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Lec 19: Overview & Modelling of Periodic Dielectric Waveguides

Hello students, welcome to lecture 19 of the online courses on Photonic Crystals, Fundamentals and
Applications. Today's lecture will be on an overview and modeling of periodic dielectric waveguides.



Lecture Outline

* Introduction

* Overview

* A Two-dimensional Model

= Periodic Dielectric Waveguides in Three Dimensions

* Modelling of the periodic dielectric waveguide
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So, here is the lecture outline. We will briefly introduce and provide overview of the topic. We will
show a two-dimensional model of this and then we will also consider periodic dielectric waveguides
in 3D. and we will see how we do modelling in COMSOL for this periodic dielectric waveguide and
that gives us the results which are reported in the literature.

Introduction

= Three-Dimensional Photonic Crystals: These structures can confine light in all three dimenslons.

* Engineering Materials: These materials can localize light at a single point {optical cavity), direct it along a gpecific path
{waveguide), or confine it on 3 two-dimensional surface.

* Fabrication Challenges: Creating a structure that is periodicin all three dimensions is technically challenging.
Alternative Approach: The discussion shifts to simpler structures such as periodic dielectric waveguides.

* Characteristics of Periodic Dielectric Waveguides: These have a cne-dimensional perodic pattern or grating along the
direction of propagation, and possess finite thickness and width.
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So, as we saw in the previous lecture that about the analysis of 3D photonic crystals that 3D
photonic crystals are those which are able to you know confine light in all three dimensions. Now,
these materials can localize either at a single point that is like an optical cavity, or it can direct light



along a specific path that will work as a wave guide, or it can confine into a two-dimensional surface.
So all these three types of defects, this will be called as point defect, this will be a line defect, and
this is a surface defect. All these possibilities are there in a 3D photonic crystal.

Now, what are the fabrication challenges? As we have seen that it is not very simple to fabricate
those 3D photonic crystals, right? The fabrication looks very challenging. And if you compare this
with the 2D photonic crystals, you will see that the 2D photonic crystals are much more, easier to
adapt, okay, to the current technological advances and it is easy to fabricate. So, lot of people
actually try to restrict their applications to 2D photonic crystals. So, we will try to now shift this
discussion to simpler structures such as periodic dielectric waveguides and we will see how they are
useful. So, when you talk about periodic dielectric waveguides, what are their characteristics so
these are basically one-dimensional periodic pattern or grating which is along the direction of
propagation and this waveguide possesses finite thickness and width so these are some examples of

periodic dielectric waveguide which basically has one-dimensional periodicity.

Overview

* Variety of Periodic-Waveguide Structures: Various possible configurations are
illustrated, such as those in figure 1.

* Common Phenomena in Periodic Waveguides: All such structures, regardless
af geometny, exhibit:

(k)
. Photonic band gaps along their periodic direction.
. Ability to canfine light in other directions through index guiding.
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Here it is along x direction and basically you have index guiding along the other two directions that is
y and z. So regardless of the geometry, these three different periodic waveguides, they have
something in common. It is that there is a photonic band gap along their propagation direction that
is along x direction and in the other two directions they are able to you know confine light through
index guiding. So, these are the similarities in this kind of periodic waveguide structure. Now, in the
next two lectures we will explore different forms of hybrid system that will be able to combine the
periodicity with other mechanism to confine light in three dimensions.

We will also discuss about you know the periodic planar waveguides which are known as photonic
crystal slabs. So, which utilize two dimensional periodicity along with vertical index guiding. We will



also examine photonic crystal fibers. These are basically special types of waveguides where the
periodicity is basically transfers to the direction of propagation.

Overview

* Hybrid Systems: Different forms of hybrid systems that combine periodicity with ather mechanisms to confine light in three
dimensions,

* Photonic-Crystal Slabs: Discussion on periodic planar waveguides known as photonic-crystal slabs, which wtilize two-
dimensional perladicity along with vertical index-guiding.

= Photonic-Crystal Fibers: Special Waveguides where the periodicity is tramsverse to the directionof propagation.
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A Two-dimensional Model™

= Strip Material Orientation: The strip extends in the x direction and confines {a)
73

lightin the y direction through index guiding, while remaining uniform in the z
direction.

I
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* Light Propagation: As seen in lecture 13, we focus on light that propagatesin WL

the xy plane [k, = 0) and specifically restrict our analysis to TM polarization (E, g T Tl i o gl Rt
anly). ekt 044, (o) Partodic wavaguide! 8 period:a seqiesce of
. =45 dielectric squsres,

* Introduction of Periodic Interruptions: Periodic interruptions are added along
the x direction af the strip, creating & pattern of dielectric squares.

= Specifications of the Material and Design:
Dielectric constant of the material is £ = 12,

The spatial period of the squares is denoted by a.
Each square measures 0.4a x 0.4a
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We are starting with a simple model that is a two-dimensional model.

Although the real motivation for this lecture is to confine light in three dimensions, we will begin
our discussion with a very simple two-dimensional model that will be able to showcase the essential
physics that is involved. We will combine index guiding in one direction with the photonic band gap
in other direction. So, let us first think of a strip that is a material strip that extends in x direction
and it confines light in y direction through index guiding right and there and it remains uniform
along the z direction which is basically out of this screen ok or into the screen whichever way you
want to imagine. Now if you consider the light propagation as seen in lecture 13, we will focus on
light that propagates in the xy plane. That means you can actually take kz equals 0 okay and
specifically restrict our discussion or analysis to only Tm polarization.

That means you can only calculate the ez component or z component of the electric field. Right. So
this is the uniform strip. Now you can also try to introduce some kind of periodic interruption in this
strip. So you can actually think of adding periodic interruption along the x direction, which will create
a pattern like this kind of dielectric squares.

So we can think of a periodic waveguide, which is having a period of A. and each dielectric square
can be thought of having dimension of 0.4a by 0.4a and the material that is involved here has a
dielectric constant of 12. So, with that we can start our discussion with a two-dimensional period oh
sorry a periodic waveguide right.

A Two-dimensional Model

* Translational Symmetry:
ey ]

*  The uniform strip exhibits continuous translational symmetry in the x

5 "
direction, bl @ B B B B B B B
& The line of squares displays discrete translational symmetry in the x .
direction.
¢ Meitherstructure possesses transiational symmetry in the y direction.
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So it is having the periodicity only along one direction okay along y and z it is uniform. So how about
the translational symmetry? You can see that the uniform strip exhibits continuous translational
symmetry that is along the x direction and the line of squares okay which is having discrete



translational symmetry and that also along the x direction. We have discussed about continuous and
discrete translational symmetry in our previous lectures. So, neither structure possesses
translational symmetry in the y direction, isn't it? So, how do you talk about you know the
conservation and simplification of web numbers? So, here as the periodicity is along x, you can say
kx is conserved due to the symmetry in the x direction. k y is not conserved reason is it reflects the
lack of symmetry along y direction ok.

A Two-dimensional Model™

* Conservation and Simplification of Wave Numbers:

ey |
o i, (referred to as k | is conserved due to the symmetry in the x .

L e
direction, E B B B BB EN
*TT{
L _ﬂ.-_}_ is not conserved, reflecting the lack of symmetry in the y direction.
= Analysis of Band Structure:
® A5 discussed in lecture 13, itis beneficial to compute the projected
band structure b, (k).
& The mode frequencies are plotted a5 a function of k, although they
technically depend on the full vector & far modes far from the
waveguide.
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A Two-dimensional Model™

Uniform Strip Band Diagram:

& The projected band diagram for the uniferm strip is shown in the left panel
of figure 3.

Frastpiarey wyf2en

s The diagram displaysthe range (0 < k < ?HE. althiough k is technically
unrestricted due to continuous transtational symmetry,
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* Light Cone Definition: Woren wncler ke
» The region where w = ck is referred to as the light cone. mz ?..n:ljj‘:ﬁ:ufm:.r;: st s s ool
& |n this reglon, there exizt extended states that propagatein the air.

= Beneath the Light Cone:
& The higher index of the waveguide beneath the light cone pulls down

discrete guided modes.
# These modes are localized due to tatal internal reflection.
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So, if you consider this as the uniform strip which you have seen before. So, this is the band diagram
for this particular uniform strip waveguide. okay and this is computed for Tm polarized okay in plane
light way only. So, when you say Tm polarized in plane light you can say kz equals 0. So, this is
basically only kx component okay.

Again these are normalized frequencies so it is omega a by 2 pi c and this is normalized wave vector
soitis ka by 2 pi. So, this is the band diagram and what you can see here that the diagram actually
displays the range of k starting from 0 to 2 pi by a. Although k is technically unrestricted due to this
you know continuous translational symmetry. But you actually plot it from 0 to 2 pi by e. So, what is
the definition of the light cone? We have discussed earlier that you know the region which lies above
the light line that is omega equals ck.

So, anything above this that is giving you the light cone. So, the lower boundary of the light cone
gives you the light line okay and, in this region, there are extended states that could propagate in air
okay. So, this blue shaded region actually tells you about the light cone and what they contain they

basically contain extended states which are allowed to propagate in air. Now, what are these two
lines? These are basically discrete guided bands that are labeled as even band and odd band. And
there is a band numbering that you can see.

A Two-dimensional Model:

*  Symmetry of the Waveguide:

+ The waveguide is symmetric under reflections through the plane v = 0, which bisects the
waveguide.

*  Classification of Guided Modes:

e T T L

* Al guided modes can be classified as either even or odd with respect to mirror reflections

inthe ¥ = 0 plane.
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» Symmetries that might seem present in other planes perpendicularto the waveguide axis
are actually broken when k = 0,

* Maode Bands:
* The diagram shows one even band and one odd band.

& The even band represents the fundamental mode, characterized by having lowest
frequency in the mode profile.
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And even and odd are basically decided based on y equals O mirror symmetry plane. So if you take a
horizontal plane that bisects this particular strip, okay that is basically y equals 0 plane and
depending on the field profile whether it is symmetrical across the this mirror symmetry plane the
odd and even modes are basically decided. So that is what happens beneath the light cone. So the
higher index of the waveguide beneath the light cone pulls down these discrete guided modes. And
these modes are localized due to total internal reflection.

So, how does you know the symmetry of the waveguide help? So, if you look into this waveguide,



this waveguide has a symmetry plane at y equals 0 that basically bisects the waveguide. You can
think of a horizontal plane as | told you. So why you are using that? That can be used for
classification of the guided modes. So all guided modes can be classified as either even or odd with
respect to the mirror reflections in this y equals 0 plane. And symmetries that might seem present in
other planes perpendicular to the waveguide axes are actually broken when k is not equal 0.

So, you are mainly focused about this symmetry across the mirror reflection plane. Now, as |
mentioned that this diagram shows one even band and one odd band. So, the even band basically
contains the lowest energy. So, that corresponds to the fundamental mode and then odd band will
have some higher order thing higher order modes. Now when you move from the continuous strip
to this discontinuous strip that is means you know this discretized strip

A Two-dimensional Model#

= Challenges with Discontiguous Strip: "1

* [t may seem difficult to use total internal reflection to guide light in the x H B EEBEEEEE
direction within the discontiguous strip of dielectric squares. i |

& This is because light rays cannot remain within individual squares nor
maintainan angle smaller than the critical angle.

* Standard waveguide principles suggest avoiding junctions between
different waveguidesz due to radiative scattering and loszes

& This structure intraduces an infinite sequence of such junctions,
seemingly exacerbating the issue.
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What are the challenges? First thing is that it may seem difficult to use total internal reflection to
guide light along X within this broken piece of strip. So why that happens because you know light
rays cannot remain within the individual square or you know nor maintain an angle that is smaller
than the critical angle. So this discretization actually poses a great challenge. So, that is why you
know when you design standard waveguides the principle suggests that you should avoid junctions.
Because whenever there is a junction between two different waveguide that will give rise to
radiative losses or radiative scattering losses and here it is like full of you know small small
scatterers.



A Two-dimensional Mnd‘éi =

*= Re-evaluation Based on Bloch's Theorem:

"
A EEEEEEEN

* |nitial pessimism about the effectiveness of the discontiguous strip may
be misguided because these concemns overlook Bloch's theorem.

+ Bloch's theorem indicatesthat a periodic structure does not necessarily
scatter waves.
& Wave Vector Conservationand Localized Bands:

» [Despite the structural discontinuities, the periodicity of the system
ensures the conservation of the wave vector k.

s  There exists a light cone beneath which localized bands can form,
supporting truly guided modes that can propagate indefinitely aleng the
waveguide,

=  Observations from Projected Band Diagram:

* The projected band diagram in figure displaysthese localized bands,
confirming their existence as guided modes within the discontiguous strip.
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So, that way this make this ideally should make a very very bad waveguide, but is that the case. Is it
that, you know, this kind of infinite sequence of these junctions which is repeating periodically, okay,
is further worsening your scattering loss or there is some magic involved. So, the thing is you need to
analyze this periodic medium using, you know, block theorem. So, the initial pessimism that we had
regarding the effectiveness of this particular discontinuous strip. okay may be misguided because
these concerns overlook the block theorem okay and the block theorem indicates that you know a
periodic structure does not necessarily scatter waves okay.

Despite all these structural discontinuities, the periodicity of the system ensures the conservation of
the wave vector k. That means there exists a light cone beneath which you will have you know the
localized bands which can form and they can support truly guided modes which will propagate
indefinitely along that waveguide okay. So this is the beauty of the block theorem that describes the
propagation of guided modes in a discontinuous medium or periodic medium. So here as we
mentioned that this is the strip waveguide for which the band structure has been calculated or the
band diagram is calculated and it is shown here same. y axis normalized frequency a by lambda
naught or you can write it as 2 pi by omega a by 2 pi c and the x axis is nothing but your normalized
wave factor that is k a by 2 pi.

What you see here you see that you know light cone is basically this is basically symmetric ok and
this part the right part is basically folded ok. So, along this line you can see a symmetry ok. So, what
happens here you can see there is an even band 1, you have even band 2 and then you get odd band
1. So, from the now peak of this even band 1 to the bottom of the even band 2 you can actually see
a band gap ok.



A Two-dimensional Model™

- |

= Finite Brillouin Zone for Discontiguous Strip: 1

¢  The discontiguousstrip features a finite Brillouin zone, unfikethe A B EEEEEEN
uniform strip, leading to unique wave behavior, B

+« Therangem/a < k < 2m/a is equivalentto the range —mfa < & < 0,
which corresponds to the reverse of the irreducible Brillouin rone ) <
k=xnfa

= Light Cone Repetition:
¢ A light cone must exist within each of these ones.

Frostpt ¥ ook Ime

# The tip of the original light cone, located at k = 0 in the strip, repeaats il o2l ”_'.:'Mli[i'
periodicallyat k = 2w /o, 4w fa, and g0 forth,
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We will come into that details. So, what is important here to notice that the first Brillouin zone for
this discontinuous strip. So, first thing is that this strip, this fragmented strip features a finite
Brillouin zone, which is not seen in that uniform strip waveguide. So, whenever it has got a brilliant
zone it leads to a unique behavior right. So, you can think of a range something like pi by a to 2 pi by
a the wave vector anything in between is nothing but equivalent to minus pi by a to 0. okay or you
can actually think of this as a reverse of the irreducible Brillouin zone which lies from 0 to pi by a.

So, you can think of a mirror symmetry at the half point which is at pi by a okay this one 0.5. So
when k by 2 pi is equal 0.5, that is the midpoint. So that is why you will see that this is repeating or
you can say it's a mirror image.

A Two-dimensional Model™

*  Behavior of the Lowest Band:

.
I_I__II.I.II

¢ The lowest band starts at zero frequency at & = 0, flattensat k = m/fa,
and then bands downwards, returning to fero frequency at k = 2m/fa.

* This bending causes a band gap to open between the first two guided
medes, similar to the behavior observed in one-dimensional erystals “
discussed earfiar. u f
=  Mature of the Band Gap:

¢ The band gap is considered incomplete because it excludes only the
guided mades,

Fiagasnay coafine

+ Radiating modes (those within the light cone] can still exist for any
frequency w, not affected by the gap.
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So a light cone exists within each of these zones. So you can see in this zone, a light cone is there. In
this zone also, a light cone is there. And the tip of the original light cone, which is located at k equals
0, in the strip will also repeat periodically when k becomes 2 pi by a. So, when k becomes 2 pi by a,

k a by 2 pi will become 1.

So, it will repeat here again it will repeat when this will become 2 and so on ok. So, you can only
study this part and you can talk about the band features. You can actually only take half of this and
then you can understand what is going on in this particular discontinuous periodic waveguide. So
you can also observe that the lowest band starts at zero frequency right at k equals zero and it
flattens at this point which is basically k equals pi by a okay or you can say k by 2 pi equals 0.5 and
then it starts bending downwards and returns to zero frequency again at k equals 2 pi by a or you
can say k by 2 pi equals 1.

So, this band actually this banding actually causing a band gap to open between the two first two
guided modes which are both even bands 1 and 2. And this is something that you have seen already
in one dimensional crystals that you have discussed earlier. So, now let us understand what is the
nature of this band gap. The bandgap is considered incomplete here because it excludes only the
guided modes. It means whatever is happening here are basically radiating modes because those are
within the a light cone, but those can still exist for any frequency omega and they are not affected
by this gap.

So you can see that the light cone exist for all the frequencies. And that is why this kind of bandgap
is basically an incomplete bandgap. If you try to remember or recollect the complete bandgap we
have seen, that was there for all the values of k. So it was going from this left to right boundary.

But here it is not like that.

A Two-dimensional Model

= Field Profiles of Guided Modes:

*  The field profiles for the three guided modes at k = /o are depicted y A
infigura 5. gL ¥
= Even-Symmetry Modes: i w
=
= Twao modes exhibit even symmetry, similar to those discussed in lecture 5.
10. = TERRT RN
# The fower band mode is peaked within the dielectric, while the next- T ot :.:..r.l:.u-,:'

higher band features a node in the dielectric. e i il

= Odd-Symmetry Mode:
- . -.-.-'...I--s
*+ The odd band mode containsa nodal line along the x-axis within the ERER
dielectric, which raises its frequency.

+ This mode is less tightly confined to the waveguide compared to the . e
even modes because it is closer to the light cone. i

Figure §: F_ Fald patterns of the disceniiguous seriodis woseguide o
k=n/u, the Brillcuin-poce edgs.
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So now let us evaluate the field profiles of the guided modes. and they are being plotted here so this
is the same band diagram we have seen in the last slide and this is the field profile which actually
plots the magnitude of ez which is the z component of the electric field okay red showing the
positive and blue the negative part and you can see the dielectric square is basically marked here
So, this is how the even band 1 looks like. So, why they are called even? So, you can actually take y
equals 0 plane which is going through the middle of this band. Let me try to draw it. So it is like this
and you can see on the top part and the bottom part top part and bottom part it is basically
symmetrical.

So it is called a even band. Same this one you can draw the same kind of plane over here okay and
you will see it is also the top and bottom has got symmetrical. However in this case it is not
symmetrical okay and that is why it is called a odd band. right so the lower band has basically picked
within the dielectric as you can see here and if you go for the next higher band that is even band
number two it has got a white line in between the dielectric that tells you that there is a node means
zero uh electric field point okay in the middle of the dielectric okay And for the odd symmetry, you
can also see that the odd band basically contains a nodal line along the x-axis within the dielectric.
And because of this, it is having further higher energy as compared to your even band number 2.
And this mode is less tightly confined to the waveguide as compared to the even modes the reason
being that it is also closer to the light cone okay and you can also see that the mode extends more
into air and it is less into the dielectric So, what | mean to emphasis here is that the electric field
distribution or the field profiles of the mode actually gives you the understanding of why their
energies are low and how the field is localized inside this particular dielectric strip waveguide.

A Two-dimensional Model

» One might wonder ;
Why there is no second odd band, with iwe nodal lines in each block?
The answer is that the frequency of such a state iz high enough to push it into the light cone; it is not guided.

Pericdic dielectric waveguldes have only a finite number of gulded bands, whereas a uniform dielectric wavegulde usuaily
has an infinite number of guided bands

* Periodic Replication of Light Cone:
* The periodic replication of the light cone enforces an upper frequency cutoff for guided modes at w = comfa.
= Implications for Short Wavelengths:

+ At short wavelengths, where ray opties Is applicable, the intultive understanding is confirmed: total internal reflection

cannot effectively guide light along a periodic structure in the ray-optics limit.
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Now, one might wonder why there is no second odd band. Okay, that is something like having two
nodal lines in each block. The answer is that the frequency of such a state would be high enough to
get pushed into the light cone. So if you see here, this one is already very close to the light cone and
when you think of 2 nodal lines that is the odd band number 2 that would be already in the light



cone ok.

So, it is not basically a guided mode ok. So, the periodic dielectric waveguides have only a finite
number of guided bands Whereas, if you compare this with the uniform dielectric waveguide, they
can have infinite number of guided bands. So, this is one important difference between the uniform
waveguides and this periodic dielectric waveguides. Now the periodic replication of light cone in the
case of periodic dielectric waveguide also enforces an upper frequency cutoff for the guided mode,
which is basically omega equals C pi by A. So you can see that no band can actually have higher
frequency than this, right? So that way it is also putting a higher cutoff. So does that have any
implication at short wavelength? The answer is yes at short wavelength where you know you can
apply ray optics the intuitive the intuitive understanding gets confirmed that means you know the
total internal reflection cannot effectively guide light along a periodic medium in the ray optics limit

and that is what happens here as well.

= Application to Three-Dimensional Structures:

+ The principles of periodic dielectric waveguides can be straightiorwardly applied to
three dimensional structures,

*  Specific Example of a Waveguide:

* The waveguide that will be discussed, is a dielectric strip with a series of cylindrical
air hales punched thraugh it.

Fgure & Examgle of d gaitodle diskectiic

* Details of the Waveguide Configuration:

wavagusda, which comhing saa-
» The holesare spaced by ¢ and have a radius of 0.25a. :u':r:r::t:rfﬁ:”;m_“ff‘dp
+ The strip itself has a dielectric constant of 12 .
¢ The width of the strip is a, and its thickness is 0.4a.
* Contextual Environment:
& Currently, the waveguide is imagined to be suspended in ain
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Now let us focus on periodic dielectric waveguides in three dimension. So the previous study was all
about dielectric waveguides using a simplified two-dimensional model. Now let us move on to a
more realistic one which is a three-dimensional model for the periodic dielectric waveguides. So the
principles that we have understood so far from the periodic dielectric waveguides can be
straightforwardly applied to this kind of three-dimensional structure. So, here we have taken
example of an periodic dielectric waveguide which basically has one-dimensional periodicity of air
holes drilled into a dielectric medium ok along the x direction.

That means there is index guiding in the other two transverse direction along y and z. So this one is
particularly easy to fabricate and thatis why it is a popular choice for examples being discussed
because this dielectric strip has a series of cylindrical air holes punched through.



So looks pretty... simple to fabricate this kind of structure. So, the holes are considered to be spaced
or separated by A. So, you can consider center to center to be A and they have a radius of 0.25 A.
The strip is considered to have a dielectric constant epsilon equals 12.

And you consider the width of the strip to be A and its thickness to be 0.4a. So currently the
waveguide is imagined to be suspended in air.

*  Projected Band Diagram Display:

+ The projected band diagram for the structure is [llustrated in flgure,
showing only the wave vectors within the irreducible Brillouin zone.

*  Conserved Wave Vector:

# There is a conserved wave vector k along the direction of periodicity.
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So for the analysis purpose, so when you calculate the band diagram for this particular waveguide,
this is what you will obtain. You will see that this particular line which has a slope of 1 marks the light
line because there is a normalized frequency and normalized wave factor.

So anything above the light line is having the light cone. So, this is the dispersion relation or band
diagram for this slab hole waveguide ok and here as you can see only the irreducible Brillouin zone is
shown. So, we are not showing the now extended version of the Brillouin zone where this would
have been you know mirror imaged ok. So, we are only showing the irreducible Brillouin zone. And
what you can see here that a different type of levelling is used for the bands.



*= Light Cone and Guided Bands:

# The diagramincludes a light cone, where w = ck, representing the
extended states in alr.

+ Below the light line, there are discrete guided bands.
* Complexity of Guided Bands:

* The guided bands are more numerous and complex compared to
previous examples.

B a1 [ 5 = [-1]
# Thisincreased complexity s due to the inclusion of all modes, whereas Wove ymcior kafln
previous diagrams considered anly the TM polarization.
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So we will come into those. And different colors are also used. However, light cone is basically
shaded in darker blue. And it is bounded by this black light line. So what is important here? The
guestion is, is there any conserved wave vector? Yes, there is a conserved wave vector k that is along
the direction of periodicity. So, you can actually take kx here, okay. How about the light cone? As we
discussed that this diagram includes the light cone which marks the area for frequency greater than
equals ck, okay.

That represents the extended states in air and below this light line are the discrete guided bands.
Now, you can see that there are many guided bands and things are complex in this case. So, the
guided bands are more numerous and complex as you compare with the previous example, which
was a simple two-dimensional model. Now, this increased complexity comes from the inclusion of all
modes, okay, because in the previous case, we only considered for TM polarization.



= Mirror-Symmetry Planes of the Waveguide:

+ The three-dimensional waveguide features two mirror-symmetny
planes: z = 0 (perpendicular to the hole axes) and y = O [parallel to
the hole axes).

*  Classification of Modes:

¢ All modes can be classified as either even or odd with respect to

o B i3 1] e 04
reflectionsin the 7 and y planes,
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. Okay, now how about the mirror symmetry plane? Okay, so the three-dimensional waveguide

actually features two mirror symmetry plane, isn't it? So you can actually have one plane z equals 0
that will be lying in the xy plane.

Okay, so you can call it a z equals 0 plane which is perpendicular to the whole axis. Okay, and there
can be y equals 0 plane, which is basically parallel to the whole axis. So you can think of the cylinder
being drilled inside. So the axis of the cylinder is lying along z. Okay, so y equals 0 is basically xz plane
and that tells you that you are basically parallel to the whole axis.

+ lLabeling of Modes:
+ z-even modes are referred to as "E" modes, which are TE-like.

s z-pdd modes are abaled "M," indicating they are TM-like,

i
[
#  Further Specification of Modes: % ]

# Asubscript "e" (even) or "o" [odd) is added to indicate the mode's
symmety under ¥ reflection,

] i i1 1] oé 0%
* An additional subscript, i, is used to identify the band number. Whoa vactor kafln

+ Example of Mode Labeling:

¢+ The second band of modes that are z-even and y-odd is labeled [':[0.21-
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So there are two mirror symmetry plane and based on those you can classify the modes. So all the
modes can be classified as either even or odd with respect to the reflections in the z and y planes. So
let us look into the example. So, the Z even modes are referred to as E modes because they are
mostly like TE modes and Z odd modes are labeled as M because they are more like TM modes.

So, that is why you see E and M being used here. So, this E and M are basically depending on the Z
equals 0 plane symmetry. If it is even, you use E. If it is odd, you use M. Now how about the
subscript? You see O and E written in different places. So here even and odd indicate the mode
symmetry under Y reflection which we have also seen earlier.

So based on that you can identify whether the mode is even or odd okay based on Y reflection. The
first one E and M are decided based on Z reflection. and small e and small o that is even and odd are
decided based on y reflection. Now, what is this number 1, 2, 3 something like that these are
basically additional subscript which identify the band number ok.

So, here now you can see itis e 0 1. So, in z reflection it is even in Why reflection? It is odd, but it is
the lowest energy band and it is band number one. And then you have this ME1, then you have EO2
and so on. OK, so for the events, you number them as 1, 2 and so on. OK, for the odd, then for even,
E even you again start from 1, 2, 3 and so on.

So each type will have its own band numbers 1, 2, 3. So the second band of modes that are Z even
So Z even means it will have capital E. It is Y-odd, so it will be O. And it is second band, so it will be
numbered as 2. So this is how you can read this particular diagram. Now, our job here will be to

identify the band gap in this particular band diagram.

* Band Gaps Within Specific Symmetry Types:
¢ When considering each symmetry type individually, such as the

Ejqny bands, band gaps are present as in previous examples,

»  Significant Band Gap:

* The largest band gap occurs between By, 4y and Ep, 5y, featuring &
2 1% gap-to-midgap ratio,
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So when considering each symmetry type individually, such as, let us try to only focus on E, capital E,
0, and N bands, okay? So you can see that between these two bands, you are actually able to see



the band gap being present. And this is something very similar to the previous example, right? And
the largest band gap here occurs between these two bands. And if you measure them, you can see
that they are almost 21% gap to mid-gap ratio. So that's pretty large band gap. So now, let us further
analyze the modes by studying their electric field distribution.

Periodic Dielectric Waveguides in Three Dimensions

+ The mades within these bands are strongly localized, which
m3a

* Localization of Modes:
L1l 1l esaes s
E, E, ; made

will be further discussed In the next lecture.,

*  Magnetic Field Component: . %
* The dominantcomponent of the magnetic field in these
g S T At

mades is Hy, which |s depicted In figure. i
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So that will help us. towards the localization of the modes. So, this is again you are plotting the z
component of the magnetic field so red denotes positive blue denotes negative so this is what you
have okay you have E(0,1) mode which looks like this so what are these circles that you see here
these are basically those air holes right so you can see that the first band is mostly you know
localized within the dielectric holes. And the second band is mostly within the gap between the two
holes. So this is something interesting to see that difference between the two modes. So here you
can actually see that strongest field is within the air holes here it is in the dielectric fine. Now this
was a schematic structure and this is the one that is reported in the literature and based on the
Comsol modeling okay that we already discussed in few lectures back.
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Analysis of band diagram
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The TA in this course he has reproduced this particular band diagram and you can see that you are
actually able to reproduce the band features more or less similar to the one reported in the
literature. Right. So the accuracy of these two depends on a couple of factors like the amount of
meshing and all those things.

But more or less you can see that the information is kind of reproducible. Right. So, this is done using
this commercially available software COMSOL you can use other softwares also ok to solve for this
one. And what we have simulated we basically simulated this structure ok where we took a rough
guess on A, but then you know this is basically normalized to A. So, it should not matter. So, here the
blue zone actually is the one that is showing the light cone okay and that looks that that shows us
the radiating or the extended modes in air and these are those discrete guided bands okay.

So, this is for this particular structure. You can also do the mode analysis where you can see that the
You know, the first band is mostly concentrated in, you know, in the dielectric, okay, whereas you
will see that the second band. So, what is the difference here? As you can see that this corresponds
to the same wave factor that is K equals 0.8 pi by A. So, you can find out what is what will be your k
by 2 piso k by 2 pi will be 0.4 somewhere here okay and you are talking about normalized frequency
of 0.45 so you are somewhere here so that is basically a air mode okay so this mode is basically in air
So, this is how the mode will look like because the strong fields are mostly in the air. But if you
consider the same wave factor, so you are here 0. 4 and the normalized frequency is 0.12. So, you
are somewhere on this. So, this is basically a guided mode and this is how the electric field
distribution works. will look like okay. So what we understand from here the model analysis that the
modes correspond to the region which lies above the light cone are basically radiating in nature and
that is why the fields are mostly concentrated outside the dielectric structure. Whereas for the
modes which are basically guided modes in this dielectric structure they fall below the light cone
you will see that the fields are mostly concentrated you know within the structure itself. So, this is
also another modelling of the dielectric slab waveguide and you can see that simulation can also



reproduce.
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So, | am showing this that to give you the confidence that you can achieve exactly same results from
your own simulation model also okay. So, that is why | am showing this that here you can also find
out what is the light cone which are the guided mode what will be the band gap and all this
information. So, you can simulate and try and reproduce this results which are mentioned in the
literature right. So, here again you can do the same kind of you know analysis model analysis of the
band diagram you can look for a particular k value or the wave vector value and the normalized

frequency value ok.



So, if you consider again this kind of k equals 0.04 pi by a ok. So, it is very close to this one ok and
normalized frequency of 0.12. So, you are basically looking for radiating modes ok. So, you can
actually see that from the diagram itself. the field diagram itself and if you want to locate something
in the guided modes you have to choose that value k and the normalised frequency and plot this
diagram again you will be able to see the field localization in the case of guided modes.
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So, with that we come to an end to this lecture. And, if you have any queries regarding this, you can
always drop an email to me mentioning MOOC and photonic crystal on the subject line.
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