slightly reduce, you can get a mode over



here, you further reduce, you get here, you further reduce, you get here and so on.

So, slowly what will happen, you will get the modes over here, right. So, those are the extended
modes in air, fine. So this is what is shown. So the radius of all the rods in a particular row is shrunk
and this is the band diagram for different shrunken radii sizes. So, let us look into the mode
localization and the bandgap in further details.

So, as | mentioned the extended modes of the crystals are basically highlighted in this dark blue
region and the bandgap is shown in this light blue region where you can see this kind of single
guided band for each of those reduced radius that we can choose. So, either you choose r equals 1a
or r equals 0.12a, you will get one single guided band. So, this modes are actually showing TM like
profile. So, you can actually see that from the field distribution.

So, this is the Field distribution, so you can see look into this slab from the top or the side view,
okay. And here we have considered the defect rod radius to be 0.143, that is we are basically talking
about this one, okay. And we consider the wave vector of 0.42, that is we are basically at this
particular point where the cursor is currently placed.
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* Propagation Properties:

Despite the band gap being incomplete, the waveguide mode persists, supported by the conservation of k, (wavevector
component along the propagation direction).

This waveguide mode will propagate indefinitely in a perfectly periodic system,
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So, at this point this is what is the field distribution looking like. Now the localized mode that you see
cannot couple to the extended modes within the crystal due to its placement within the bandgap. So
it also cannot couple to the extended modes in air, this one, because the frequency is below the light
line. So it cannot actually couple to other modes or the air modes and cannot leak out. So despite
the bandgap being incomplete, the waveguide mode will exist and it is supported by the
conservation of kx that is the wave vector along the propagation direction.
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= Presence of Light Cone: The band diagram of a photonic crystal slab, unlike that of
a truly two-dimensional photonic crystal, features a light cone, which adds a
significant constrainton the behavior and existence of wavegulde modes.

* Limitation on Red Remowval: Completely removing a row aof rods is not feasible if
ane intends to support a waveguide mode, as the necessary conditions for mode
guidance and confinement are not met.
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* Reduction of Rod Radius and Mode Behavior:
MAs depicted in figure, reducing the rod radius influences the waveguide mode’s T T R TR
prowimity to the light cone. el 5y

When the rod radius is reduced to 0.10a, the mode approaches and eventually
hugs the light cone at the top of the gap, indicating a critical limit for mode
confinement.
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So, here you can see x is the direction of propagation. and this waveguide mode will propagate in
this waveguide mode will propagate indefinitely in a perfectly periodic system. So, what does this
presence of light cone tell you? So, the band diagram in of this photonic crystal slab okay will have
this light cone right. So, this is not present in a perfectly two dimensional photonic crystal right. So,
when there is this finite height or thickness of the photonic crystal slab, you will have this light cone
and this adds a significant constraint on the behavior and the existence of the waveguide modes.

So, what are the limitations of rod removal? As you can see, if you completely remove the rod that
is not going to be possible because in that case you will not be able to support a waveguide mode.
So, you need to have a mode within the band gap to support propagation of light through it, but if
you make it further you know smaller it will actually go into this region. So, here you can see that the
mode radius basically influences the waveguide modes proximity and it you keep on reducing and it
is getting closer and closer to the light cone. So when the rod radius is 0.1a, the mode already
approaches and eventually hugs the light cone at the top of the gap.
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* Guidance and Confinement Challenges:

Further reducing the rod radius beyvond 0,10a causes the mode to lose its
guided characteristics, effectively ceasing to be a waveguide mode.

Attempting to guide light primarily through the air gaps between the rods
fails due to insufficient vertical confinement from index guiding.

L Te T R T

G B Q3 BB BB R4 BA7 Gal BEe JaE A
W eoior kL anle

,ﬁr T Cuwnbaii I f,:}N PTEL m Senrem: L O dnannogouies stal, Fhatimes Crpstale Msiding the Fow o Light”, Princetns Univ. Press, J008.

You see here indicating this is the critical limit for the mode confinement. So what are the challenges
in guidance and confinement? So further reducing the rod radius below 0.1a would cause the mode
to lose its guided characteristics, especially it will not be a waveguide mode anymore. Attempting to
guide light primarily within the air gaps okay between the rods also fail due to you know there will
be no vertical confinement due to index guiding. So, both possibilities are not there and you will not
be able to guide light through the gap between the air gap between the rods and you cannot make

the rod size very small or completely get a missing row that will not work.
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= Common Features: All three structures share the same
two-dimensional periodicity and feature a triangular [attice

of rods, with one row removed, __..-""-f’_'_ e

They all have identical cross-sections at z=0
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Fiirst Structure: Thisis a two-dimensional photonicerystal
where the rods extend infinitely in the vertical direction

and exhibit a complete TM band gap. Figure 4: Projected band diagrama for theeo wayeguides, all of whose cross

sesctions are an identical trisngulas Isttice {period =a) of destecre |e=12) rods
- L in @ir with a missing row of rods, The guided band & shownas a red line, and
Second Structure: Thisis a three-dimensianal ph otonic aptended mades of the crystal are skhownin shaded dark blue, with the band

crystal, also with a complete band gap, [detailed in the gapis] shaded yellow
lecture 17). A row of rods missing fram a single layer of
the 30 photonicstructure.

Third Structure:; This is 2 photonic-crystal slab.
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So, to draw out the comparison further we will consider three different structures that share the
same kind of periodicity in two dimension, but they basically differ in the third or the vertical



dimension. So, look at the figure here, here you know all the structures are basically two dimension,
at you know Z equals O cross section, they look identical. So, this structure is basically this one, you
are just considering one plane. So, that is why it is a part of 3D photonic crystal. And this is a
photonic crystal slab.

So, these are basically rods of finite height. What is this? This is basically a two dimensional photonic
crystal, that means the rod would extend infinitely in the vertical dimension and that is why it is able
to support a complete TM band gap. Now if you look into the second structure as | mentioned this is
a three-dimensional photonic crystal. It has got a complete band gap, but as you can see the gap is
slightly reduced as compared to this one. And here what we are considering we are basically looking
at you know one of the row of rod is basically missing from the single layer of this you know 3D
photonic crystal structure okay. And the third one we have been discussing a lot about this photon
crystal slab. This is basically a finite height two-dimensional periodic photonic crystal. So, what we
understand here? So, all these band diagrams are plotted for a dielectric constant of epsilon equals
12. So, that is the permittivity of the rod material in air and all of them have got one row missing.
Because of this row missing thing, you are basically having a, in this case, in the two-dimensional
case, you are having this guided band which is shown as the red line.
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* Projected Band Diagrams: In figure 4, the projected band ) Pheshestic: Crial 30 Fhotenk: Crykal L sk s
diagrams for these three structures are displayed,
highlighting differences in mode propagation and
confinement,
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*  Alr-Guided Modes: The air-guided modes in the first two
structures (two-dimensional and three-dimensional
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photaniccrystals) are positioned almost entirely above the
lighit line of the photonic-crystal slab,

Figure 4: Projected band dagrams for threo waveguides, sl of whose aross

sseliong are an idemical triangulas lsmice {pérsad =a) ol destecire |e=12) rods
This indicatesdifferent confinement and propagation in air with a missing row of rods, The guided band is shownas a red line, and
characteristics com pared to the slab structure. axtended mades of the crystal are shownin shaded dark Blue, with the band

gapis] shaded yellow
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And the extended modes of the crystal are shaded in dark blue as also you can see. Here also you
can see the same thing, just that the band gap got narrowed. this is the guided band and the yellow
color shows you the band gap. So, things are not as exciting for photon crystal slab with a missing
row as we discussed previously. So, here | will come to this later that only one particular point shows
you some hope in feasibility.

So, this is what has been displayed in this particular figure. So, the project, these are the band
diagram of these three particular cases, 2D photonic crystal, 3D photonic crystal and photonic crystal
slabs. And this clearly shows you the difference in mode propagation and confinement for the three
cases. What about the air-guided modes? The air-guided mode in the first two structures that is this
two-dimensional and three-dimensional photon crystals are positioned almost entirely above the



light line of the photonic crystal slab.

So, this is the light line. So, the air guided modes are all on top of that in the case of you know 2D
and 3D photonic crystal slab. So, this basically indicates different confinement and propagation
characteristics of this two crystal as compared to the slab structure. So, one thing we possibly

missed. So, it was basically that here you can see that there is a red dot shown and this is basically
showing a very weakly guided state right at the top of the bandgap edge and this is the only possible
guided mode in this particular case because you have completely removed the row of rods.

Linear defects in slabs

| Removed holes
= Defect Creation: The defect in the photonic structure was created by altering the

average dielectric constant along a specific line, impacting the guided band's
pasition within the band gap.

*  Manipulating Dielectric Constant:
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Decrease in Dielectric Constant: Reducing the dielectric constant pushed a "l e e
guided band upward from the lower edge of the band gap. B ncle-guda monuts

T ] T ot T
Increase in Dielectric Constant: Conversely, increasing the dielectric constant b b i

pulls bands downward from the upper edge of the band gap. Figure §; Projected band diagram of TE-like (¢
egen] states fof & “W1" defectin the hole siab,
formed by a missing row of nearest-neighbor

Hlustrative Example: This dynamic is demonstrated in figure 5, which shows the hies whong the x direction, Dark-red shaded

prajected band diagram for 2 hole slab where a row of holes has been filled in, regions indicate entendad TE-like madas of the
effectively increasing the average dielectric constant. Eryein!
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Now we can discuss about the you know opposite structure that is like if you have a slab of holes,
how removing holes will affect the pan gap.

So, that is also possible that is also type of defect. So, the defect in the photonic structure was
created by altering the average dielectric constant along a specific line impacting the guided bands
position within the band gap. So, what you can do you can either fill a complete row of holes with
the same material. So, that can be also called as a row missing row of holes or you can change the
size of the holes that will also bring you know changes or that will also be considered as defects. So,
these are the methods of decreasing dielectric constants or say manipulating dielectric constant.

when you say manipulating dielectric constant, you can decrease the dielectric constant and that is
possible and reducing the dielectric constant would push a guided band upward from the lower
edge of the band gap. So, what happens in the other case, if you increase the dielectric constant, So,
opposite thing will happen. So, increasing the dielectric constant pulls down you know the bands
from the upper edge of the band gap. And these things will be shown here in this particular figure
which shows the projected band diagram for a hole slab where a row of holes have been filled. So,
that is basically increasing the average dielectric constant.

So, what do you see? This is the projected band diagram for TE-like states. So, they are also called Z-



even states we discussed earlier. For a W1 defect in the whole slab. So, what is this W1 defect? Now,
it is a general form you can think of Wn defect which will involve removal of n rows.

So, here only one row is removed. So, you call this kind of defect as W1. So, how it happened you
basically you created a missing row. along the x direction. So, this is x direction. So, here you can see
that the dark shaded regions indicate the extended T like modes of the crystal.

And you can also see that there is a guided mode which are introduced in the, so there are basically
two guided modes which are introduced in the gap. So, they are shown as these red bands in this
pink shaded region and below all of the extended modes of the crystal. So, which are basically the
green bands below the red shaded regions and the guided modes are classified as Y even or you can
say solid lines and Y odd which are basically the dashed lines that you can see over here. So, these
are the modes possible and y odd and y even these are basically decided based on y equals O mirror
symmetry that also we have discussed briefly earlier. This is a practical application of that kind of
system of holes missing.

Linear defects in slabs

Removed holes

* Practical Application: A fabricated example of this type of waveguide,
specifically a suspended membrane, is displayed in figure 6,

This shows how the theoretical concepts are applied in actual phatonic
device structures,

Figura 62 SEM Image of a wavegualos formed by 8 missing roe
ol hodes in a suspended-membrane hobe slab
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So, a fabricated example of this kind of waveguide is shown here. So, this is a suspended membrane
means there is no substrate below its air and this shows how you know theoretical concepts are
applied in actual photonic device structures. What are the characteristics of the guided modes in this
case? So, the waveguide supports a series of guided modes that are confined horizontally by the
bandgap and they are confined vertically by index guiding due to difference in the refractive index
between the waveguide material and surrounding air.
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Removed holes
* Guided Modes Characteristics: The waveguide supports a series of guided modes that are confined:

Horizontally: By the band gap.
Vertically: By index gulding due to the difference In the refractive index between the wavegulde material and the

surraunding air.
= Second Category of Guided Modes:
Cause: These additional gulded modes arise due to the waveguide having a higher average dislectric constant compared

to the surrounding air.
Guiding Mechanism: These modes are index-guided in all directions and lie below the extended modes of the crystal

ﬁ IUT Cawahaii I (,:}N PTEL m St L B Mannogoules stal, "Phetnnies Crpitale Makding the Flow o Light”, Peincstos Univ. Preas, D06

The second category of guided modes are also there they arise due to waveguide having a higher
average dielectric constant as compared to the surrounding air. So, here the guiding mechanism you
can guess it is basically they are all index guided in all the directions and they lie below the extended

modes of the crystal.
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Removed holes | At e "
* Mode Type and Visualization: - i
Mode Type: All of the gulded modes are TE-like and

fundamental in the z-direction, meaning they havena |

nodes along this axis.

Visualization: These modes can be visualized by plotting
the magnetic field component H, in the z=0 plane, which ° e s
helps illustrate their spatial field distribution.
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= [Field Patterns and Identification: Figure 7: H, field crass saction for the rni.".'i.--'lg hole wayeguida, with

Dispia'f: Figure 7 displ ays the field patterns for the five [a=f) carrespanding ta the labelled points of figure 5. Dislectric
A miateral is shawn as translicent -(pl':clw
Buided modes,

Reference: These modes are identified with lettersin
figure 5, linking their spatial characteristics with their
reprasentation im the band diagram.
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So, what are the different mode types? So, all of the guided modes are TE like and fundamental in
the z direction, meaning they have no nodes along this axis. So, you can visualize this by plotting the
magnetic field component H z in the z equals 0 plane which will help to illustrate their spatial field
distribution. So, figure 7 here displays this az field cross section for the 5 guided modes. So, which
are also numbered over here. So, this modes are basically identified with this letters that you see
here and their spatial characteristics are shown here and you can map them with their position in



the band diagram.

So, what do you see carefully? If you look then the left side is telling you about y odd on the top and
you have y at the bottom and this is the y axis, this is the coordinate system that has been marked
over here. So, these are the index guided modes at kx equals pi by a which have lower frequencies
than any extended mode of the crystal or air at that kx. So, and because H is a pseudo vector, the
even modes look odd and vice versa. In the middle you can see they correspond to C and D points.

So, you have C here, you have D here. So, they all corresponds to those things. So, they are both in
the band gap. So, these points in the same wired gap guided bands and they are taken at kx equals
for the top one it is 0.3 times 2 pi by a and the bottom one is taken as kx equals pi by a and the
drastic field change that you can see corresponds to an anti-crossing and that is why you see this
kind of difference.

On the right, you basically correspond to E and F. So, you can see this one is E, this one is F. So, they
are basically showing you the guided bands. So, these are two higher order Y even guided bands. So,
a pseudo vector also known as an axial vector would behave differently under coordinate system
transformations compared to a regular vector or a polar vector. So, under reflection pseudo vectors
basically reverse directions which contrast with the scalar fields or polar vectors that would retain
their orientations under the same transformation.

Linear defects in slabs

* A pseudovector (also known as an axial vector) behaves differently under coordinate system transformations compared to a
regular vector (palar vector).

* Underreflection, pseudovectorsreverse direction, which contrasts with scalar fields or polarvectors that retain their
orientatiens under the same transformation, Comman examples of pseudovectors include magnetic fields and angular
momentum.

* Implications in Photonic Crystals
In photonic crystals, especially those with line defects or other forms of structural asymmetry, the behaviorof
electromagnetic modes (both electric E and magnetic H fields) can be categorized based on their symmetry properties.

The symmetry classifications are often referred to as even or odd, based on how the field patterns reflect across a symmetry
plane [e.g., v=0)

1.Even Modes: Typically, for scalar fields, an even mode weuld mean that the field pattern is symmetric about tha plane of
reflection — if you flip it across the plane, it looks the same.

1.0dd Modes: An odd mode would mean the field pattern is antisymmetric — flipping it across the plane would result in the
field pattern locking like its negative (it inverts).
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So, common examples of pseudo vectors would include like magnetic fields and angular momentum
and that is why we have mentioned it here that because you know H magnetic field is a pseudo
vector, the even modes will look odd and vice versa, okay, because we are talking about y equals 0
mirror symmetry, okay. So, what are the implications in photonic crystals? In photonic crystals,
especially those with line defects or other forms of structural asymmetry, the behavior of the
electromagnetic modes, both electric and magnetic fields can be categorized based on their



symmetric properties. The symmetric classifications are often referred to as odd or even based on
how the field patterns reflect across the symmetric plane. So you can consider y equals 0 plane. So
even modes, so typically for scalar fields and even mode would mean that the field pattern is
symmetric about the plane of reflection.

So now if you flip it across the plane, it will look the same. and odd modes would say that you know
the field pattern is asymmetric. So, flipping it across the plane would result in a field pattern that
would looks like is inverted version or negative version. So, we understood that you know magnetic
field vector is basically magnetic field is a pseudo vector and its symmetric properties under
reflection are basically counterintuitive. So, the even modes would appear odd upon reflection and
even mode of the magnetic field across a symmetry plane.

Linear defects in slabs

* Magnetic Field as a Pseudovector

Since the magnetic field H is a pseudowvector, its symmetny properties under reflection are counterintuitive:

Even Modes Appear Odd: When reflecting an even made of the magnetic field across a symmetry plane, the direction of
the magnetic field reverses (because It's a pseudovector), making an even mode appear as If it were odd.

Odd Modes Appear Even: Conversely, an odd mode will appear to malntaln symmetry under reflection, akin to an even
mode, because the inversion inherent in the pseudovector nature of H counteracts the expected inversion from the mode's
odd symmetry.
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We will do this again. So, even modes would appear odd. When reflecting an even mode of the
magnetic field across a symmetry plane, the direction of the magnetic field reverses because it is a
pseudo vector and that is why it will make an even mode appear like as if it were odd and the odd
modes would appear even. So, conversely an odd mode will appear to maintain symmetry under
reflection similar to an even mode because the inversion inherent to the pseudo vector nature of
magnetic field okay would counteract the expected inversion from the modes odd symmetry.
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* Symmetry and Mode Classification: - - .:
The system exhibits invariance under reflections in the y=0 plane, = E . aw
allowing for classification of modes as either odd or even with —_— — By -»
respect to this reflection, b =; - (- H )

- e L3 4 =
* Fundamental Mode Characteristics: §= : -: H :.
=' ] - H >
r - B>
The fundamental mode is classified as y-odd. !-— | - - | -l
[T — —

* Excitation Preference; Y-odd modes are more readily excited by a H

planewave input beam, thus receiving more focus in analyses. Figure 7z H, field cross sectian for the missing-hole saveguide, with
|1} correspanding 1o the labelled points of figure 5. Deslectric
matarial is showm as transhicent yeliow,
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So, with that you can further look into this and understand that the system exhibits invariance under
reflections in the y equals 0 plane. So, it is a this kind of a plane across this So, you can now see that
the modes can be classified with respect to odd or even based on the reflections. So, the
fundamental mode that you see here A is basically Y odd mode though it looks appears even.

Linear defects in slabs
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Figure () shows the field pattern at k,=0.5n/a, noting an additlonal
pairof nodes in the y-direction.
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And why odd modes are more readily excited by plane wave input beam, thus they receive more
focus in analysis. So, if you try to evaluate the field profile of y odd modes. So, the field profiles of
the second wired band which is located in the band gap, it will show, so it is the B1, this. So, it will
show notable changes as the wave vector varies from the light cone to the brilliant zone edge. So, as
| mentioned the figure b, so this one displays the field pattern at kx equals 0.3 pi by a. So, you can
understand where it will stand. So, this axis is basically kx a by 2 pi. So, you can actually calculate



that. So, kx A, so A will cancel it out by 2 pi.

So, you are basically at 1.15. So, figure C here, it shows the field pattern for kx equals 0.5 pi by A,
noting an additional pair of nodes in the y direction. So, what are the anticrossing effect? This
significant change in the field pattern arises due to an anticrossing event where the two bands are
expected to intersect instead couple and repel each other. So, that is the anticrossing effect. So, they
would alter the trajectories unless a you know specific symmetry prevents this interaction.
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Visualizationin Figure 8 [left side): Initially, consider the y-odd bands for a nonperiodic waveguide,

Mode Characteristics:
The index-guided mode (depicted in green} is folded back at the "artificially" imposed edge of the Brillouin zone.
A higher-order y-mode [depicted in red) is located at a higher frequency and is similarly folded back.
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So, we will understand this better. So, this we have already seen. Now, here is a case where you
consider no interaction. So, that is the initial condition. You consider non-periodic waveguide. So,



this is the schematic of anticrossing that occurs when periodicity is added.

So, here it is no interaction because it is not periodic. So, you just consider the y odd bands for a
non-periodic waveguide and it looks like this. So, here the index guided mode is depicted in green is
folded back at the artificially imposed edge of the Brillouin zone here. and the higher order Y mode
which is depicted in red is located at a higher frequency and it is also similarly folded back. Now if
you introduce this is a non periodic waveguide ok. Now if you introduce periodicity in that
waveguide that is so this figure on the right this basically shows that case when the periodicity is
introduced in the slab.
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* Introduction of Periodicity [Periodic Waveguide):
Visualization In Figure 8 [right side): When periadicity in the slab is introduced, band gaps emerge, and the bands begin to
repel each other.

interaction Points:
This repulslon aceurs not anly atthe edge of the Brillouln 2one but also at polnts where the red and green bands intersect,
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So, as soon as periodicity is there band gap will emerge and the bands will start to repel each other
and this is what is shown here. So, what are the interaction points? So, this repulsion occurs not only
at the edge of the brilliant zone, but also at points where the bands basically intersect. So, where
the red and the green bands are intersecting. So, in terms of you know the wave vector kx you will
see evolution of the field patterns with kx you can see a continuous transformation.
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Evolution of Field Patterns with k:
Continuous Transformation:
Az k increases along the second band, the field pattern transitionscontinuously from the red mode {figure (b) of field plot]
to the green mode [figure (c) of field plot].
Phenomenon Utilization:
This behkaviarcan be leveraged to produce unusual dispersion effects, Including ultraflat quartic band edges and zero-
dispersion inflection points.
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So, x kx increases along the second band ok. The field pattern basically So, second band is this one.
So, if you see the field pattern basically transitions from continuously from the red mode. So, you
can also look here in the figure B to the green mode which is basically figure C of the field plot. So,
that is where from the red mode to green mode it is transitioning. So, these are now this behavior
can be leveraged to produce unusual dispersion effect including the ultra-flat quadratic sorry,
quatric ultra-flat quartic band edges and zero dispersion inflection points.

what are these ultra-flat quartic band edges? So, ultra-flat would refer to band edges where the
curvature of the band that means the second derivative with respect to the wave vector k would
approach 0 over a relatively wide range of k and this would result in very low group velocities for
photons or electrons. And then what is quartic band? So, the term quartic implies the band edge
follows a fourth degree polynomial dependence near the edge. So, quartic bandages are basically
categorized by dispersion relation that looks like this. So, E k can be written as E naught plus beta k
minus k naught whole to the power 4. So, here E naught is basically the energy at the band edge, k
naught is the wave vector at the band edge and beta is a constant, ok.
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Ultraflat Quartic Band Edges

1. Definition: "Wtraflat” refers to band edges where the curvature of the band [second derivative with respect te wavevector k |
approaches zero over a relatively wide range of k. This results in very low group velocities for photens or electrons.

2, Quartic Band: The term "quartic” implies that the band edge follows a fourth-degree polynomial dependence near the edge.

3, Quartic band edges are characterized by a dispersion refation of the form E(k) = E; + Bk — ko)*, where E; |s the energy
at the band edge, k, is the wavevector at the band edge, and ff is a constant.

4. Significance: Ultraflat bands are particularly interesting for enhancing light-matter interactions because photons in these
bands travel slowly, increasing the Interaction time with the medium,

5. This can enhance varicus nonlinear optical effects, increase the efficiency of light emission processes, or improve the
sensitivity of sensors,
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So, you can see the you know fourth order polynomial dependence. And what is the significance?
This kind of ultra flat bands are particularly interesting for enhancing light matter interaction
because photons in these bands would travel slowly. So, that would interact that would increase the
interaction time with the medium. So, this can also enhance various types of non-linear effects
increasing the efficiency of light emission processes or it could improve the sensitivity of different
sensors.
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Zero-Dispersion Inflection Paints

1. Definition: A rero-dispersion inflection point occurs where the dispersion curve's second derivative with respect to k changes
sign {from concave to convex or vice versa), and the first derivative [group velocity) is zero. This point marks a transitionin
the curvature of the band structure,

dd AE
2. Mathematical Expression: At a zero-dispersion inflection point, ﬂ—: = Dand ﬂ—: = 0 at some value of k.

3. Implications: At such points, the group velocity dispersion (GVD) is zera, which means that the spread of wave packet
velocities (group velocities) is minimal,

4, This praperty i crucial in applications like pulse propagation in optical fibers where minimal pulse broadeningis desired,
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The second one is zero dispersion inflection points. So, when you say zero dispersion inflection point
that occurs where the dispersion curves second derivative with respect to k changes sign.

So, it changes sign means from concave it becomes convex or vice versa and the first derivative



which represents group velocity becomes 0. So, this point marks a transition in the curvature of the
Venn diagram. So, mathematically you can represent this as you know at the 0 deflection 0
dispersion inflection point, dou square e by dou k square equals 0 or you can say d square e by d k
square equals 0 and d e by d k equals 0 as well at some point of inflection. or at some value of k. So,
what is the significance or application? So, at such points the group velocity dispersion is 0.

So, GVD is 0 and that means the spread of web packet velocity is minimal. And this property is very
important for applications like pulse propagation within optical fibers where you know minimal
pulse broadening is basically desired.
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 substrates, dispersion, and loss |
* Index Contrast and Reflection Symmetry:

Original Configuration: Photonic-crystal slabs are typically suspended in air, which maximizes the index contrast between
the slab and the surrounding air and preserves =0 reflection symmetry,

= Effects of Placing on a Substrate:

Symmetry Break: Introducing a substrate beneath the slab breaks the z=0 reflection symmetry,

Mode Coupling: This asymmetry causes TE-like and Th-like modes to couple, disrupting any band gaps that are exclusive to
either moda,

Leakage of Modes: Waveguide modes, previously confined by the gap when the slab was floating in air, become leaky when
the slab is placed on a substrate,
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Now we will look into the effects of substrates and into dispersion and discuss about losses. So,
index contrast and reflection symmetry. So, if you remember that the original configuration of the
Photonic crystal slabs were assumed to be suspended in air because it maximizes the index contrast
between the slab and the surrounding medium.

And it also preserves the z equal to 0 reflection symmetry. But that is not possible because you need
to place a substrate below your thing. And as soon as you place the substrate, the symmetry breaks.
So, you no longer have your z equal to O reflection symmetry. And this asymmetry also causes TE like
and TM like modes to couple.

So, it disrupts any band gap which were actually exclusive to either of the modes. So, that way you
know the waveguide modes which were previously confined by the gap when the slab was basically
floating in air, those gaps becomes leaky when the slab will be placed on the substrate. So, that
brings some application concerns something like the leakage rate, the issue of leakage is significant
only if the rate at which the energy leaks from the modes is unacceptable for a particular
application.
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*  Application Concerns:

Leakage Rate: The issue of [eakage is significant only if the rate at which energy leaks from the modes is unacceptable for a
specific application.

Empirical Evidence: Numerous experiments have demonstrated that effective waveguides can still be fabricated on oxide
substrates, which have a relative permittivity (€} of approximataly 2.

= Mitigation Strategies:

Etching Patterns: Reducing polarization mixing by etching the periodic pattern into both the slab and the substrate can help
maintain effective guidance of the modes,

Restoring Symmetry: Depositing a “superstrate” material on top of the slab that has similar properties to the substrate can
help restore some degree of the lost 2 symmetry.
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So, eventually every mode will disappear, but then the rate at which it disappears or leaks out the
energy loses that is also important. There are numerous experiments which have demonstrated that
effective waveguides can still be fabricated on oxide substrate.

So, that have relatively low permittivity which is close to 2. So, here we will have permittivity of 1
and you have this material like oxides, oxide based substrate where the permittivity can be kept as
low as possible. So, what are the other mitigation strategies? So etching patterns, so reducing
polarization mixing is possible by etching the periodic pattern into both the slab and the substrate
and that can help, you know, maintain effective guidance of the modes. So do not take a solid
substrate rather try to drill holes at the places where you already have holes on your slab. So that
will try to, you know, help guidance of the modes and despite a super straight material, sorry and
how do you restore symmetry? you can deposit a super straight material that means you put a
material on top of your slab that has got similar properties as your substrate and that will help you
restore some degree of the lost Z symmetry because now the top and the bottom of the slab will
look identical okay.
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* Location of Guided Modes: In symmetric photonicstructures, guided modes
within the band gap typlcally lie near the edge of the Brillouin zone.

* Behavior Near the Brillouin Zone Edge:

Fre-guancy. se0S2no

Band Flattening: As the modes approach the edge of the Brillouin zone, the
bands tend to flatten.
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Group Velocity Reduction: The group velocity (v, | of these modes approaches
2Bro.
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about the location of the guided modes. So in symmetric photonic structures, guided modes within
the bandgap typically lie near the edge of the Brillouin zone. And what happens near the brilliant
zone you can see band flattening that means as the modes approach the you know here you can see
as the modes approach the edge of the brilliant zone the bands tend to flatten and that means the
group velocity of this modes approaches 0 okay
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*  Group-Velocity Dispersion:

: dw
Definition: Group-velocity dispersian (-~ ?:E} Iindicatesthe rate at which pulse

spreads temporally in the waveguide.

Fre-uancy. #e0/2nT

Behavior at Zone Edge: This dispersion parameter diverges at the edge of the
Brillouin zone, leading to significant pulse spreading.
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Figures Referenced: A= depicted in figures, the guided waveguide modes exhibit
both low group velocity and strong dispersion across most of their operational
bandwidth.
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what about group velocity dispersion that is basically calculated as dVg over d omega that indicates
the rate at which the pulse will spread temporarily in the waveguide and when you think of this
region, okay. the behavior at zone edge. So, this dispersion parameter diverges at the edge of the
brilliant zone and that would basically lead to significant pulse spreading.



you can observe from the band diagrams that you know as shown in the figures the guided
waveguide modes exhibit both low group velocity and strong dispersion across most of the
operational bandwidth fine. So, what are the utilization of this low group velocity? As we discussed
that when you have low group velocity it is also known as slow light and they can be employed to
enhance optical non-linearities which are very important for certain applications. So, you can also
enhance the light matter interaction in sensors or in other materials non-linear materials using this
concept. so alternate design requirements would be you know you it is in some applications it is
advantageous to have a broad bandwidth with low dispersion paired with more typical with a more
typical group velocity so this can be achieved by doing some modification to the waveguide design.
Some of these design strategies are you know surrounding a dielectric strip waveguide with a
photonic crystal slab will allow you to adjust the dispersion characteristics by you know avoiding
terminations with surface streets.
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* Utilization of Low Group Velocity:

Enhancement of Optical Effects: Low group velodity, also known as "slow light," can be employed to enhance optical
nonlinearities, making it desirable for certain applications,

s Alternative Design Reguirements:

Broad Bandwidth and Low Dispersion: In some applications, |t s advantageousto have a broad bandwidth with low
dispersion paired with a more typical group velocity,
Design Modifications: This can be achieved by modifying the waveguide design.

* Specific Design Strategy:

Integration with Photonic-Crystal Slab: Surrcunding a dielectric strip waveguidewith a photonic-crystal siab can adjust
dispersion characteristics while avelding terminations with surface states.

Waveguide Mode Characteristics: The resulting waveguide mode in this structure closely resembles that of an solated strip,
vet it effectively functions as a conduit for reaching point defects and other devices embedded within the photonic crystal.
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So, integrating with photonic crystal slabs okay it helps. And what about the waveguide
characteristics? So, the resulting waveguide modes in this particular structure will closely resemble
that of an isolated strip, yet it will effectively function as a conduct for reaching the point defects
and other devices embedded within the photonic crystal.
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* Inherent Losses in Real Systems:

Imperfections: Even though waveguide modes in a perfect and symmetric slab are thecretically lossless, practical
Implementationsinvariably introduce some degree of loss.

* Spurces of Loss:

Substrate Losses: As previously discussed, placing the slab on a substrate can break symmetry and introduce couplinglosses
between different modes.

Material Absorption: Inherent properties of the wavegulde material can lead to absorption losses.

Radiative Scattering: Irregularities from the fabrication process can cause scattering losses. These irregularities disrupt the
transiational symmetry of the slab,
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So, now let us focus on the losses. So, there are some inherent losses in real systems. And even
though the waveguide modes in a perfect and symmetric slab are basically theoretically lossless,
practical applications invariably will introduce some degree of loss in them.

And what are the sources of this losses? The first one will be substrate. So as discussed previously,
when you place a slab on a substrate that breaks the symmetry and introduces coupling losses
between different modes. And when there is coupling between different modes, the power or the
energy gets shared. There would be material absorption, so inherent properties of the waveguide
material will lead to absorption losses. There would be radiative scattering coming from the
irregularities from the fabrication process. So, these irregularities will disrupt the translational
symmetry of the slab.
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= Effects of Disorder:

Coupling and Reflections: Disorder allows waveguide mades to couple to states with different wavevector values (k), and
can cause reflections into the reverse-direction waveguide mode at — k.

* Scaling Relation for Losses:

Near v, = 0 Band Edge: There is a specific scaling relation where the loss per unit distance due to disorder scattering into

the reflected mode increases as |l,lrl'u1.

Other Loss Modes: Lozs rates due to other mechanisms like radiation or absorption also increase, but they scale as 1 /e,

ﬂ T Cuwnbii I !';:}N PTEL M Senrem: L O dnannogouies stal, Fhatimes Crpstale Msiding the Fow o Light”, Princetns Univ. Press, J008.

What would be the effect of disorder? coupling and reflections. So, disorder allows waveguide
modes to couple to states with different wave vector values and can cause reflections in the reverse
direction waveguide mode at minus k. And we can also find a scaling relation for losses. So, near Vg
equals 0 band edge, there is a specific scaling relation where the loss per unit distance due to
disorder scattering into the reflected mode increases as 1 by vg square.

And other loss modes would be something like they will basically scale as 1 by vg. So, other when |
say the other ones, the other ones are basically the radiation or the absorption. So, losses because of
radiation and absorption will also increase, but they will scale as 1 by Vg. So, with that we conclude
our discussion on the Leiden defects in slabs.

Point defects in slabs
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* localized Mode Trapping by Point Defects:

Resemblance to Infinite Crystals: A pointdefect in a photonic-crystal
stab traps 2 localized mode similar to the comresponding mode in an
infinite two-dimensional crystal.

Leaky Resonances: Due to the presence of the light cone in the slab,
these localized modes are inherently leaky resonances with intrinsic
vertical radiation losses.

-
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Fligure 8z E, crass sections for resonant “monopole” modeof a
paint defect in the rod slab [distectric material shovwn as
ranshucent gresn|, formed by reducing the dislectnc constant
of the center rod and its fowr nearest neighbors from e=12 to
E=8.
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Now, we will briefly touch upon point defects in slabs. So, you can see here, these are localized

mode trapping by point defects. And a point defect in a photonic crystal slab traps a localized mode

similar to the corresponding mode in a infinite two-dimensional crystal. And due to the presence of

the light cone in the slab, these localized modes are inherently leaky resonances with intrinsic

vertical radiation loss. And you can think of creation of a monopole state in the rod slab. So, by

simply removing a rod from this kind of a structure or in a 2-dimensional crystal or a 3-dimensional

crystal is not very effective due to inadequate vertical confinement. Rather, what you have to do,

you can either reduce the radius or the dielectric constant of the rod and its nearest neighbors and

that could create a desirable monopole state For instance, you can think of reducing the dielectric

constant from epsilon equals 12 to epsilon equals 9 for a particular rod and its four neighbors.
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# Creation of a Monopole State in the Rod Slab:

Ineffective Strategy: Simply removing 2 rod, as might be done in two- .
orf three-dimensional crystals, is ineffective due o inadequate vertical e
confinement, *

Effective Modification: Reducing either the radius or the dielectric i o
censtant of a rod and its nearest neighbors can create a desirable

monapolestate, For instance, reducing the dielectric constantfrom

£=12 to €=9 for a rod and its four nearest neighbors,

Field Pattern: Figure illustrates the field pattern of this defect mode,
characterized as a monopole-pattern TM-like mode,

Radiative Lifetime: The modified defect mode exhibits a radiative
lifetirme with a quality facter Q,=13000
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So, here you can actually see the field pattern for this kind of a defect mode. So, this is that rod and
these are the four neighbors for whom the dielectric constant is changed. And this is the side view,
this is the top view. So, they basically show you a TM like mode. So, this is Z and Y and what we are
plotting is basically EZ and this modified defect mode would exhibit a radiative lifetime with a quality
factor of QR that is around 13000.
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* Influence of Substrate on Mode Lifetime:
Observations from "Quality Factors of Lossy Cavities" [Lecture 20): The

v SEmTel A i L
presence of a substrate significantly impacts the lifetime of resonant - ¢ oSN ok
H Suspended membranse LM
mxdes in a slab. b, el s ==
Lifetime Comparison: Table 1 compares the radiative lifetime Q, of the Solid ¢ = 225 subaimase ] 3

monopole state across various substrate choices,
Tabbaz Inirinsic radiathve lifetmess O for the poing-

defect structure of figura 9 [betow | resting on various
* Substrate Configuration impact: subrstratas: @ € = .25 pillars withthe same cross
Reduced substrate losses are noted when the substrate shares the same section as the rod slaby, and solid e = 2.25.
cross-section as the slab.

Pacing a layer of the substrate material on top of the slab restores z

symmetry, which helps prevent polarization mixing and reduces in-plane - . I .
radiative losses, a8 w .-
.
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In the next lecture, we will come into the discussion of how this large quality factors can be
obtained. So, here we will just show you the influence of substrate on the mode lifetime. So, if you
try to recall something from lecture 20, observations from the quality factors of lossy cavities, you
would recall that the presence of substrate would significantly impact the lifetime of resonant
modes in a particular slab. And the table 1 actually shows this kind of a comparison.



suspended membrane in air. So, they have like 13000, if you have you know epsilon equals 2.25 kind
of pillars you have means you are still having those holes. So, they you slightly it reduces, but if you
have a solid substrate of the same material that were used for making those you know pillars earlier.
So, in that case it significantly drops. So, reduced substrate losses are noted when the substrate
shares the same cross section as the slab. So, you also need to drill those periodic holes in the
substrate or whatever is the you know if it is a rod structure your substrate should also have the
same kind of cross section.

So, simply placing you know a solid substrate will not help. Placing a layer of substrate material on
top of the slab will also help restore the Z symmetry and that would help prevent enough
polarization mixing and would reduce in-plane radiative losses to some extent. So, there are some
trade off here. So, restoring jet symmetry increases the mean dielectric constant. So, enhancing the
local density of the radiative states which can counteract the benefits of you know reduced
polarization mixing.

Point defects in slabs

* Trade-off: Restoring z symmetry increases the mean dielectric constant, enhancing the lecal density of radiative states, which
can counteract the benefits of reduced polarization mixing.

* Strategic Considerations:

Mo Clear Advantage to Symmetrization: The effects of increasing the mean diglectric constant and reducing polarization
mixing nearly counteract each other, providing no compelling reason to symmetrize the system in this scenaria,
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So what is important? So no clear advantage to symmetrization. So when you put something like the
super state, it is actually the benefit is getting counterbalanced. So the effect of increasing the mean
dielectric constant and reducing polarization mixing nearly counteract each other. And that is why
there is no compelling reason to put a super straight and try to make the system symmetric in this
kind of scenario. So, you can actually avoid doing that because that does not bring anything good on
the table.
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So, with that we will stop here. Thank you and we will be going for detailed discussion of engineering
high Q resonant cavities in the next lecture. If you have any query regarding this lecture, you can
drop an email to this email address mentioning MOOC, photonic crystal and the lecture number on

the subject line. Thank you.









