
 

Lec 22: Overview of Photonic Crystal Slabs 

 

 Hello students, welcome to lecture 22 of the online course on Photonic Crystals Fundamentals and 

Applications. This lecture will be on overview of photonic crystal slabs. 

 

So, here is the lecture outline. We will have a brief introduction, discuss about the rod and hole slabs 

and then we will introduce you to a new topic  which is topological photonic crystals and how do you 

do modeling of this photonic crystal slabs. So, simple structures we have seen already with one-

dimensional periodicity that can be used to confine light in three dimensions  and that uses both 

photonic bandgap feature as well as index guiding in the other two orthogonal direction. 



 

So, if you remember as we discussed earlier also that this is an example of three different examples 

of periodic dielectric waveguides. 

 

 So, these are the x, y and the z dimensions marked here. So, you can see that each of these 

structure has one dimensional periodicity in x and they are basically supported by index guiding in 

the other two transverse direction. Now, let us carry that idea one step further by investigating 

structures with two dimensional periodicity, but with a finite thickness. So, this kind of hybrid 

structures are known as photonic crystal slabs or you can also call them planar photonic crystals. 

 

So, that is where our discussion on rod and hole slabs begin ok. So, these are not  know perfectly 

two-dimensional periodic crystals despite their resemblance. If you remember from the definition of 



the two-dimensional photonic crystals, the third dimension should be continuous. But here it is not 

because they have a finite width. So, this finite thickness that you can see in the vertical or z 

dimension if you consider the lateral dimensions to be x and y. 

 

  So, this finiteness in z dimension introduces qualitatively new behavior right. Just as the periodic 

dielectric waveguides which you have seen in the previous section  okay or previous lecture you can 

see they basically differed from photonic crystals in one dimension. So, let us begin our discussion 

with rod and hole slabs. So, they are also called photonic crystal slabs or planar photonic crystals. 

And as we discussed before that they are not two-dimensional photonic crystals despite their 

resemblance. 

 

 

 In the case of a two-dimensional photonic crystal, this whole  cylindrical holes would have been 

infinitely long, but that is not the case right. So, these are basically a this shows a basically hole slab 

which is actually a triangular lattice of air holes in a dielectric slab, but it has got the finite thickness. 

Now, because of this finite thickness in the vertical or z direction, so if you consider the thickness 

exist to be z ok, that introduces a qualitatively new behavior ok. And this is very similar to the case 

where we have discussed the periodic dielectric waveguides ok. And they also differ from one-

dimensional photonic crystals because of their finite height or thickness. 

 

 

 

 

 

 



 

 

 

Now as in the 3-dimensionally periodic crystals defects in periodic crystal slabs can be used to form 

waveguides and cavities. So, that we will discuss later maybe in the next lecture, but here we will be 

mainly analyzing about some new features ok. So, with such building blocks many interesting devices 

have already been experimentally realized by using standard lithographic techniques  based on two 

dimensional patterns. This ease of fabrication comes at a price that is careful designing is required to 

minimize the loss at the cavities and similar breaks in the periodicity. So, let us take up this hole and 

slab arrays in more details. 

 

 So, here are the 2 examples of photonic crystal slabs ok. So, once again like they have 2 dimensional 



periodicity. So, there is 2D band gap along x and y and in the vertical or z dimension there is a finite  

thickness and there index guiding is helping you to keep the light confined within the slab itself. So, 

this is basically a rod slab which is nothing but you know you can think of an array of dielectric 

cylinders  and this is the inverted array not exactly inverted array because this is a square lattice and 

this is a triangular lattice. So, this is you can just think of in whole slab or whole array. 

 

 So, here the holes air holes are making triangular lattice ok. So, as mentioned here. So, what are the 

dimensions typically taken? So, in this case the case of rod slab you consider the rods to have radius 

r equals 0.2a and for the case of slab the thickness is 2a what is a is the lattice period. So, in this 

particular example the thickness is 2a that is good. 

 

 So, what about the radius of the holes? The radius of the holes taken to be r equals 0.45a and in the 

case of the slab the radius was 0.2a as I mentioned ok. in in the so we need to record this again. So, 

in the in the whole slab example or no sorry in the rod slab example for this one ok the rods are 

having radius r equals 0.2 a and the overall slab has a thickness of 2 a. And if you go to this hole slab 

example, here the holes have a radius r equals 0.45a and the slab has got a thickness of 0.6a. In this 

slide, we are basically showing you the band diagrams of this 2D photonic crystal slabs which are 

suspended in air. 

 

 

So, these are basically the 2D one. So, we have not considered the Z at all in this case. So, these are 

just 2D structures or 2D simulations. So, this is the rod slab, and this is the hole slab. So, z is not 

considered here, okay? With discrete translational symmetry in two dimensions, you can say that 

the in-plane wave vector. 

 

 The sentence can be corrected to: "The quantity given by k parallel, which can also be written as kx 

and ky, is basically conserved in these two components." But the vertical wave vector 
zk is not 

conserved, okay? So, that is the case when you have a finite thickness of the slabs. Now, before you 



go into that kind of structure regarding the actual scenario, we can start our discussion with a very 

simplified version. Where you consider them as simple 2D lattices, the z dimension does not exist. 

So, it will be useful to plot the projected band diagram, which in this case is the plot of omega versus 

k parallel in the irreducible Brillouin zone of the two-dimensional lattice, as shown here. 

 

 

Okay, so this is for the rod slab, and this is for the pole slab. Now, as in two dimensions, one is able 

to decompose the guided modes into two non-interacting classes. The lack of translational 

symmetry in the vertical dimension, however, means that these states are not purely TE and TM. So 

in the previous case, you could see that you are able to obtain a TM band gap in two dimensions for 

this kind of rod slab. You are able to obtain the TE band gap in two dimensions when you have this 

kind of hole slab. 

 

 But, you know, when you consider the third dimension—that is, the finite thickness of the rods or 

the whole slab—that is where things become critical. The sentence "Okay." is grammatically correct 

as it is. If you would like it to be more formal, you might consider saying "Alright. 

 

" or "That is acceptable." However, "Okay." is perfectly fine in casual contexts. Here, the lack of 

translational symmetry in the vertical direction means that the states will not be purely TE or TM-

polarized. Okay, due to the presence of a horizontal symmetry plane bisecting the slabs, the guided 

modes can be classified according to. 

 

.. Whether they are even or odd with respect to reflections through this plane. They can actually be 

indicated by, you know, odd or even modes. Okay, and you can see here that the field circles are 

showing odd modes. The open circles represent even modes, and this has been done for both cases, 

right? So here you can see the band diagrams, which are actually for the three-dimensional 

structure. So these are 2D photonic crystals that have some finite thickness, right? So there you can 

also clearly see that these band diagrams are different from those that you saw in the previous slide. 



 

 But here you can observe that the band gap is visible in odd modes. The sentence "Okay." is already 

grammatically correct. However, here you can also see the band gap for even modes in this case. 

 

 The sentence "Okay." is grammatically correct as it stands. So, what are these shaded areas? This 

shaded area is essentially the light cone. So, all of the extended modes propagating in the air actually 

reside here. So, below this, these are all guided bands, okay, localized to the slab. So, they are TTM-

like modes, okay? But here, you are actually calling them odd or even. 

 

So, that is with respect to the z equals 0 mirror plane. So, with that, if you look at the field 

distribution, you have to decide whether it is an even mode or an odd mode. So, more or less, you 

can understand that these odd and even modes also behave like TE and TM modes, you know. But 

these are more accurate in this particular perspective of a 2D slab because they are three-

dimensional structures, which means they are 2D slabs with some practical or finite thickness. So, 

the extended modes propagating in air essentially form a light cone for omega greater than or equal 

to Ck, or you can say Ck parallel. 

 

 So, this particular slope corresponds to Ck. This equal sign, and then there are some regions that are 

also extended. So, these are the extended modes, okay? Below this light cone, you can actually see 

that the higher dielectric constant of the slab has pulled down the discrete guided bands. So, 

eigenstates in these bands will decay exponentially in the vertical direction, which is away from the 

slab. And you will get to see how the modes decay in the actual simulation, which we will discuss 

toward the end of this lecture. 

 

 So, the system here is essentially invariant. Under reflections through the z equals 0 plane. Thus, it 

allows us to classify the modes as TE-like, which we can also refer to as even, or you can think of TM-

like modes, which are basically referred to as odd modes in this case. So, we will actually discuss the 

optimization of these parameters later on. 



 

 

So, now we will move on to the next interesting topic, which is topological photonic crystals. 

 

 Now, this is an exciting area of research that has been in the news within the scientific community 

for the past few years. So, the area is called topological photonics. Now, this topological photonics, 

as I mentioned, is an integrating research area that has emerged from the rich interplay between 

condensed matter physics and optics. So what happens in this particular field is that it investigates 

the properties of light in a very specially designed photonic material. That basically mimics the 

topological characteristics of electronic materials, mainly the topological insulators. 

 

 The fundamental interest in topological photonics lies in its ability to guide light in robust ways that 



are immune to defects and disorders. So, just like the edge modes that you can see in topological 

insulators, which conduct electrons without dissipation. It means without scattering losses. Here, 

you will also be able to use topological photonic insulators to create different waveguiding 

structures where light can be guided without any loss. So that is something very, very interesting. 

 

 This robust propagation is governed by the photonic band structures and topological properties, 

often characterized by non-trivial topological invariants. We will go into detail. 

 

So, we learned a new term here: topological insulator and topological photonic crystals. Now, they 

all originated in condensed matter physics a long time ago. So, the topological order began with the 

integer quantum Hall effect that surged with topological phases in graphene, and finally, They were 

experimentally realized in 2D topological insulators in 2007. 

 

 So it is not as very old as you might think. The concept of photonic crystals is very old, but not this, 

you know, topological photonic crystals. They are a very new and hot topic of research. So, photonic 

analogues of quantum Hall states can be understood by considering what people have done. In 

2008, Halden and Raghu proposed the concept of unidirectional electromagnetic states in non-

reciprocal magnetic photonic crystals, which are similar to quantum Hall states. So, this idea was 

experimentally demonstrated in the microwave frequency range in 2009. 

 

 What followed was the development of photonic topological insulators. So, proposals emerged for a 

photonic analogy of the quantum spin Hall states, which has led to the concept of photonic 

topological insulators. So, research has expanded beyond structured materials to continuous media 

where topology. 

 

 

 



 

.. Electromagnetic states are theorized and numerically demonstrated, such as topological Langmuir 

cyclotron waves in magnetized plasmas. So, these are all difficult concepts to understand, but let me 

introduce the first notion of topology in this lecture. So, what do you mean by "topological 

insulators," and what is "topological invariance"? So, when you think of the word "topology," it 

basically refers to a branch of mathematics that studies the properties of spaces. That are preserved 

under continuous deformations, such as stretching and bending, but not tearing or gluing, is 

important, okay? So, it is concerned with the core essence of shapes in terms of their spatial 

properties and relationships, ignoring more rigid aspects like distance and angle, which are studied 

in geometry. So, one classic example involving topology is comparing a doughnut with a coffee mug, 

as you can see here. 

 



At first glance, the two objects may appear very different. So, one is a very delicious treat with a hole 

in the middle. That's a donut. The other one is a container for liquid, typically coffee. 

 

 And it has a handle. Now, if you consider it from a topological perspective, you can see that they are 

basically equivalent. The sentence "How?" is already grammatically correct. It is a complete sentence 

as it stands, often used to inquire about the method or manner of something. If you need a different 

construction or context, please provide more details! Because one can be transformed into another 

shape through a series of deformations without cutting or tearing the material, as shown here in the 

animation. 

 

 You can think of these two as the same type. G equals 0 and G equals 1 tell you about the number 

of holes present. So, 0 holes, 1 hole, 2 holes, 3 holes, and so on. So this is how it is: If you want to 

visualize what is happening here, these are the step-by-step transformations that might help you 

visualize it. So, imagine the doughnut, which is basically this structure. 

 

 It is a solid torus with a central hole.  (The original sentence is already grammatically correct.) Now, 

deform the doughnut.   (The original sentence is already grammatically correct.) So, you begin by 

slowly enlarging the hole in the center while thinning the remaining material of the doughnut. 

 

 And then you shape the handle. As the hole enlarges and the material becomes thin, extend part of 

the dough to form a handle-like structure and turn the rest into the cup's body. So the remaining 

dough can then be shaped into a cup, and that is how you can actually complete the transformation 

from a doughnut to a mug. So what is important here is that the transformation shows that both 

objects have a single hole, which is the key topological feature. A topologist would say that both a 

donut and a cup have a genus of 1, which refers to the number of holes in the object. Therefore, in 

topology, the essence of an object is defined more by its features than by the specific details of its 

shape. 

 



So, that is what topology is. Now let us discuss how you get the idea of topological insulators. The 

sentence is already grammatically correct. So the first thing to consider is the motion of electrons in 

a material in response to a magnetic field. For example, imagine you have a magnetic field coming 

out of the screen. So, the response of the electrons in a material to this kind of magnetic field is 

basically a fundamental aspect of condensed matter physics. 

 

 It plays a critical role in various topological phenomena. Such as the quantum Hall effect. So, we 

have all understood the fundamentals of the quantum Hall effect during our B.Tech or school days. 

So, here is how the motion occurs and leads to this uniquely boundary-dependent behavior. 

 

So, this is what we will discuss here. So, when the electrons in a material are subjected to a magnetic 

field that is perpendicular to their motion, they essentially experience the Lorentz force. So, this is 

how they are compelled to follow this circular path. So, what happens? (The sentence is already 

correct.) The force acts perpendicular to both the electron's velocity and the magnetic field, causing 

the electrons to deviate from straight-line trajectories and instead follow circular paths. 

 

 Now, this is referred to as cyclotron motion. Now, the radius of the circular motion, which is also 

known as the cyclotron radius, depends on the electron's speed, the strength of the magnetic field, 

and the electron's effective mass. 

 

 

 

 

 

 



 

Now, what happens to the electrons at the boundaries? At the boundary of the material, the 

behavior of the electrons changes significantly because their path is confined. Okay, so when the 

electron moving in the cyclotron orbit reaches a boundary, it cannot continue its motion outside the 

material. Because there is no material here, it reflects back instead, and it continues like this. So, 

that is how this reflection basically alters their path from a circular trajectory to a helical trajectory 

along the edge of the material. 

 

 Now, these helical paths at the boundary lead to what are known as the edge states. And these 

edge states are crucial for the understanding of topological phenomena in materials. So, this is what 

the energy band representation of a topological material looks like. So, this is the conduction band, 

this is the valence band, the minimum of the conduction band, and the maximum of the valence 

band. The difference between these two gives you a gap; that is the band gap, and this is where the 

edge state will lie. 

 

 The sentence is already grammatically correct. However, if you want a slight variation, you could 

say: "We will get to that." In more detail. 

 

 

 

 

 

 

 



 

So, what did we understand? We understood the topological phenomena and the edge states. Let us 

go into further detail about this interesting concept. So, in the quantum Hall effect, when a strong 

magnetic field is applied, the bulk of the material, including the insulating parts, becomes insulating, 

while the edges remain conductive. 

 

 So, what happens when the bulk of the material is an insulator, but the edges are conducting? So, 

this conductivity is due to the edge states. Where the electrons travel without backscattering, there 

is no reflection, even in the presence of disorder or impurity. Now, this is the beauty of this: even if 

there is a disorder or impurity, the electrons are allowed to move forward only. How do you know 

that the edge states are protected by the topology of the material's band structure and the external 

magnetic field? And they lead to the quantized Hall conductance, which is a hallmark of topological 

order. 

 

 So, using these concepts, you can think of a topological insulator. So, similar to the quantum Hall 

effect, but without an external magnetic field, you can see that topological insulators can exhibit 

edge states that are protected by time-reversal symmetry. So here, electrons on the surface or 

edges can move in a helical manner, where electrons with opposite spins will move in opposite 

directions. So, this spin-momentum locking is another example of a topological phenomenon arising 

from the boundary conditions. So when a particle moves under the influence of a perpendicular 

magnetic field, it moves in orbits or circles. So, in a material with a lot of particles moving, we have 

something like the following. 

 

 

 

 



 

So, classically, the particles moving in orbit correspond to what are called localized states. If you use 

the language of quantum mechanics, it is because they are localized around certain points. Now, at 

the edges of the material, you can see that the particles try to deform the closed orbits, but they are 

stopped at the boundary where they collide and are essentially sent back to the next orbit. So, these 

incomplete orbits at the edges look like this. So, as you can see, hitting the edge and moving on to 

the next orbit causes the particles to move forward along the edge of the orbit. 

 

 So, quantum mechanically, this corresponds to extended states, meaning that they are not localized 

ones. Hence, these particles move along the edges, but at each edge, they move in different 

directions: on one edge, they move in one direction, while on the other edge, they actually move in 

the opposite direction. So this is how you know what the band diagram will look like. So, this is for 

the normal case of insulating material. 

 

 So here you can see that there is a band gap. And this is where these are the central points of the 

axis. You can also see the quantum Hall effect giving rise to the edge states, which are marked here. 

You can also see that for spin-up, this can be considered the direction of propagation for which this 

is the edge state, okay? The red color indicates that if you go for the spin down, then this is the 

direction of propagation, and this will be your edge state in the energy pentagram, right? So, with 

that basic understanding, we can look for different applications of topological photonic crystals. So, 

as I discussed, these crystals are also immune to backscattering or any scattering losses due to 

impurities and defects. So, you can actually guide light through this kind of topological photonic 

crystal using any sharp geometries or bends. 

 

 

 

 



 

So, there are some applications here. So, let us quickly discuss them. So here, one application that 

you can see is basically a waveguide channel that has been designed, and this is the simulation. So 

you can see the zigzag path that has been taken. The path has very sharp bends, but because of 

these edge states, they are able to propagate without any loss. So, how do you actually get this? You 

can actually create this kind of topological photonic crystal where the two different sets of unit cells 

can give you the domain wall. And this is how you create the red mark: one shows you the domain 

wall, which is actually shown here. 

 

 So, this tells you the experimental results of the measured experimental setup for measuring the 

transmission. So, you have a millimeter wave generator, and then a multiplier to provide that signal 

to you. These are the hollow waveguides. And this is your valley photonic crystal, or the topological 

photonic crystal that you have made. 

 

 Okay, and then this is the final transmission graph that you see. So what is important to note here is 

that if there is no domain wall, the transmission drops significantly because of the scattering losses 

in this very sharp case. But in the case of straight and twisted structures, both show a similar kind of 

performance, which is where photonic crystals, particularly topological photonic crystals, are very 

useful. They are very useful for making these high-channel waveguides, so this is the basic unit cell. 

Okay, and this is how the edge state will look; this is the band diagram opening. So, what you can 

actually see here is that if you take them symmetrically, you will have these dotted lines that are 

kind of, you know, closing in. 

 

 So, there is no band gap, but as you make one triangle different from the other in size, you will be 

able to introduce asymmetry, which will open up the band gap. So, this is an experimental 

demonstration of transmitting uncompressed 4K high-definition data. Using this waveguide channel, 

a transmission rate of 11 Gbps was achieved. What is the frequency range for this kind of waveguide 

channel that people are designing? For 320 to 350 gigahertz, a 30 gigahertz channel is essentially 

created. 



 

 Here are some details about it. Valley photonic crystals. So, valley photonic crystals in topological 

photonics essentially employ the concept of valleys from solid-state physics. These are the regions in 

momentum space characterized by local energy minima. So, that is why they are called valleys. So, 

these are basically like this, you know, and they are akin to the electronic valleys in materials like 

graphene. So, these structures manipulate light using the valley degree of freedom, resulting in a 

distinctive photonic band diagram like this. 

 

 The sentence "Okay." is already grammatically correct. So, you can see that this is a symmetrical 

structure with symmetrical holes. So, you can actually make delta greater than or equal to 0. This is a 

type 8 where the bottom triangle is larger than the top one, or you can make the other one. When 

these two different unit cells are placed side by side, they can create this domain wall. You will see 

that if you know the line defect, you can actually create any kind of domain wall in any shape, and 

that will be the waveguide you are forming. 

 

Okay, so what is important in these crystals? The sentence is already grammatically correct. 

However, if you're looking for a more elaborate version, you could say: "Symmetry breaking is an 

important concept." That will actually break the inversion symmetry and create distinct valleys at 

specific points in momentum space, which are marked as k and k prime. At this point, the photonic 

band structure exhibits valleys where optical modes are localized, similar to electron localization in 

solid-state physics. So, the blue region highlights the projected bulk dispersion, and in the black 

region, you can see the blue area. The black dashed lines also show the light lines, while the blue and 

black dotted lines represent the dispersion of the kink states at the AB and BA interfaces. 

 

 Okay, so these are the two interfaces. Kx denotes the wave vector along the domain wall. What is 

A? The periodicity is okay. So, what is important here is that the valley's topological nature ensures 

that robust edge states can be formed along the boundaries of the crystal. So, when light travels 

through these edge states, it is highly resistant to backscattering and defects. Mirroring the 

unidirectional robust flow seen in electronic topological insulators. So, this configuration makes 



topological valley topological crystals or photonic crystals, known as VPC valley photonic crystals, 

valuable. 

 

For creating resilient photonic devices that guide light with minimal loss and interference. You can 

also make other kinds of structures. I will not go into the details of it. I'll just show you that you can 

make couplers, optical cavities, waveguides, and filters. So, these are different applications possible 

through the use of topological photonic crystals. So what we understood is that these topological 

photonic crystals support very high frequencies, on the order of 300 gigahertz. 

 

Okay, so you can actually use topological photonic crystals to revolutionize 6G technology. By 

enhancing data speed, efficiency, and reliability, and by ensuring error-free signal propagation 

through the reduction of signal loss and latency. So, topological photonic devices can handle high 



data rates with minimal energy consumption. Aligning with 60 goals for data-intensive applications, 

such as virtual reality, ultra-high-definition streaming, and IoT. Integrating topological photonics can 

create sustainable, scalable networks by reducing the need for power-intensive amplification and 

signal processing hardware. Topological states offer enhanced security for data transmission 

because of their localized and protected nature. 

 

 Which are also critical for future wireless technologies that involve critical data and personal 

information, right? So, topological photonics addresses the key challenges of the upcoming 6G 

networks, and that is why it is going to be a transformative technology for future wireless 

communication. 

 

 

. So, with that, we will now go into the modeling of these photonic crystal slabs. Right now, I will 

show you a video that has been recorded by the TA for the course, Dibaskar. So, he will take you 

through the console simulation of the photonic crystal slab. So, we will discuss in detail the two 

examples of rod and slab photonic crystals, and we will see how introducing a line defect will change 

the band diagram. 

 

 So, all of this simulation will be shown here. 

 

 

 

 

 



 

 

 

 

So, that is all for this lecture. We will start the discussion of different types of defects in photonic 

crystal slabs in the next lecture. If you have any queries regarding this lecture, you can send an email 

to this address, mentioning "MOOC," "photonic crystals," and the lecture number in the subject line. 

The sentence is already correct as it is. The sentence "Thank you." is already grammatically correct. 

 

 


