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   Welcome to NPTEL MOOCs course on machine learning and deep learning 

fundamentals and application.  In my last class I discussed the concept of Bayesian decision 

theory. I explained the  concept of the Bayesian decision theory for discrete features. After 

this I discuss or  I explain the concept of normal distribution. I have shown the expression 

for the normal  distribution that is the Gaussian distribution and one is the univariate normal 

density and  another one is the multivariate normal density. Today I will continue the same 

discussion. 

 

  The concept is actually the Bayesian decision theory for normal distribution. So in this  

case you know in case of the Bayesian decision theory we have to consider the class 

conditional  density that is the probability of X given omega i that is nothing but the 

likelihood  or I can say it is a class conditional density. If the class conditional density 

follows normal  distribution then what will be the nature of the decision boundary between 

the classes.  So suppose if I consider large number of features corresponding to a particular 

class then this  distribution the distribution is the probability of X given omega i that 

follows the normal  distribution as part of central limit theorem  

and this concept is actually nothing but the  supervised learning. 

 

 So for each and every classes I have training samples I have feature  vectors and if I 

consider large number of feature vectors then this density the probability  of X given omega 

i that is the class conditional density it follows normal distribution.  So based on this the 

Bayesian decision theory for normal distribution I will explain what  will be the nature of 

the decision boundary between the classes. So let us start the class.  The class is the 

Bayesian decision theory for normal distribution.  

So in my last class  I have shown the normal distribution. 

 

 So if I consider the multivariate distribution  that is I have two parameters one is the mean 



vector and another one is the covariance matrix.  So corresponding to this my density the 

normal density that is the multivariate normal density  is twice pi D by 2 and determinate 

of the covariance matrix we are considering an exponential  minus 1 by 2 X minus here I 

can write X bar X minus mu transpose X minus mu. So this is  the expression for the 

multivariate normal density. So for this what we have considered  we are considering the 

D dimensional vector the vector is X.  

So if I consider this is  the feature vector the D dimensional feature vector and this is my 

covariance matrix expected  value and X minus mu transpose. 

 

 So this is my covariance matrix if I consider D is equal  to 1 this is not a vector. So X is a 

random variable and corresponding to this I have  the univariate density and in this case I 

have two parameters one is the mean another  one is the variance. In case of the multivariate 

I have two parameters one is the mean vector  and another one is the covariance matrix. 

And yesterday in the last class I have shown  the nature of the covariance matrix the 

covariance matrix is like this sigma 1 square sigma 2  square like this I have the diagonal 

I have the diagonal elements like this and what are  the off diagonal elements sigma 1 2 

sigma 1 D sigma 2 1 sigma 2 D sigma D 1 sigma D  2 like this. So this is the covariance 

matrix. 

 

 So the diagonal elements are the variances  of respective Xi and the off diagonal elements 

are the covariance between Xi and Xj. So if  I have only the diagonal elements suppose 

only I have the diagonal elements and suppose  all the off diagonal elements these are 0. 

So these are 0s suppose this is 0 and all  these elements are 0. So that means Xi and Xj are 

statistically independent they are  statistically independent. So that is the case. 

 

 So that means the Feature vector if I  consider X is a Feature vector the Features are 

uncorrelated. I am repeating this if I  consider X is a Feature vector and X1 X2 Xd these 

are the components of the Feature vector  or I can say these are the elements of the Feature 

vector or I can say these are the Features  individual Features X1 X2 these are the Features. 

So Features will be uncorrelated if I have  the diagonal covariance matrix the off diagonal 

elements are 0 then in this case I can say  Xi and Xj are statistically independent or I can 

say suppose if I consider the Feature  vector that the Features are uncorrelated. And after 

this I discussed the concept of  the Mahalanobis distance.  

So this is the distance root over X minus mu transpose. 

 

 So this is  a famous distance and this distance is called the Mahalanobis distance. So later 

on I will  explain the importance of this distance. And if I consider suppose these are the 

samples  some of the samples for a class suppose the class is omega 1 and these are the 

some samples  for another class that class is suppose omega 2. So I have suppose two 



classes. So the center  of this particular cluster is determined by the mean the mean vector 

mu 1 and similarly  the center or the centroid of the second class is mu 2. 

 

 So center of the first class  is mu 1 that is the mean and center of the second class is mu 2. 

So center of the cluster  is determined by the mean vector and the shape of the cluster if 

you see the shape of this  cluster the shape of the cluster is determined by the covariance 

matrix. So last class I  discussed about these concepts. So this is the example of 2D 

Gaussian. So you can plot  the 2D Gaussian maybe in the MATLAB also you can plot. 

 

 So this is one example of the 2D  Gaussian. Now come to the main point. The main point 

is the Bayesian decision theory  and I want to determine the decision surfaces that is a 

decision boundary between the classes.  So what will be the nature of the decision 

boundaries and in this case we are considering  the class conditional density follows normal 

distribution. 

 So let us see the mathematical  analysis for this decision boundaries the decision surfaces. 

 

 So let us move to the next  slide. So likelihood function what is the likelihood function   is 

probability of X given omega i. So this is the class conditional density and suppose  this 

density it follows the normal density. So it is supposed twice by d by 2 and this  is the 

covariance matrix for the class i class omega i 1 by 2 and exponential.  

So we  are considering a d dimensional Feature vector. 

 

 So this is the density that is the class conditional  density or maybe we can consider 

likelihood function omega i with respect to X. So the  class conditional density or the 

likelihood function it is a Gaussian distribution and  we are considering the C number of 

classes 1 2 suppose C number of classes. So in this  case you in this expression we are 

considering the d dimensional Feature vector X is a d dimensional  Feature vector X 1 X 2 

X d. So this is a Feature vector X and we are considering C number of  classes. So this is 

the covariance matrix this is a covariance matrix for the class  omega i. 

 

 So what is actually this covariance matrix?  The covariance matrix for the class omega i 

is nothing but the expected value X minus  mu i X minus mu i transpose. So you know how 

to determine this. So I should write like  this this is the actually for the class omega i and 

that means actually there is a covariance  matrix for the class omega i and what is the mean 

vector? The mean also you can compute  mean is nothing but the expected value of X the 

mean vector you can determine like this.  Now let us consider the discriminate function. 

What is the discriminate function? Discriminant  function that is g i x is equal to l n. 

 

 So we know this expression this is the expression  for the discriminate function. So 



considering this because we have considered that this  class conditional density or the 

likelihood function follows the normal distribution.  So based on this I can determine the 

discriminate function based on this condition. So what  will be the discriminate function? 

It is nothing but it is minus 1 by 2 X minus mu i transpose.  This is a covariance matrix for 

the class omega i plus l n plus c i. 

 

 c i is a constant  suppose so let us consider this as equation number 1. What is actually c 

i? c i is a constant  so it is nothing but this d by 2 l n twice pi minus 1 by 2 l n. So this is c 

i. So we  can find the expression for the discriminate function you can see.  

So from this actually  from the expression from the class conditional density we can 

determine the discriminate  function. 

 

 So let us move to the next slide.  So if I expand the previous equation expanding expanding 

the previous equation so you can  see g i x I can write like this g i x is nothing but minus 1 

by 2 X transpose. So this  is the equation. So just you need to expand the previous equation 

and that is very simple.  So this is suppose the equation number 2. 

 

 So this is by expanding the previous equation.  So here you can see we have a quadratic 

term here this is the quadratic term and this equation  is nothing but non-linear quadratic 

form I can consider non-linear quadratic form.  So we have the quadratic term is also there. 

So you can see this term the first term is  the quadratic term. So suppose I can give one 

example suppose d is equal to 2 dimension  is 2 then corresponding to this you can 

determine the covariance matrix the covariance matrix  will be simply sigma i square 0 0 

sigma i whole square this is the covariance matrix  and from equation number 2 from 

equation number 2 I will be getting the discriminate function  g i x is equal to minus 1 by 

2 sigma i square x 1 plus x 1 square plus x 2 square plus 1  by sigma i square mu i 1 x 1 

plus mu i 2 x 2 minus 1 by 2 sigma i square mu i 1 square  plus mu i 2 square plus so I can 

write this expression for the discriminate function. 
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also you  should remember that mu into the x t is equal to x mu t. So you have to apply this 

also  to get this equation number 3 from equation number 2 from equation number 2 you 

can apply  this one to get equation number 3 from equation 2 to equation number 3. So this 

is the general  from of the discriminate function this is general from the discriminate 

function. So  in my previous classes also I have shown this from so this is the weight vector 

is Wi and  also I have the bias and I have shown that the decision surfaces or the decision 

boundaries  are the hyper planes. Now I want to show or I want to locate or I want to fix 

the decision  boundary between the classes. 

 



 So let us see how we can do this.  So let us move to the next slide the case number 1 I am 

considering. So in the case  number 1 we are considering this case diagonal covariance 

matrix   with equal elements. So we are considering this case that is the diagonal covariance  

matrix with equal elements. So what is the meaning of this? The meaning is this meaning  

actually the Feature vector is mutually uncorrelated  of same variance. So this is the 

meaning of this diagonal covariance matrix with equal  elements. 

 

 Sorry it should be equal is there. Diagonal covariance matrix with equal elements.  So this 

point we are considering diagonal covariance matrix with equal elements that  means the 

Feature vector is mutually uncorrelated and of same variance. So corresponding to  this my 

covariance matrix is sigma square I, I is the identity matrix. So it is a d  dimensional identity 

matrix. So corresponding to this from the equation number 3 the equation  number 3 I can 

write like this g i x is equal to 1 by sigma square mu i transpose x plus  w i naught. 

 

 So I can write like this. Since the one point you should remember sigma inverse  is nothing 

but 1 by sigma square sigma whole square sigma square and i is the identity  matrix I can 

write like this. So equation number 3 I can write like this. So what about  the decision 

hyperplanes? Decision hyperplanes g i j x is equal to g i x minus g j x and  that is equal to 

w transpose x minus x naught that is equal to 0. So this is the equation  of the decision 

boundary. Suppose w transpose x 1 plus w naught this w transpose x 1 plus  w naught I can 

say is equal to suppose w transpose x 2 plus w naught. 

 

 So w naught so  from this I can write w transpose x 1 minus x 2 is equal to 0. Actually I 

am applying  this to get this one. I am applying this to get this one. So you can see I am 

getting  the equation of the decision hyperplanes and the weight vector is nothing but the 

weight  vector is nothing but the difference between these two means mu i and mu j. The 

weight  vector is nothing but the difference between these two means and also what is x 

naught?  x naught is a point actually x naught is nothing but 1 by 2 mu i plus mu j minus 

sigma  square ln  mu i minus mu j. 
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 So this is x naught. So these are very important these two equations  are very important. 

One is I have determined the expression for the decision hyperplanes  that is g i z and 

another one is the x naught. So this decision surfaces decision surface  is a hyperplane 

passing through the point passing through  the point what is the point? The point is x naught 

passing through the point x naught.  So these two equations one is the equation of the 

decision hyperplane so maybe I can  change my color of the ink. So this equation this is 

the equation for the decision hyperplane  and also we are considering the x naught x naught 

is a point through which the hyperplane  is passing. 

 



 So these two equations are very important one is the equation of the decision  hyperplane 

and another one is the x naught that is the decision surface is a hyperplane  passing through 

the point the point is x naught.  So now I want to determine what will be the decision 

boundary. So let us move to the next  slide. So we obtain these two equations g i z x that is 

the decision hyperplane that  is nothing but W transpose x minus x naught. So this is the 

important equation this is  the equation of the decision hyperplane and what is the weight 

vector? The weight vector  is nothing but the difference between these two means mu i and 

mu j and what is x naught?  x naught is the point through which the hyperplane is passing. 

 

 So it is mu i plus mu j minus  sigma square ln.  So we have these two important equations 

one is the equation of the decision hyperplane  and another one is x naught and one 

important point is the weight vector is this this is  the equation of the weight vector that is 

nothing but the difference between these two  means. Now suppose one condition I am 

considering suppose this prior probabilities probability  of omega i is equal to probability 

of omega j. So corresponding to this condition what  will be the decision boundary? So if 

I consider this case then x naught is equal to 1 by 2  mu i plus mu j. So x naught will be 

like this so the vector x naught is 1 by 2 mu i plus  mu j that is the expression for this. Then 

the hyperplane the meaning is actually  the meaning of this what is the meaning of this? 

The meaning is the hyperplane passes  through the mean the mean of mu i and mu j. 

 

 So that is the meaning of this because  I am taking the average of this 1 by 2 mu i plus mu 

j. So hyperplane passes through  the mean of mu i and mu j corresponding to the case the 

case is if the probability of  omega i is equal to probability of omega j and one important 

sentence I can write that  important sentence is the important statement is hyperplane is 

orthogonal  to the vector W that is mu i minus mu j. So W is the weight vector so from this 

expression  you can see because W transpose dot x minus x naught so I have to put d here 

x naught  is a vector W transpose x minus x naught is equal to 0 that is the meaning is so 

from  this expression actually from this expression I can write like this the hyperplane is 

orthogonal  to the vector the vector is the weight vector and that is nothing but the 

difference between  these two means. So this is the important consideration so always you 

have to follow  this one that the hyperplane is orthogonal to the weight vector that is the 

difference  between the means mu i and mu j. Now let us consider the case if I consider  so 

suppose the probability of omega i is less than omega j the meaning is the hyperplane  the 

hyperplane is located closer to closer to the mean mu i so that means if the probability  of 

omega i is less than probability of omega j then hyperplane is located closer to mu  i that 

is it is located closer to the cluster corresponding to the class omega i. 

 

 So I have  two clusters one is the cluster corresponding to the first class omega i and 

another cluster  corresponding to the class omega j. So corresponding to the first cluster 

omega i the mean is mu  i so if I consider this case the probability of omega i less than 



probability of omega  j then the decision boundary will be located closer to the first cluster 

that is closer  to the mean of the first cluster. Similarly if I consider probability of omega  i 

greater than probability of omega j this second condition then the same thing will  

applicable the hyperplane is located closer to mu j that means we have to consider the  

second cluster. So the hyperplane or the decision boundary will be located closer to the 

second  cluster corresponding to the class omega j and if this variance sigma square is small  

with respect to with respect to the difference between these two means the distance between  

the two means and we are considering the Euclidean norm the location of the hyperplane  

location of the hyperplane is rather insensitive to the values of these two prior probabilities  

probability of omega i and probability of omega j.  So that means the sigma square that is 

the variance is small with respect to the difference  between these two means the location 

of the hyperplane is insensitive to the values of  these two probabilities. 

 

 What is the meaning of this variance the variance is small the  small variance I can say 

what is the meaning of small variance and small variance means  random vectors random 

vectors are clustered within a small radius  around their mean values. So random vectors 

are clustered within a small radius around  their mean values. So that means it is nothing 

but the compact clusters the clusters are  very compact clusters. So if I consider small 

variance the random vectors are clustered  within a small radius around their mean values. 

So that means the compact clusters for the  compact clusters the location of the hyperplane 

is insensitive to the values of the probability  probability of omega i and probability of 

omega j. 

 

  That means the meaning is for the compact cluster you have sufficient independence or  

sufficient freedom to place the decision boundary between the classes. That means it is 

easy  to place the decision boundary between the classes for the compact clusters. So now 

let  us see how to get the decision boundary based on these conditions. So one condition 

already  I have explained that is the hyperplane is orthogonal to the weight vector. 

 So this first  condition is very important and second condition is the hyperplane will pass 

through the point  the point is x naught. 

 

 So second point is x naught. So already we have derived the equation  for x naught. So 

based on these two conditions let us draw the decision boundary between  the classes. So 

let us move to the next slide. So I am drawing this decision boundary. So  suppose we are 

considering this feature space and two features x 1 and x 2 suppose. 

 

 Now  let us consider this is the mean. The mean is mu i corresponding to the class. I have  

two classes. The two classes are omega i and omega j. So these two classes we are 

considering  and another mean we are considering suppose this is the mean of the second 

class. 



 

 So it  is mu j. Now I want to determine the difference between these two means. The 

difference between  these two means is this. So this is the difference between these two 

means that is nothing but  this vector is mu i minus mu j and that is nothing but the weight 

vector. That is nothing  but the weight vector mu i minus mu j is nothing but the weight 

vector. And after this I am  considering another vector that vector is x naught. 

 

 So we have derived the equation  for x naught. Now how to draw the decision boundary. 

So I have to draw the decision boundary.  The decision boundary should be orthogonal to 

the weight vector and it should passes  through the point. 

 

 The point is x naught. So this is my decision boundary. This is the  decision boundary and 

you can see it is orthogonal to the weight vector. It is orthogonal to  the weight vector. 

Weight vector is nothing but the difference between mu i and mu j.  So this is I can say as 

decision boundary between these two classes and in this case  you can see the decision 

boundary is orthogonal to the weight vector and it passes through  the point x naught. 

 

 So in this case we have considered that covariance matrix is sigma  square i. So already I 

have explained that the diagonal covariance matrix with equal  elements that means the 

Feature vector is mutually uncorrelated and has same variance. So i is  the identity matrix. 

So this is the procedure to draw the decision boundary.  Now let us consider that is we have 

considered that variance is very small which respect  to this difference between these two 

means. 

 

 So this is nothing but the compact clusters.  So for the compact clusters what will be the 

decision boundary. So let us draw the decision  boundary for the compact clusters. 

 

 The procedure is same. Same procedure we have to apply.  So x 1 and x 2. So we are 

considering the Feature space and first I am considering this  vector that is nothing but the 

mu i and we are considering this is the cluster and another  is cluster and that is suppose 

the cluster is something like this and this is the mu  j one is mu i and another is mu j. This 

is mu i and mu j and that is corresponding to  the class omega i and this is the class omega 

j. So these are compact clusters. 

 

 So the procedure  is this. So I have to determine the weight vector. The weight vector I 

can determine  that is nothing but the difference between these two means. So this is the 

weight vector. 

  So this is weight vector is w and that is nothing but the difference between mu i and  mu 

j. 

 



 After this we are considering the point. The point is x naught. This is the x naught  and 

after this I have to draw the decision boundary that is the bisector I have to show.  So this 

decision boundary will be perpendicular or orthogonal to the weight vector and it  is passing 

through the point. The point is x naught. So this is for the compact case. 

 

  So you can see it is easy to place the decision boundary between the classes. So these are  

the compact clusters and actually the compact means samples with high probability. So if  

the samples with high probability then I will be getting the compact clusters. Samples  with 

high probability means is a compact clusters. So for the non-compact clusters it is very  

difficult to place the decision boundary. 

 

 So I can show that one also pictorially. So  the same procedure. So this is suppose one 

cluster and suppose this is another cluster.  So corresponding to the first cluster I have the 

mean. The mean is mu i and corresponding  to the second cluster I have the mean mu j and 

we can find we can find the weight vector  the procedure is same. So this is the weight 

vector and the point also we have to show  the point is x naught. 

 

 So this is x naught. Now I have to draw the decision boundary.  Now this is the decision 

boundary that is also orthogonal to the weight vector and it  is passing through the point x 

naught. So this case is the non-compact case. So in the  non-compact case the location of 

decision hyper plane is much more critical. It is very  difficult to place the decision 

boundary between the classes. That means the location of the  decision hyper plane is much 

more critical as compared to the compact case. 

 

 So this is  the procedure how to get the decision boundary between the classes how to find 

the location  of the decision boundary between the classes. So first point you have to 

remember that the  decision boundary should be orthogonal to the weight vector. The 

weight vector is W  and that is the difference between these two means mu i and mu j. 

 

 The second point is the  decision boundary should be passing through the point. The point 

is x naught. This is  for case number 1. In case number 2 we will be considering the 

covariance matrix is not  diagonal. The covariance matrix is same for all the classes but it 

is not a diagonal covariance  matrix. In case number 1 we consider the diagonal  covariance 

matrix. 

 

 So this case number 2 I will be discussing in my next class. So  what is the decision 

boundary for the non-diagonal covariance matrix. So that we have to discuss  and after this 

I will discuss the minimum distance classifiers based on Euclidean distance  and based on 

Mahalanobis distance. So in this class I discussed the concept of the Bayesian  decision 

theory. I have explained the concept how we can determine the decision boundary  between 



the classes. I have considered that the class conditional density that is the  probability of x 

given omega i it follows the normal distribution. 

 

 And based on this  I have determined the expression for the discriminate function.  After 

determining the expression for the discriminate function I want to determine  the 

hyperplanes or the decision boundary between the classes. So in the case number 1 I have  

considered the diagonal covariance matrix. For the diagonal covariance matrix the decision  

boundary will be passing through the point, point is x naught. And also the decision 

boundary  is orthogonal to the weight vector, the weight vector is w. 

 

 The weight vector is nothing  but the difference between the mean mu i and mu j. So based 

on these two conditions  the first condition is the decision boundary should be orthogonal 

to the vector, the vector  is the weight vector. And it should pass through the point, the 

point is x naught. This is  for case number 1. The case number 1 is the covariance matrix 

is same for all the classes  and we are considering the diagonal covariance matrix. 

 

  In the next class I will be considering the case number 2. In case number 2 we are 

considering  the covariance matrix is same for all the classes but it is a non-diagonal 

covariance  matrix. So for this I have to determine the location of the decision hyperplane 

and how  to determine the decision hyperplanes and the decision boundary. So that concept 

I will  be explaining in my next class. So let me stop here today. Thank you. 


