
 

Lec 23: Different types of defects in Photonic Crystal Slabs 

 

 Hello students, welcome to lecture 23 of the online course on photonic crystals, fundamentals and 

applications. Today's lecture we will be discussing about different types of defects in the photonic 

crystal slabs. 

 

So, here is the lecture outline, we will be discussing linear defects in slabs in details and then we will 

just touch upon point defects in this lecture and in the next lecture we will have more discussion 

about point defects. So, we have briefly discussed already we know how point defects look like in a 

photonic crystal and with that you can create waveguides and other kind of devices. 



 

 

Today we will go into more details of it. So, I hope you remember from the previous lecture where 

we saw in the video tutorial that you know when you create a line defect that can change the band 

diagram right. 

 

 So, it basically introduces a guided mode in the band and all the frequencies in the guided mode can 

propagate along the defect thereby creating a waveguide. So, however, the localization of 

waveguide modes relies on both the bandgap within the plane of the periodicity and also on index 

guiding in the vertical dimension  and this will restrict the kind of modes that you know we can guide 

through this kind of waveguide. So, in our discussion of 2 and 3 dimensional crystals we have formed 

a waveguide by removing a you know row of rods as we have seen in the previous lecture  and in 



this case right in this particular slide we will show you that you know we will remove the row 

gradually okay and that is by shrinking the radius of the rods okay and we will show you how the 

defect mode basically forms so look here on the slide on the first figure  that is figure one it gives 

you the views of reduced radius web guide fabricated in a rod slab so you can see the You know, this 

one, this particular whip guide is formed by having rods of reduced radius and these are the 

material, okay. And you can see they are also having bit of tapered shape for all of the nanorods, 

okay. 

 

 They are not proper cylinders. So, the structure was basically designed to couple the reduce radius 

waveguide via adiabatic taper to dielectric strip waveguides at the ends. So, both ends you can see 

there is dielectric strip waveguides and there is adiabatic taper that actually helps you couple this 

waveguide to those dielectric strips. And now this is the fabricated sample and the bar here the 

white bar shows the dimension that is 2 microns for this much length of the sample. Now look at 

figure 2, figure 2 basically is showing in the projected band diagram of Tm like that is Z odd states in 

a linear waveguide in the rod slab of the figure that is shown here you can see and that is formed by 

reducing the radius of the row at the centre. 

 

So, the inset shows you that this particular row has a lower or smaller radius than the other rods and 

here also you can see the plot ok. So this is a band diagram. So you actually have frequency and 

wave factor and it is for the finite height or thickness. So you have got this you know light cone at a 

slope of 1 okay. So it is 0.5 here 0.5 you can see this is actually this line tells you the boundary of the 

light  cone okay  and the blue dark blue shaded region which are below the light line shows you the 

extended modes which are supported by the crystal and the rods in the bulk crystal they have radius 

of 0.2a. And what we have done here we have seen that when so usually this is the band gap ok. So, 

between these two dark blue regions you will have band gap if the entire crystal is made of 0.2 A 

radius rods,  but now if you introduce a defect by changing the centre  row to different different row 

radius okay. So, you will see that localized waveguide bands will be introduced within the gap. So, 

they will actually allow propagation okay for certain frequencies. So, that is how you can see that  

when the rod radius is usually r equals 0.2a, from that you slightly reduce, you can get a mode over 



here,  you further reduce, you get here, you further reduce, you get here and so on. 

 

 So, slowly what will happen, you will get the modes over here, right. So, those are the extended 

modes in air, fine. So this is what is shown. So the radius of all the rods in a particular row is shrunk 

and this is the band diagram for different shrunken radii sizes. So, let us look into the mode 

localization and the bandgap in further details. 

 

 So, as I mentioned the extended modes of the crystals are basically highlighted in this dark blue 

region and the bandgap is shown in this light blue region  where you can see this kind of single 

guided band for each of those reduced radius that we can choose. So, either you choose r equals  1a 

or r equals 0.12a, you will get one single guided band. So, this modes are actually showing TM like 

profile. So, you can actually see that from the field distribution. 

 

 So, this is the  Field distribution, so you can see look into this slab from the top or the side view, 

okay. And here we have considered the defect rod radius to be 0.14a, that is we are basically talking 

about this one, okay. And we consider the wave vector of 0.42, that is we are basically at this 

particular point where the cursor is currently placed. 

 

So, at this point this is what is the field distribution looking like. Now the localized mode that you see 

cannot couple to the extended modes within the crystal due to its placement within the bandgap. So 

it also cannot couple to the extended modes in air, this one, because the frequency is below the light 

line. So it cannot actually couple to other modes or the air modes and cannot leak out. So despite 

the bandgap being incomplete,  the waveguide mode will exist and it is supported by the 

conservation of kx that is the wave vector along the propagation direction. 

 

 

 



 

So, here you can see x is the direction of propagation. and this waveguide mode will propagate in 

this waveguide mode will propagate indefinitely in a perfectly periodic system. So, what does this 

presence of light cone tell you? So, the band diagram in of this photonic crystal slab okay will have 

this light cone right. So, this is not present in a perfectly two dimensional photonic crystal right. So, 

when  there is this finite height or thickness of the photonic crystal slab, you will have this light cone  

and this adds a significant constraint on the behavior and the existence of the waveguide modes. 

 

 So, what are the limitations of rod removal? As you can see, if you completely remove the rod that 

is not going to be possible because in that case you will not be able to support a waveguide mode. 

So, you need to have a mode within the band gap to support propagation of light through it, but if 

you make it further you know smaller it will actually go into this region. So, here you can see that the 

mode radius basically influences the waveguide modes proximity and it you keep on reducing and it 

is getting closer and closer to the light cone. So when the rod radius is 0.1a, the mode already 

approaches and eventually hugs the light cone at the top of the gap. 

 



 

You see here indicating this is the critical limit for the mode confinement. So what are the challenges 

in guidance and confinement? So further reducing the rod radius  below 0.1a would cause the mode 

to lose its guided characteristics, especially it will not be a waveguide mode anymore. Attempting to 

guide light primarily within the air gaps  okay between the rods also fail due to you know there will 

be no vertical confinement due to index guiding. So, both possibilities are not there and you will not 

be able to guide light through the gap between the air gap between the rods  and you cannot make 

the rod size very small or completely get a missing row that will not work. 

 

 

So, to draw out the comparison further we will consider three different structures that share the 

same kind of periodicity in two dimension,  but they basically differ in the third or the vertical 



dimension. So, look at the figure here, here you know all the structures are basically two dimension,  

at you know Z equals 0 cross section, they look identical. So, this structure is basically this one, you 

are just considering one plane. So, that is why it is a part of 3D photonic crystal. And this is a 

photonic crystal slab. 

 

 So, these are basically rods of finite height. What is this? This is basically a two dimensional photonic 

crystal, that means the rod would extend  infinitely in the vertical dimension and that is why it is able 

to support a complete TM band gap. Now if you look into the second structure as I mentioned this is 

a three-dimensional photonic crystal. It has got a complete band gap, but as you can see the gap is 

slightly reduced as compared to this one. And here what we are considering we are basically looking 

at you know one of the row of rod is basically missing from the single layer of this you know 3D 

photonic crystal structure okay. And the third one we have been discussing a lot about this photon 

crystal slab. This is basically a finite height two-dimensional periodic photonic crystal. So, what we 

understand here? So, all these band diagrams are plotted for a dielectric constant of epsilon equals 

12. So, that is the permittivity of the rod material in air and all of them have got one row missing. 

Because of this row missing thing, you are basically having a, in this case, in the two-dimensional 

case, you are having this guided band which is shown as the red line. 

 

And the extended modes of the crystal are shaded in dark blue as also you can see. Here also you 

can see the same thing, just that the band gap got narrowed. this is the guided band and the yellow 

color shows you the band gap. So, things are not as exciting for photon crystal slab with a missing 

row as we discussed previously. So, here I will come to this later that only one particular point shows 

you some hope in feasibility. 

 

 So, this is what has been displayed in this particular figure. So, the project, these are the band 

diagram of these three particular cases, 2D photonic crystal, 3D photonic crystal and photonic crystal 

slabs. And this clearly shows you the difference in mode propagation and confinement for the three 

cases. What about the air-guided modes? The air-guided mode in the first two structures that is this 

two-dimensional and three-dimensional photon crystals are positioned  almost entirely above the 



light line of the photonic crystal slab. 

 

 So, this is the light line. So, the air guided modes are all on top of that in the case of you know 2D 

and 3D photonic crystal slab. So, this basically indicates different confinement and propagation 

characteristics of this two crystal as compared to the slab structure. So, one thing we possibly 

missed. So, it was basically that here you can see that there is a red dot shown and this is basically  

showing a very weakly guided state right at the top of the bandgap edge  and this is the only possible 

guided mode in this particular case because you have completely removed the row of rods. 

 

Now we can discuss about the you know opposite structure that is like if you have a slab of holes, 

how removing holes will affect the pan gap. 

 

 So, that is also possible that is also type of defect. So, the defect in the photonic structure was 

created by altering the average dielectric constant along a specific line impacting the guided bands 

position within the band gap. So, what you can do you can either fill a complete row of holes with 

the same material. So, that can be also called as a row missing row of holes or you can change the 

size of the holes that will also bring you know changes or that will also be considered as defects. So, 

these are the methods of decreasing dielectric constants or say manipulating dielectric constant. 

 

 when you say manipulating dielectric constant, you can decrease the dielectric constant and that is 

possible  and reducing the dielectric constant would push a guided band upward from the lower 

edge of the band gap. So, what happens in the other case, if you increase the dielectric constant,  So, 

opposite thing will happen. So, increasing the dielectric constant pulls down you know the bands 

from the upper edge of the band gap. And these things will be shown here in this particular figure 

which shows the projected band diagram for a hole slab where a row of holes have been filled. So, 

that is basically increasing the average dielectric constant. 

 

 So, what do you see? This is the projected band diagram for TE-like states. So, they are also called Z-



even states we discussed earlier. For a W1 defect in the whole slab. So, what is this W1 defect? Now, 

it is a general form you can think of Wn defect which will involve removal of n rows. 

 

 So, here only one row is removed. So, you call this kind of defect as W1. So, how it happened you 

basically you created a missing row. along the x direction. So, this is x direction. So, here you can see 

that the dark shaded regions indicate the extended T like modes of the crystal. 

 

 And you can also see that there is a guided mode which are introduced in the, so there are basically 

two guided modes which are introduced in the gap. So, they are shown as these red bands in this 

pink shaded region and below all of the extended modes of the crystal. So, which are basically the 

green bands below the red shaded regions and the guided modes are classified as Y even or you can 

say solid lines  and Y odd which are basically  the dashed lines that you can see over here. So, these 

are the modes possible and y odd and y even these are basically decided based on y equals 0 mirror 

symmetry that also we have discussed briefly earlier. This is a practical application of that kind of 

system of holes missing. 

 

So, a fabricated example of this kind of waveguide is shown here. So, this is a suspended membrane 

means there is no substrate below its air and this shows how you know theoretical concepts are 

applied in actual photonic device structures. What are the characteristics of the guided modes in this 

case? So, the waveguide supports a series of guided modes that are confined horizontally by the 

bandgap and they are confined vertically by index guiding  due to difference in the refractive index 

between the waveguide material and surrounding air. 

 

 

 

 



 

The second category of guided modes are also there they arise due to waveguide having a higher 

average dielectric constant as compared to the surrounding air. So, here the guiding mechanism you 

can guess it is basically they are all index guided in all the directions and they lie below the extended 

modes of the crystal. 

 

So, what are the different mode types? So, all of the guided modes are TE like and fundamental in 

the z direction, meaning they have no nodes along this axis. So, you can visualize this by plotting the 

magnetic field component H z in  the z equals 0 plane which will help to illustrate their spatial field 

distribution. So, figure 7 here displays this az field cross section for the 5 guided modes. So, which 

are also numbered over here. So, this modes are basically identified with this letters that you see 

here and their spatial  characteristics are shown here and you can map them with their position in 



the band diagram. 

 

 So, what do you see carefully? If you look then the left side is telling you about y odd on the top and 

you have y  at the bottom and this is the y axis, this is the coordinate system that has been marked 

over here. So, these are the index guided modes at kx equals pi by a which have lower frequencies 

than any extended mode of the crystal or air at that kx. So, and because H is a pseudo vector, the 

even modes look odd and vice versa. In the middle you can see they correspond to C and D points. 

 

 So, you have C here, you have D here. So, they all corresponds to those things. So, they are both in 

the band gap. So, these points in the same wired gap guided bands and they are taken at kx equals 

for the top one it is 0.3 times 2 pi by a  and the bottom one is taken as kx equals pi by a and the 

drastic field change that you can see corresponds to an  anti-crossing and that is why you see this 

kind of difference. 

 

 On the right, you basically correspond to E and F. So, you can see this one is E, this one is F. So, they 

are basically showing you the guided bands. So, these are two higher order Y even guided bands. So, 

a pseudo vector also known as an axial vector would behave differently under coordinate system 

transformations compared to a regular vector or a polar vector. So, under reflection pseudo vectors 

basically reverse directions which  contrast with the scalar fields or polar vectors that would retain 

their orientations under the same transformation. 

 

 

So, common examples of pseudo vectors would include like magnetic fields and angular momentum 

and that is why we have mentioned it here that  because you know  H magnetic field is a pseudo 

vector, the even modes will look odd and vice versa, okay, because we are talking about y equals 0 

mirror symmetry, okay. So, what are the implications in photonic crystals? In photonic crystals, 

especially those with line defects or other forms of structural asymmetry, the behavior of the 

electromagnetic modes,  both electric and magnetic fields can be categorized based on their  



symmetric properties. The symmetric classifications are often referred to as odd or even based on 

how the field patterns reflect across the symmetric plane. So you can consider y equals 0 plane. So 

even modes, so typically for scalar fields and even mode would mean that the field pattern is 

symmetric about the plane of reflection. 

 

 So now if you flip it across the plane, it will look the same. and odd modes would say that you know 

the field pattern is asymmetric. So, flipping it across the plane would result in a field pattern that 

would looks like is inverted version or negative version. So, we understood that you know magnetic 

field vector is basically magnetic field is a pseudo vector and its symmetric properties under 

reflection are basically counterintuitive. So, the even modes would appear odd  upon reflection and 

even mode of the magnetic field across a symmetry plane. 

 

We will do this again. So, even modes would appear odd. When reflecting an even mode of the 

magnetic field across a symmetry plane, the direction of the magnetic field reverses  because it is a 

pseudo vector and that is why  it will make an even mode appear like as if it were odd and the odd 

modes would appear even. So, conversely an odd mode will appear to maintain symmetry under 

reflection similar to an even mode  because the inversion inherent to the pseudo vector nature of 

magnetic field okay would counteract the expected inversion from the modes odd symmetry. 

 

 

 

 



 

So, with that you can further look into this and understand that the system exhibits invariance under 

reflections in the y equals 0 plane. So, it is a this kind of a plane across this  So, you can now see that 

the modes can be classified with respect to odd or even based on the reflections. So, the 

fundamental mode that you see here A is basically Y odd mode  though it looks appears even. 

 

And why odd modes are more readily excited by plane wave input beam, thus they receive more 

focus in analysis. So, if you try to evaluate the field profile of y odd modes. So, the  field profiles of 

the second wired band which is located in the band gap, it will show, so it is the B1, this. So, it will 

show notable changes as the wave vector varies from the light cone to the brilliant zone edge. So, as 

I mentioned the figure b, so this one displays the field pattern at kx equals 0.3 pi by a. So, you can 

understand where it will stand. So, this axis is basically kx a by 2 pi. So, you can actually calculate 



that. So, kx A, so A will cancel it out by 2 pi. 

 

 So, you are basically at 1.15. So, figure C here, it shows the field pattern for kx equals 0.5 pi by A, 

noting an additional pair of nodes in the y direction. So, what are the anticrossing effect? This 

significant change in the field pattern arises due to an anticrossing event where the two bands are 

expected to intersect instead couple and repel each other. So, that is the anticrossing effect. So, they 

would alter the trajectories unless a you know specific symmetry prevents this interaction. 

 

 

 

So, we will understand this better. So, this we have already seen. Now, here is a case where you 

consider no interaction. So, that is the initial condition. You consider non-periodic waveguide. So, 



this is the schematic of anticrossing that occurs when periodicity is added. 

 

 So, here it is no interaction because it is not periodic. So,  you just consider the y odd bands for a 

non-periodic waveguide and it looks like this. So, here the index guided mode is depicted in green is 

folded back at the artificially imposed edge of the Brillouin zone here. and the higher order Y mode 

which is depicted in red is located at a higher frequency and it is also similarly folded back. Now if 

you introduce this is a non periodic waveguide ok. Now if you introduce periodicity in that 

waveguide that is so this figure on the right this basically shows that case when the periodicity is 

introduced in the slab. 

 

So, as soon as periodicity is there band gap will emerge and the bands will start to repel each other 

and this is what is shown here. So, what are the interaction points? So, this repulsion occurs not only 

at the edge of the brilliant zone, but also at points where the  bands basically intersect. So, where 

the red and the green bands are intersecting. So, in terms of you know the wave vector kx you will 

see evolution of the field patterns with kx you can see a continuous transformation. 

 

 

 

 

 

 

 



 

So, x kx increases along the second band ok. The field pattern basically  So, second band is this one. 

So, if you see the field pattern basically transitions from continuously from the red mode. So, you 

can also look here in the figure B to the green mode which is basically figure C of the field plot. So, 

that is where from the red mode to green mode it is transitioning. So, these are now this behavior 

can be leveraged to produce unusual dispersion effect including the ultra-flat quadratic sorry, 

quatric ultra-flat quartic band edges and zero dispersion inflection points. 

 

 what are these ultra-flat quartic band edges? So, ultra-flat would refer to band edges where the 

curvature of the band that means the second derivative with respect to the wave vector k  would 

approach 0 over a relatively wide range of k and this would result in very low group velocities for  

photons or electrons. And then what is quartic band? So, the term quartic implies the band edge 

follows a fourth degree polynomial dependence near the edge. So, quartic bandages are basically 

categorized by dispersion relation that looks like this. So, E k can be written as E naught plus beta k 

minus k naught whole to the power 4. So, here E naught is basically the energy at the band edge, k 

naught is the wave vector at the band edge and beta is a constant, ok. 

 

 

 

 

 

 

 

 



 

So, you can see the you know  fourth order polynomial dependence. And what is the significance? 

This kind of ultra flat bands are particularly interesting for enhancing light matter interaction 

because photons in these bands would travel slowly. So, that would interact that would increase the 

interaction time with the medium. So, this can also enhance various types of non-linear effects 

increasing the efficiency of light emission processes or it could improve the sensitivity of different 

sensors. 

 

The second one is zero dispersion inflection points. So, when you say zero dispersion inflection point 

that occurs where the dispersion curves second derivative with respect to k changes sign. 

 

 So, it changes sign means from concave it becomes convex or vice versa and the first derivative 



which represents group velocity becomes 0. So, this point marks a transition in the curvature of the 

Venn diagram. So, mathematically you can represent this as you know at the 0 deflection 0 

dispersion inflection point,  dou square e by dou k square equals 0 or you can say d square e by d k 

square equals 0 and d e by d k equals 0 as well at some point of inflection. or at some value of k. So, 

what is the significance or application? So, at such points the group velocity dispersion is 0. 

 

 So, GVD is 0 and that means the spread of web packet velocity is minimal. And this property is very 

important for applications like pulse propagation within optical fibers where you know minimal 

pulse broadening is basically desired. 

 

Now we will look into the effects of substrates and into dispersion and discuss about losses. So, 

index contrast and reflection symmetry. So, if you remember that the original configuration of the 

Photonic crystal slabs were assumed to be suspended in air  because it maximizes the index contrast 

between the slab and the surrounding medium. 

 

 And it also preserves the z equal to 0 reflection symmetry. But that is not possible because you need 

to place a substrate below your thing. And as soon as you place the substrate, the symmetry breaks. 

So, you no longer have your z equal to 0 reflection symmetry. And this asymmetry also causes TE like 

and TM like modes to couple. 

 

 So, it disrupts any band gap which were actually exclusive to either of the modes. So, that way you 

know the waveguide modes which were previously confined by the gap when the slab was basically 

floating in air,  those gaps becomes leaky when the slab will be placed on the substrate. So, that 

brings some application concerns something like the leakage rate, the issue of leakage is significant 

only  if the rate at which the energy leaks from the modes is unacceptable for a particular 

application. 

 



 

So, eventually every mode will disappear, but then the rate at which it disappears or leaks out the 

energy loses that is also important. There are numerous experiments which have demonstrated that 

effective waveguides can still be fabricated on oxide substrate. 

 

 So, that have relatively low permittivity which is close to 2. So, here we will have permittivity of 1 

and you have this material like oxides, oxide based substrate where the permittivity can be kept as 

low as possible. So, what are the other mitigation strategies? So etching patterns, so reducing 

polarization mixing is possible by etching the periodic pattern into both the slab and the substrate  

and that can help, you know, maintain effective guidance of the modes. So do not take a solid 

substrate rather try to drill holes at the places where you already have holes on your slab. So that 

will try to, you know,  help guidance of the modes and despite a super straight material, sorry and 

how do you restore symmetry? you can deposit a super straight material that means you put a 

material on top of your slab that has got similar properties as your substrate  and that will help you 

restore some degree of the lost Z symmetry because now the top and the bottom of the slab will 

look identical okay. 

 

 

 

 

 

 

 

 



 

about the location of the guided modes. So in symmetric photonic structures, guided modes within 

the bandgap typically lie near the edge of the Brillouin zone. And what happens near the brilliant 

zone you can see band flattening that means as the modes approach the you know here  you can see 

as the modes approach the edge of the brilliant zone the bands tend to flatten and that means the 

group velocity of this modes approaches 0 okay 

 

what about group velocity dispersion that is basically calculated as dVg over d omega that indicates 

the rate at which the pulse will spread temporarily in the waveguide  and when you think of this 

region, okay. the behavior at zone edge. So, this dispersion parameter diverges at the edge of the 

brilliant zone and that would basically lead to significant pulse spreading. 

 



 you can observe from the band diagrams that you know as shown in the figures the guided 

waveguide modes exhibit both low group velocity  and strong dispersion across most of the 

operational bandwidth fine. So, what are the utilization of this low group velocity? As we discussed 

that when you have low group velocity it is also known as slow light and they can be employed to 

enhance optical non-linearities which are very important for certain applications. So, you can also 

enhance the light matter interaction in sensors or in other materials non-linear materials using this 

concept. so alternate design requirements would be you know you it is in some applications it is 

advantageous to have a broad bandwidth with low dispersion paired with more typical  with a more 

typical group velocity so this can be achieved by  doing some modification to the waveguide design. 

Some of these design strategies are you know surrounding a dielectric strip waveguide with a 

photonic crystal slab  will allow you to adjust the dispersion characteristics by you know avoiding 

terminations with surface streets. 

 

So, integrating with photonic crystal slabs okay it helps. And what about the waveguide 

characteristics? So, the resulting waveguide modes in this particular structure will closely resemble 

that of an isolated strip,  yet it will effectively function as a conduct for reaching the point defects 

and other devices embedded within the photonic crystal. 

 

 

 

 

 



 

So, now let us focus on the losses. So, there are some inherent losses in real systems. And even 

though the waveguide modes in a perfect and symmetric slab are basically theoretically lossless, 

practical applications invariably will introduce some degree of loss in them. 

 

 And what are the sources of this losses? The first one will be substrate. So as discussed previously, 

when you place a slab on a substrate that breaks the symmetry and introduces coupling losses 

between different modes. And when there is coupling between different modes, the power or the 

energy gets shared. There would be material absorption, so inherent properties of the waveguide 

material will lead to absorption losses. There would be radiative scattering coming from the 

irregularities from the fabrication process.  So, these irregularities will disrupt the translational 

symmetry of the slab. 

 



 

What would be the effect of disorder? coupling and reflections. So, disorder allows waveguide 

modes to couple to states with different wave vector values and can cause reflections in the reverse 

direction waveguide mode at minus k. And we can also find a scaling relation for losses. So, near Vg 

equals 0 band edge, there is a specific scaling relation where the loss per unit distance due to 

disorder scattering into the reflected mode  increases as 1 by vg square. 

And other loss modes would be something like they will basically scale as 1 by vg. So, other when I 

say the other ones, the other ones are basically the radiation or the absorption. So, losses because of 

radiation and absorption will also increase, but they will scale as 1 by Vg. So, with that we conclude 

our discussion on the Leiden defects in slabs. 

 

 



 

Now, we will briefly touch upon point defects in slabs. So, you can see here, these are localized 

mode trapping by point defects. And a point defect in a photonic crystal slab traps a localized mode 

similar to the corresponding mode in a infinite two-dimensional crystal. And due to the presence of 

the light cone in the slab, these localized modes are inherently leaky resonances with intrinsic 

vertical radiation loss. And you can think of creation of a monopole state in the rod slab. So, by 

simply removing a rod from this kind of a structure or in a 2-dimensional crystal or a 3-dimensional 

crystal is not very effective due to inadequate vertical confinement. Rather, what you have to do, 

you can either reduce the radius or the dielectric constant of the rod and its nearest neighbors  and 

that could create a desirable monopole state   For instance, you can think of reducing the dielectric 

constant from epsilon equals 12 to epsilon equals 9 for a particular rod and its four neighbors. 

 



 

So, here you can actually see the field pattern for this kind of a defect mode. So, this is that rod and 

these are the four neighbors for whom the dielectric constant is changed. And this is the side view, 

this is the top view. So, they basically show you a TM like mode. So, this is Z and Y and what we are 

plotting is basically EZ and this modified defect mode would exhibit a radiative lifetime with a quality 

factor of QR that is around 13000. 

 

In the next lecture, we will come into the discussion of how this large quality factors can be 

obtained. So, here we will just show you the influence of substrate on the mode lifetime. So, if you 

try to recall something from lecture 20, observations from the quality factors of lossy cavities,  you 

would recall that the presence of substrate would significantly impact the lifetime of resonant 

modes in a particular slab. And the table 1 actually shows this kind of a comparison. 



 

 suspended membrane in air. So, they have like 13000, if you have you know epsilon equals 2.25 kind 

of pillars you have means you are still having those holes. So, they you slightly it reduces, but if you 

have a solid substrate of the same material that were used for making those you know pillars earlier. 

So, in that case it significantly drops. So, reduced substrate losses are noted when the substrate 

shares the same cross section as the slab. So, you also need to drill those periodic holes in the 

substrate or whatever is the you know if it is a rod structure your substrate should also have the 

same kind of cross section. 

So, simply placing you know a solid substrate will not help. Placing a layer of substrate material on 

top of the slab will also help restore the Z symmetry and that would help prevent enough 

polarization mixing  and would reduce in-plane radiative losses to some extent. So, there are some 

trade off here. So, restoring jet symmetry increases the mean dielectric constant. So, enhancing the 

local density of the radiative states which can counteract the benefits of you know reduced 

polarization mixing. 

 

 

So what is important? So no clear advantage to symmetrization. So when you put something like the 

super state, it is actually the benefit is getting counterbalanced. So the effect of increasing the mean 

dielectric constant and reducing polarization mixing  nearly counteract each other. And that is why 

there is no compelling reason to put a super straight and try to make the system symmetric in this 

kind of scenario. So, you can actually avoid doing that because that does not bring anything good on 

the table. 

 

 

 

 



 

So, with that we will stop here. Thank you and we will be going for detailed discussion of engineering 

high Q resonant cavities in the next lecture. If you have any query regarding this lecture, you can 

drop an email to this email address mentioning MOOC, photonic crystal and the lecture number on 

the subject line. Thank you. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 


