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 Welcome to NPTEL MOOCs course on machine learning and deep learning fundamentals 

and applications.  In my last class, I discussed the concept of Bayesian decision theory, I 

explain how  to determine the decision surfaces between the classes.  So during the 

discussion, I considered that the class conditional density follows a Gaussian  distribution 

and based on this, I have determined the location of the decision boundary. The  decision 

boundary is orthogonal to the weight vector. If I consider the diagonal covariance  matrix, 

the covariance matrix is same for all the classes and I am considering the diagonal  

covariance matrix.  

For this case, the decision boundary will be passing through the point  𝑥0 and it is 

orthogonal to the weight vector. 

 

  The weight vector is nothing but the difference between these two means one is 𝜇𝑖   and 

another  one is 𝜇𝑗 . So that concept I have explained in my last class. The second case is if 

the  covariance matrix is not diagonal, non-diagonal, then what will be the location of the 

decision  boundary. So that concept I am going to explain today. 

 

 So let me start this class.  So how to find the decision boundary between the classes, the 

condition is the non-diagonal  covariance matrix. So this is a Bayesian decision theory, 

how to determine the decision  surfaces. So in my last class, I have shown that discriminate 

function 𝑔𝑖(𝑥), it is in  the form the weight vector is there, w i is the weight vector and x 

is the feature vector  and I have the bias or threshold. So this is the weight vector. 

 

 This is the bias. So  this weight vector, it is nothing but the inverse of the covariance matrix 

and the mean  of the class omega i and this bias is ln.  So we have determined this. If you 

see my last class, you can see this derivation and  for this what we have considered 

𝜇_(𝑖  ). 𝑥_(𝑡  ) =  𝑥. 𝜇_(𝑖  ). ^𝑇. So this  we have considered. 

 



 So this is the expression for the discriminate function and after this  what I considered the 

case number one, case number one is that diagonal covariance matrix.  The covariance 

matrix is same for all the classes and is a diagonal covariance matrix.  So corresponding to 

this, the weight vector we have derived, the weight vector is nothing  but the mean of these 

two classes. We have considered two classes, the classes 𝜔𝑖 and another class is 𝜔𝑗 , two 

classes we have considered and also we have considered  𝑥0. 

  𝑥0 is the point we can determine like this. 

 

 This is mu i plus mu j minus sigma square.  So, we have determined x naught like this. So 

in my last class also I have shown how  to draw the decision boundary. So suppose this is 

the feature space, so suppose it is  x 1 and x 2, two dimensional feature space. Now 

corresponding to the first class, this  is the mean vector and corresponding to the second 

class, this is the mean vector mu j. 

 

  After this I have to determine the difference between these two means. So that is nothing  

but this is the vector, this vector is mu i minus mu j and that is nothing but the weight  

vector. That is nothing but the weight vector and after this I considered the point 𝑥0.  So 

this is suppose x naught. Now how to draw the decision boundary? The decision boundary  

I have to draw that should be orthogonal to the weight vector. 

 

 So you can see this is  orthogonal to the weight vector and it should pass through the point, 

the point is x naught.  So this is the decision boundary. So decision boundary, how to 

determine? So decision boundary  is orthogonal to the weight vector. The weight vector is 

nothing but the difference between  two means 𝜇𝑖   and  𝜇𝑗and also the decision boundary 

will pass through the point, the  point is x naught. So this is true for this case. 

 

 The case is we have the diagonal covariance  matrix and covariance matrix is same for all 

the classes. So corresponding to this case,  we have this decision boundary.  Now let us go 

to the case number 2. So in the case number 2, we are considering non-diagonal  covariance 

matrix, non-diagonal covariance matrix. So that means in this case we are  considering the 

covariance matrix is same for all the classes. 

 

 So it is same for all  the classes but it is not diagonal. In case number 1, we consider that 

covariance matrix  is a diagonal matrix. But in this case, we are considering a non-diagonal 

covariance  matrix.  So corresponding to this case, decision surface will be 𝑔𝑖𝑗(𝑥) =

𝑊𝑇𝑥 − 𝑥0 = 0 So what is the weight vector? The weight vector in this case, you  can get 

the inverse of the covariance matrix mu i minus mu j and what is x naught? 𝑥0 =
1

2
(𝜇𝑖 + 𝜇𝑗) − 𝑙𝑛 

 



 This probability of omega i divided by probability  of omega j and mu i minus mu j whole 

square and it is the inverse of the covariance matrix.  So these will be the expression for 

the weight vector and the vector x naught.  Now in this case, the decision boundary or I 

can say the decision hyperplane is no longer  orthogonal to the vector 𝜇𝑖 − 𝜇𝑗So you can 

see in this case that for the non-diagonal  covariance matrix, the decision hyperplane is no 

longer orthogonal to the weight vector.  That is actually the weight vector. 

 

 So decision boundary will pass through the point, the  point is x naught. So x naught 

already we have defined. But one difference between the  previous case, the case number 

one, that decision hyperplane is no longer orthogonal to the  vector mu i minus mu j. So 

this is for the case number two.  Now let us consider the classifier. 

 

 That classifier is called minimum distance classifier. And  based on this concept, the 

concept is nothing but the discriminant function. So how to develop  the theory for the 

minimum distance classifier. So let us discuss about the minimum distance  classifier in 

the next slide.  So what is the minimum distance classifier?  

Minimum distance classifier, minimum distance  classifiers. 

 

 So we consider  the equiprobable classes we are considering with same covariance matrix. 

So in this case  one in equation number one what we have determined, if you remember 

that is the expression is  gi x, that is the expression for the discriminant function, one by 

two x minus mu i transpose  one plus. So we have this expression. So you know this 

expression. In my last class  I derived this expression. 

 

 Now we are considering equiprobable classes. So corresponding to  this case equiprobable 

classes with same covariance matrix, I can write this expression gi x is  equal to simply 

one by two x minus mu i transpose and this is a covariance matrix because covariance  

matrix is same for all the classes x minus mu i. So we are considering the equiprobable  

classes. So this part is not so important. So we are writing this expression. 

 

  Now the first case we are considering, this is the first case. Suppose the sigma that  is the 

covariance matrix is a diagonal covariance matrix. If I consider a diagonal covariance  

matrix, diagonal covariance matrix we are considering. So for a diagonal covariance  

matrix because for a classification we have to see the maximum discriminant function.  So 

which one is maximum, that which one is the largest discriminant function out of c  number 

of discriminant function we have to determine. 

 

 So this maximum gi x, the maximum  discriminant function means minimum Euclidean 

distance  from the respective mean points. So this maximum discriminant function means 

minimum  Euclidean distance from the respective mean points. So what is the Euclidean 



distance?  So Euclidean distance I can write like this dE that is the Euclidean distance is 

equal  to so here actually I am showing the Euclidean norm between x and mu i. So this is 

the Euclidean  distance. So maximum discriminant function means the minimum Euclidean 

distance from  the respective mean points. 

 

  So if I consider the constant suppose constant dE constant Euclidean distance suppose we  

are considering that means we will be getting the curves of circles and if I consider the  

high dimensional case then it will be hypersphere. If I consider the constant Euclidean 

distance  I will be getting the curves of circles and if I consider the high dimensional case 

then  it is the hypersphere. So this is the case number 1.  So now go to the case number 2. 

The case number 2 what is the case number 2? Non-diagonal  covariance matrix is this. 

 

 So that means we have to maximize the discriminant function  maximizing gi x is 

equivalent to  minimizing the inverse of the covariance matrix, minimizing  of this. So 

minimizing the discriminant function is equivalent to minimizing the inverse of  the 

covariance matrix norm. So that is actually we have to minimize the  Mahalanobis distance. 

So Mahalanobis distance you can write so already I have defined. So  it is x minus mu i 

transpose x minus mu i this is 1 by 2. 

 

 So now let us consider the  constant Mahalanobis distance constant the Mahalanobis 

distance dm is equal to c. So  corresponding to this I will be getting curves of ellipses and 

if I consider the high dimensional  then I will be getting hyper ellipses. So for constant 

Mahalanobis distance I will be  getting the curves of ellipse or maybe high dimensional I 

will be getting hyper ellipse  or the ellipsoids. So these two cases we are considering. So 

for maximizing the discriminant  function I have to consider minimum Euclidean distance 

and also the same thing for maximizing  the discriminant function gi x I have to minimize 

the Mahalanobis distance. 

 

  So in the first case we have considered the diagonal covariance matrix in the second case  

we are considering non-diagonal covariance matrix. So these two cases I can show like  

this. So what is the meaning of this? So suppose I have two classes so this is the centroid  

of the first class there is a mean of the first class and these are the contours. I  am 

considering some of the contours. So this is my mu 1 and I am considering another class. 

 

  So another class suppose this class. So this is mu 2 mu 1 and mu 2. So what is the weight  

vector? The weight vector is nothing but the difference between these two means. So  this 

is the difference between these two means I am drawing that is the weight vector. Now  my 

decision boundary will be perpendicular or orthogonal to this vector. 

 

 So this is my  decision boundary. This is the decision boundary. So these are the contours 



of equal Euclidean  distances. These are the contours of Euclidean distances.  So you can 

see this is the bisector we are considering and bisector is the decision boundary.  

 So this bisector is orthogonal to the weight vector. 

 

 The weight vector is nothing but the  difference between the two means mu 1 minus mu 

2. So these contours if I consider in two  dimensional it will be circle otherwise this may 

be hypersphere. Similarly if I consider  the Mohalanobis distance. So suppose this is one 

class and we are considering some contours  and  

this is suppose mu 1 and another class we are considering another class is. 

 

 So this  is my mu 2. Now I have to determine the difference between these two means. So 

this is the difference  between these two means. So in this case because we are considering 

non-diagonal covariance  matrix the decision boundary will not be orthogonal to the weight 

vector. So maybe the decision  boundary maybe something like this. 

 

 It is not orthogonal. This is a decision boundary  and this is not orthogonal. This is not 

orthogonal. So if you see we are considering these are  the contours. 

 These contours you can see these are the ellipses. 

 

 In two dimensional these  are the ellipses. So that means in this case we are considering 

equal Mahalanobis distance.  These are the contours of equal Mahalanobis distance. So I 

can write the contours   of equal Mahalanobis distance. So for two dimensional it is the 

contours of the ellipse  and if I consider the high dimensional then we can consider hyper 

ellipsoid. For high  dimensional case we can consider hyper ellipsoid. 

 

 So you can see the pictorial representation  of one is the Euclidean distance another one is 

the Mahalanobis distance. In the first  case we consider the diagonal covariance matrix and 

corresponding to that case you  can see we have the orthogonal vector that vector that is 

the decision boundary is orthogonal  to the weight vector. In the second case for the non-

diagonal covariance matrix the decision  boundary is not orthogonal to the weight vector. 

So this is the concept of the minimum distance  classifier. So let us consider one problem 

on this Mahalanobis distance and the Euclidean  distance and how you can do the 

classification by considering the minimum distance classifier. 

 

  So let us move to the next slide. So suppose this example we are considering. Two classes  

we are considering and same covariance matrix we are considering for these two classes.  

The covariance matrix is sigma. 

 

 So it is 1.1 suppose 1.1 0.3 0.3 1.9 is the covariance  matrix and corresponding to the first 



class the mean is mu 1 and it is 0 0 and this vector  is 0 0 transpose. Second mean is mu 2 

this value is 3 3 and transpose we are considering.  Now the problem is we have to classify 

vector. 

 

 The vector is 1.0 and 2.2 transpose. So first  let us consider the Mahalanobis distance. 

Mahalanobis distance between the first mean  and the Feature vector is suppose x. So 

corresponding to this you can see Mahalanobis distance is  this is the expression for the 

Mahalanobis distance. 

 

 So it is nothing but 1.0 2.2 this  will be 0.95 minus 0.15. So you can check these 

calculations 0. 

 

55 and it is 1.0 and  2.2. So corresponding to this this value will be 2.952. So this is the 

squared Mahalanobis  distance is like this. So this is the distance between mu 1 and x and 

similarly we can determine  the Mahalanobis distance between mu 2 and x. 

 

  That also you can determine this is minus 2. 

 

0 minus 0.8 this is 0.95 minus 1.5 minus  1.5 0.55. So it is minus 2. 

 

0 and minus 0.8. So corresponding to this this distance is  3.672. So you can see these two 

distances we have calculated and based on this this  input Feature vector is assigned to the 

class with the mean vector 0 0 because corresponding  to this mean vector I have the 

minimum distance. So I can write the vector x is assigned to  the class with mean vector a 

mean vector is 0 0 transpose. So based on this Euclidean  distance we can do the 

classification. This is the minimum distance classification. 

 

 So  corresponding to the first mean your minimum distance is 2.952 corresponding to the 

second  mean the distance is 3.672. So then we have to consider the mean mu 1 that is the 

0 0  so that the Feature vector is assigned to the first class.  But again if I consider suppose 

again given vector the vector is the Feature vector and  vector is 1. 

 

0 2.2 transpose is close to the second mean with respect to with respect to  Euclidean 

distance. So if I consider Euclidean distance the result will be different. In  case of the 

Euclidean distance the Feature vector x is assigned to the second class.  But in this problem 

we are considering the co-variance matrix. 

 

 So that is why we have  to consider the Mahalanobis distance. So based on the 

Mahalanobis distance we can determine  the particular class. So we can decide. So that is 

the concept of the minimum distance  classifier.  So this is the fundamental concept of the 



Bayesian decision theory. So up till now we  have discussed how to determine the particular 

decision boundary. 

 

 So in this class I discussed  how to determine the location of the decision boundary. I 

considered two cases in the first  case I considered a diagonal co-variance matrix. The co-

variance matrix is same for all the  classes and corresponding to this I have determined the 

location of the decision boundary.  The decision boundary is orthogonal to the weight 

vector. Weight vector is nothing but  the difference between mu i and mu j the difference 

between two means and it should pass through  the point the point is x naught. 

 

 This is corresponding to the case one. In the case number two we  considered non-diagonal 

co-variance matrix. In this case the decision boundary is not  orthogonal to the weight 

vector but it passes through the point x naught. So that is the  difference between case one 

and case two. After this I discussed the concept of minimum  distance classifier based on 

Euclidean distance and also the Mahalanobis distance. 

 

  So these concepts are quite important. The concept of the minimum distance classifier  

the concept of the Bayesian decision theory and how to determine the decision boundary  

corresponding to the normal distribution. Normal distribution means we are considering  

that class conditional density follows normal distributions. So let me stop here today.  

Thank you. 


