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  Welcome to NPTEL MOOCs course on machine learning and deep learning fundamentals 

and applications.  In my last class, I discussed the concept of Bayesian decision theory. 

And after this,  I discussed the concept of the probability of error and risk. And based on 

this, I discussed  the concept of zero one loss function. With the help of this function, I can 

take a classification  decision. After this, I discussed the concept of the discriminate 

function. 

 

 The discriminate  function is  𝑔𝑖(𝑥). So, for c number of classes, I have c number of 

discriminate function. And I  have to pick the largest discriminate function.  

And based on this, I can select a particular  class. 

 

 Today, I will continue my same discussion that is a Bayesian decision theory. But in this  

case, I will consider discrete features. So, what is continuous feature and what is discrete  

features I am going to explain. And based on this, I will be explaining the concept of 

Bayesian  decision theory. So, let us see the Bayesian decision theory for discrete features. 

 

 So,  Bayes decision theory for discrete features. So, let us start this concept. So, in case of  

the continuous case, if I consider continuous case, Feature vector, the Feature vector is x,  

Feature vector x could be any points in d dimensional  euclidean space.  

So, that is actually 𝑅𝑑. So, this is for a continuous  case. 

 

 Feature vector x could be any points in d dimensional euclidean space 𝑅𝑑 . So, if I consider 

discrete case, that means we are considering discrete features.  So, in case of the discrete 

case, this Feature vector x can assume only one of the m discrete  values. So, x can assume 

any only one of the m discrete values.  



So, maybe discrete  value we can consider V1, maybe V2, these are the discrete values we 

can consider. 

 

 So,  in case of the continuous we considered integration, this we considered the integration 

of the  class conditional density, that is the likelihood. And in case of the discrete case, this 

is  replaced by summation. This is the summation over x for all the Feature values and 𝜔𝑗. 

So, corresponding to this our Bayes formula  will be already I have explained the Bayes 

formula. You know this formula, this probability  of 𝜔𝑗|𝑥 that is nothing but the posterior 

probability and this probability  𝑥|𝜔𝑗 that is the likelihood or you can say the class 

conditional density  that is the prior probability and denominator is the evidence. 

 

 So, evidence already you  know how to write the evidence, evidence is nothing but for c 

number of classes, it is  probability of 𝑥|𝜔𝑗into probability of 𝜔𝑗. So, you know this one.  

Based on the Risks, what is the decision rule? The decision rule already you know what  is 

the decision rule? I have to select a particular action, I have to select a particular action,  

action is suppose 𝛼𝑖, this action I am selecting for which my Risks is minimum. What  is 

my Risks? My conditional Risks is the conditional Risks is R the action is 𝛼𝑖  and that  is 

taken for the Feature vector, the Feature vector is x is minimum.  So, this is my decision 

rule. 

 

 So, select a particular action, the action is 𝛼𝑖  for  which the conditional Risks that is the R 

𝛼𝑖|𝑥. So, that should be minimum.  So, this is the decision rule. Now, let us consider the 

independent binary Features. So,  what is independent binary Features? Independent binary 

Feature. 

 

 So, what is independent binary  Features? So, Feature values or maybe you can write the  

Feature vector, the Feature  vector are binary value. And we are considering, we are 

considering they are conditionally  independent, conditionally independent. They are 

conditionally independent. So, the Feature  vector already you know how to write this is 

the D dimensional Feature vector and these  are the components of the Feature vector.  

 So, these are D dimensional Feature vector. 

 

 So, this is a Feature vector. So, this Feature  vectors are binary valued and conditionally 

independent. So, this actually this is the  concept of the Naive Bayes classifier. This is the 

concept of the Naive Bayes classifier.   

So, we are considering the Feature vector are binary valued and conditionally independent. 

 

  So, now, let us consider a two class problem. Two class problem we are considering now.  



Suppose I am considering one Feature xi, this is a binary we are considering the binary  

valued. So, either it may be 0 or 1 this value that means 0 means no or yes, no or  yes.  

So, we are considering the Feature value xi, the Feature is xi either it may be 0 or  1 that 

we are considering. 

 

 So, the probability Pi we can determine the probability xi is  equal to 1 corresponding to 

the class Omega 1. So, that means this Feature gives the yes  answer, the answer is 1 for 

the class Omega 1. And what is the probability Qi, Qi is the  probability Pr and xi is equal 

to 1. So, it gives the answer yes for the class 𝜔2.  So, I am considering these two 

probabilities, probability Pi and Qi corresponding to the  Feature, the Feature is xi. 

 

 So, xi is equal to 1 that means it is giving the answer the  answer is yes, corresponding to 

the class that class is 𝜔1 or 𝜔2, because  we are considering two classes. So, if Pi is greater 

than Qi, suppose this probability  Pi is greater than Qi that means what is the meaning of 

this, the ith Feature we are considering  the ith Feature give ith Feature gives a yes, the 

answer is the yes, yes answer more frequently,  more frequently when the state of the nature 

is Omega 1 that means the class is 𝜔1 when it is 𝜔2. So, that means if the probability Pi is 

greater than Qi and here  we are considering ith Feature, this ith Feature gives yes answer 

more frequently when the  state of the nature is 𝜔1. So, that means it is favoring the class 

𝜔1. This  is the meaning of this probability. 

 

 So, we are determining the probability Pi and Qi  and based on this probability we can 

take a classification decision.  So, move to the next slide. So, now, because we are 

considering the conditional independence,  conditional independence we are considering. 

So, what is the class conditional probabilities?  So, what is the class conditional 

probabilities? That is the probability of 𝑥|𝜔1that is the class conditional probability and 

since we are considering this binomial  distribution. So, binomial distribution is i is equal 

to 1 to d because the dimension  of the Feature vector is the probability Pi Xi 1 minus Xi 

that we are considering this  probability we can determine and similarly we can determine 

the probability of X given  Omega 2 that also we can determine. 

 

 So, this is nothing but the binomial distribution.  So, Qi so, I can determine the probability 

of 𝑥|𝜔2 after this we can determine  the likelihood ratio. So, likelihood ratio already I have 

defined in my previous classes.  So, likelihood what is the likelihood the probability of 

𝑥|𝜔1and probability  of 𝑥|𝜔2. So, this ratio we can determine that is nothing but i is equal 

to  1 to d. 
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 So, this  expression I know. So, this expression I am getting just I am putting the value of 

the  likelihood that I am getting. So, from this gx, this gx already I have determined. So,  I 

can write the gx like this gx is equal to summation i is equal to 1 to d and this  is Wi Wi 

that Wi is the weight not the class in product class we are considering Omega  i but in this 

case we are considering the weight, weight is Wi plus W naught.  So, what is Wi? Wi is 

nothing but ln that is the weight. So, this is the weight Wi is  the weight. 

 

 So, it is i is equal to 1 to so we are considering the d dimensional so it  is like this and W 

naught is the bias is a bias. So, bias is nothing but summation i  is equal to 1 to d ln. So, 

this should be 1 minus Pi 1 minus Pi 1 minus Qi plus ln probability  of Omega 1 and 

probability of Omega 2. So, this actually we have obtained from this,  this we have obtained 

from this, these two I am defining like this. So, this Wi that is the  weight we can represent 

like this weight is nothing but ln Pi into 1 minus Qi divided by  Qi into 1 minus Pi that is 

the weight and W naught is the bias. 

 

 So, this W naught is the bias and  this Wi is the weight. So, bias also I can write like this. 

Now based on this weight Wi and also  based on the bias W naught I can take a 

classification decision.  

So, here you can see  I am repeating this the class conditional probabilities I am 

representing like this.  This is the binomial distribution and from this we can determine the 

likelihood ratio. 

 

 So,  this is the likelihood ratio we have determined. So, from this expression I am 

determining the  discriminant function. So, this is the discriminant function.  

So, discriminant function I am  representing like this gx is equal to Wi xi plus W naught 

and summation I am taking from i is equal  to 1 to d because we are considering d 

dimensional Feature vector. 

 

 So, this is the expression for gx.  Now, let us discuss how you can take a classification 

decision based on this Wi, Wi is  the weight. So, I am moving to the next slide. So, what 

you have obtained gx already I have  obtained that is nothing but the summation i is equal 

to 1 to d the weight vector is Wi  is the weight and this is xi plus W naught, W naught is 

the bias and what is Wi, Wi is equal to  ln Pi 1 minus Qi and Qi 1 minus Pi. So, in this case 

i is equal to 1 to up to d  and W naught already I have defined summation over that is from 

i is equal to d ln 1 minus Pi  1 minus Qi plus ln probability of omega 1 and probability of 

omega 2 that expression already  I have defined. Now, let us see how to take a classification 



decision. 

 

  Decide the class omega 1 if gx that is a discriminate function gx is greater than 0  and you 

can select the class omega 2 if the discriminate function gx is less than 0.  So, based on this 

condition you can take a classification decision.  Suppose if Pi is equal to Qi these two 

probabilities are equal.  So, what feature we are considering i feature we are considering. 

So, xi gives no information  about the about the class or you can write the state of the nature  

state of the nature or maybe the class. 

 

  And in this case corresponding to this this Wi, Wi is the weight Wi is equal to 0 that 

means  it is called Feature independence.  So, you can understand that if I consider these 

two probabilities Pi and Qi they are equal  then the i th feature the i th feature is the xi is 

the i th feature gives no information about  the state of the nature and corresponding to this 

Wi. So, from this expression Wi will be 0.  If I consider Pi is equal to Qi then Wi will be 0 

and this condition is called Feature independence.  The second condition is if Pi is greater 

than Qi this probability Pi is greater than Qi  then what will happen from this expression 

then 1 minus Pi will be less than 1 minus Qi  and in this case what will be the width the 

width Wi that will be positive. 

 

  So, that means the meaning is decision, decision will be  will be in the favour of in the 

favour of omega 1. So, this is the case if Pi is greater than Qi  then from the expression you 

can see 1 minus Pi will be less than 1 minus Qi then this weight if  you see this weight the 

expression for the width Wi that will be positive and decision will be in  the favour of the 

class the class is omega 1 and similarly if Pi is less than Qi.  So, what will happen this 

weight Wi that will be negative that will be negative  and the decision and decision will be 

in favour of  in favour of the second class the second class is omega 2. So, this is the case 

and if this  probability omega 1 is greater than probability of omega 2 that is the prior 

probability.  So, that means it increases bias, bias is W naught. 

 

 So, this is the expression for the bias  you can see this is the expression for the bias. So, it 

increases the bias W naught. So, that means  decision in favour of  omega 1 and if the 

second condition, second condition is this probability of omega 2  is greater than 

probability of omega 1. So, that means it decreases the bias  and whenever it decreases the 

bias. So, decision is in favour of that class that class is omega 2. 

 

  So, here you can see from this discussion from this weight the weight is Wi and the bias 

is W naught  you can take a classification decision. So, in this discussion what we are 

considering,  we are considering discrete features. So, that means the feature vector x can 

assume  only one of the m discrete values, the discrete value V1, V2, V3 we have already 

explained  and also we have considered the feature vectors are binary valued.  So, maybe 



it may be either the value is 1 or maybe 0 and also we are considering the  concept of 

conditionally independent. So, based on this we have determined the probability Pi  and 

the probability Qi and after determining the probability Pi and Qi what we have determined,  

we have determined the likelihood ratio and from the likelihood ratio we have determined 

the  discriminate function. 

 

 So, the discriminate function is represented in this from the from is  the weight is Wi and 

the bias is W naught. Now, after determining this discriminate function  based on this Wi 

and based on the bias W naught, we can take a classification decision. So, this is  about the 

Bayesian decision making or Bayesian decision theory for discrete features. So,  up till 

now, I discuss the concept of the Bayesian decision theory and that is the fundamental  

concept of Bayesian decision theory and in this class I discuss the concept of the Bayesian  

decision theory for discrete features. 

 So, in my previous classes, I discussed the concept of  performance evaluation of a 

classifier. 

 

 So, for this I considered like the confusion  matrix. So, how to determine the confusion 

matrix and from the confusion matrix you can determine  the percentage of accuracy, 

percentage of misclassification and also the rejection  percentage. So, all these parameters 

you can determine from the confusion matrix.  

 After this I discuss the concept of ROC that is the receiver operating characteristics. 

 

  So, you can determine true positive, false positive. So, all these parameters you can  

determine and these parameters are required for performance evaluation of a classifier.  So, 

in continuation of this, I want to explain it again.  Now, let us see how to evaluate the 

performance of a classifier. So, evaluation of a classifier.  

 Evaluation of a classifier that is the performance evaluation of a classifier. 

 

  So, in my previous discussion that is in the discussion of the probability of error,  I have 

shown how to plot the class conditional density with respect to the feature vector.  I am 

plotting it again. So, and this is my class conditional density, the probability of X given  

omega i that we are plotting with respect to this X. And suppose I am considering two 

classes.  For the first class, suppose I am drawing the distribution and that is nothing but 

the Gaussian  distribution, the Gaussian distribution for the first class. 

 

 So, this is omega 1 for the first  class. Similarly, I can consider another distribution that is 

the Gaussian distribution  for the second class. So, the second class is omega 2.  So, both 

are Gaussian distribution and corresponding to the first class,  suppose corresponding to 

this Gaussian, the mean is suppose mu 1 and corresponding to the  second Gaussian, the 



mean is suppose mu 2. Now, I want to determine the performance of the  classifier. So, for 

this suppose I am considering one threshold value of X. 

 

  So, this is suppose X star we are considering that threshold we are considering.  Now, 

there may be these cases. The first case is suppose the probability of X greater than  the 

threshold, the threshold is X star. And in this case, we are considering X is assigned  to the 

class omega 2. That means it corresponds to true positive or I can say it is hit. 

 

  So, the concept is if X is greater than the threshold, the threshold is X star,  then X is 

assigned to the class, the class is omega 2.  So, that means this portion we can consider, 

there is a true positive.  This is the first case. In the second case, what I can consider, the 

X is greater than the threshold,  the threshold value is X star. And in this case, what I am 

considering, X is assigned to the class  omega 1. 

 

 So, X is assigned to the class omega 1. That means I have to consider the region,  the 

region I can consider like this. Suppose I can consider this region. So, this region is like  

this, this is the region. So, that means this region, this region is nothing but false positive. 

 

  Or maybe I can say the false alarm. So, corresponding to this case, the second case,  the 

probability we are determining X is greater than the threshold and X is assigned to the class  

omega 1. And that is nothing but a false alarm or false positive, false positive.  Or I can say 

it is alarm, false alarm.  Next, I am considering another condition, the probability of X less 

than the threshold,  the threshold is X star. 

 

 And in this case, X is assigned to the class omega 2.  So, corresponding to this you can see 

that is nothing but if I consider this portion,  this portion that I can consider as false 

negative.  So, actually the class should be omega 1, but I am considering it as omega 2. So,  

in this portion that is nothing but the false negative.  Or that means I can say it is miss, that 

is a miss classification.  So, actually it should be omega 1, but I am considering X is 

assigned to the class omega 2. 

 

  So, that means I can say it is a false negative.  Okay, so finally I am considering another 

case that X is less than the threshold X star.  And in this case, X is assigned to the class 

omega 1, that class.  So, that means it is nothing but the correct rejection, the correct 

rejection  So, I can say another word correct rejection true negative.  So, that means this 

portion I can say, this portion is true negative. 

 

  Or I can say rejection.  So, you can see I am considering all these four conditions. In the 

first case, you can see if  X is greater than the threshold, X is assigned to the class, the class 

is omega 2, that is actually  the true positive. But in the second case, if you see this case, if 



the X is greater than the  threshold, but X is assigned to the class omega 1, actually it should 

be omega 2.  So, that is why I can say it is a false positive. And similarly, in the third case,  

if X is less than the threshold, X is assigned to the class omega 2. 

 

  So, that means nothing but it is a false negative. Actually, I should consider X should 

belong to  omega 1. So, X should be assigned to the class omega 1. But wrongly I am 

considering X is  assigned to the class omega 2. And finally, what we are considering, if 

the X is less than the  threshold X star, X is assigned to the class omega 1. 

 

 And that is nothing but true negative.  So, all these parameters we can determine based on 

these conditions.  So, now for performance evaluation, one parameter, that parameter I can 

consider as  Discriminability ratio, that ratio we can consider.  That is suppose I am defining 

like D, D is the discriminability ratio. And that is nothing but  the separation between mu 

2 and mu 1. 

 

 And also I am considering this sigma, sigma of these two  Gaussians. So, suppose this is 

the sigma for this Gaussian. And also I am considering same sigma,  the spread of the 

Gaussian is determined by the sigma, the parameter sigma.  So, sigma we are considering. 

The sigma is same for both the Gaussians. And in this case for this  parameter, that is the 

parameter is the Discriminability ratio, we are considering  the separation between two 

means divided by sigma. 

 

 So, that means, if the separation between these two  is high, then what I can consider the 

accuracy will be increase. Otherwise, the misclassification  will take place. The separation 

between these two means. 

 

 So, that means I can write  high D is desirable. So, a high D is desirable. Because if I 

maximize the separation between  these two Gaussians, then what will happen? My false 

alarm will be less, the misclassification  will be less. But if I consider suppose mu 1 is equal 

to mu 2, then corresponding to this,  discriminability ratio will be zero. So, suppose if I 

consider mu 1 is equal to mu 2,  that means these two Gaussians, the two Gaussians will 

be like this.  This will be overlapping. So, this is one Gaussian and suppose another 

Gaussian is suppose  these two will be overlapping. 

 

 These two means will be same mu 1 is equal to mu 2.  Then in this case, this is the worst 

performance of the classifier,  then you will be getting the misclassification. So, this is not 

desirable. So, we have to increase  the separation between mu 1 and mu 2. That means, if 

I increase the separation between the mu 1 and  mu 2, this parameter that discriminability 

ratio that will increase. So, corresponding to D is  equal to zero, the performance is very 

bad for this Bayesian classifier. 



 

 So, based on this,  I can define one characteristics already you know what is the 

characteristics that is the receiver  operating characteristics based on this discriminability 

ratio. So, move to the next slide.  So, in the discriminability ratio, so, we consider the 

parameter D, that is nothing but  the separation between the two means mu 2 minus mu 1 

divided by the sigma, the parameter sigma.  And based on this, we can consider receiver 

operating characteristics,  receiver operating characteristics is nothing but ROC. So, what 

is the receiver operating  characteristics? So, I am plotting that is I am plotting between 

what that is true positive,  true positive, true positive means hit and false alarm, that is the 

false positive,  false positive or I can say the false alarm I am plotting. 

 

 So, corresponding to this discriminability  ratio. So, if I consider suppose D is equal to 

zero. So, I will be getting the curve or  something like this, this is for D is equal to zero, 

the discriminability ratio zero.  If I increase the discriminability, this ratio if I increase, so, 

this is the curve,  suppose the corresponding to D is equal to one. And suppose I can see if 

I increase the separation  between the means of these two Gaussians. 

 

 So, this is the curve corresponding to D is  equal to two. And like this, if I increase the 

separation between these two means, then I will  be getting the ROC curve corresponding 

to D is equal to three. So, that means I am increasing  the separation between these two 

means. So, in this case, what we are considering,  suppose we are varying the threshold, 

we are varying the threshold  x star. So, what will happen, the true positive, that is the true 

positive probabilities  and false positive probabilities will vary with respect to the threshold 

x.  So, that means based on the threshold, what I can say that is the true positive, true 

positive  and false positive will vary  with the threshold  x star. 

 

 So, you can see, if I vary the threshold x, you can control the true positive and the false  

positive, because the true positive and the false positive depends on x. So, in my previous 

slide,  I have shown, so this is the threshold, if you see this is the threshold.  So, based on 

this threshold, I can adjust this true positive, true positive means the  hit probabilities and 

also the false positive, false positive means alarm probabilities,  alarm probabilities I can 

sense that depends on the threshold x star. So, here you can see  based on the 

discriminability ratio, I am plotting the ROC curve. 

 

 So, this curve is nothing but the  ROC that is the receiver operating characteristics. So, 

this concept already I have explained in my  previous classes, but in this case, what I am 

considering, I am considering the bayes decision  theory to explain this concept. So, how 

to determine the performance of a classifier.  Now, after this, I am discussing that the 

concept of the Bayesian decision surfaces,  that is what is the decision surface between two 

classes or maybe the more classes,  that concept I am going to explain. So, before 



explaining this, I want to explain the concept of  the normal and the Gaussian distribution. 

 

 So, what is normal and Gaussian distribution?  So, let us see what is the normal 

distribution.  So, normal distribution, this density, I can write like this 1 by twice pi sigma 

square. So,  you know about this normal density, this expression for the normal density,  1 

by 2 x minus mu, that is the mean and the variance also we are considering.  So, x is a 

random variable and it follows a normal distribution. So, your normal distribution,  you 

know, a normal distribution is something like this. 

 

 This is a normal distribution  and this is the mean, mean of this distribution. This is the 

mean of the distribution. I am not  going to explain what is the normal distribution. I think 

you know this one.  Now, this x we are considering as a random variable. 

 

 So, x is a random variable,  x is a random variable. Now, the expected value of x, what is 

the expected value of x,  the expected value of x of this random variable is nothing but 

minus infinity to infinity x px  dx and that is nothing but the mean, the mean of the normal 

distribution.  And what is the variance of x? Variance of x, x is a random variable. So, 

variance of x  is nothing but expected value of x minus mu,  I can write like this. So, that 

is nothing but minus infinity to plus infinity,  x minus mu whole square, this density and 

dx and that is nothing but sigma square. 

 

  So, that is the variance, variance of the normal distribution.  Okay. So, this x we are 

considering as a random variable. This concept I think you know,  because already you 

have studied the course on probability and random process.  So, now what is multivariate 

Gaussian distribution?  So, move to the next slide. So, what is the multivariate Gaussian 

distribution?  Multivariate Gaussian distribution. 

 

 So, previously I considered only the univariate  Gaussian distribution. Now, what is the 

multivariate Gaussian distribution?  So, now suppose x is a vector and suppose these are 

the components of the vector x 2,  or these are the elements of the vector and this is a d 

dimensional vector.  Now, this density, there is a multivariate Gaussian density, I can write 

like this twice pi  d by 2, d is the dimension of the vector x. This sigma is nothing but it is 

called a covariance  matrix and I am taking the determinant of the covariance matrix.  So, 

it is 1 by 2 x minus mu transpose. 

 

 This is sigma inverse x minus mu,  mu is also a vector, is a mean vector. So, in this case,  

the mean vector is nothing but the expected value of x, x is a vector. So, what is the 

expected  value of x? That is nothing but expected value of x 1, expected value of x 2, like 

this,  the expected value of x d, because we are considering the d dimensional vector, the  

vector is x. So, corresponding to this, I have the mean mu 1, mu 2, like this, mu d.  So, this 



is the mean vector, the mean vector we can determine like this. 

 

 And this is nothing but,  this is the covariance matrix. So, it is the d cross d covariance 

matrix,  covariance matrix. These are d cross d covariance matrix. So, let us move to the 

next slide.  What is this covariance matrix? So, this covariance matrix, this is the sigma,  

this is actually the square matrix. And for the square matrix, i z element  is sigma i j, i th, j 

th element is the sigma i a, and this is nothing but the covariance  of x i and x j. 

 

 So, we are considering this sigma i j, sigma i j is nothing but the covariance  between x i 

and x j. So, what is mathematically the sigma i j, that is the covariance between  x i and x 

j, that is nothing but the expected value, we are considering, x i minus mu i,  and x j minus 

mu j. So, this covariance matrix I can write like this.  And in this case, i n j, it is from 1, 2 

up to d, because we have considered a d dimensional  vector x. So, corresponding to this, 

this sigma, the covariance matrix, I can write like this,  this expected value x 1 minus mu 

1, and x 1 minus mu 2. 

 

 So, this is the first element of  the covariance matrix. What is the second element, the 

second element is expected value x 1 minus mu  1, and x 2 minus mu 2. Like this, if I move 

to this, so this is the last one is expected value  of x 1 mu 1 into x d minus mu d. So, if I go 

to the second row, so first element of this matrix is  expected value of x 2 minus mu 2, and 

x 1 minus mu 1.  What is the second element, the second element is expected value of x 2 

minus mu 2  into x 2 minus mu 2. 

 

 That is the second element in the second row. And finally,  what is the last element, the 

last element is x 2 minus mu 2 x d minus mu d. So, this is the last  element. And like this, 

I can move and what is the final, finally, I am getting this element in the  last row, that is x 

d minus mu d into x 1 minus mu 1 expected value x d minus mu d into x 2  minus mu 2. 

And finally, the last element of this matrix is x d minus mu d x d minus mu d. 

 

  And this is the last element of this matrix. So, this is the matrix, I am getting that is  the 

covariance matrix. So, that I can write like this. So, if I see the sigma 1 1, sigma 1 2,  like 

this, the sigma 1 d. So, sigma 2 1, sigma 2 2, like this sigma 2 d. And the last will be sigma  

d 1, sigma d 2, sigma d d. So, that I can write like this, sigma 1 square, sigma 1 2, sigma 1 

d,  and sigma 2 1, sigma 2 whole square, sigma 2 d, sigma d 1, sigma d 2, and sigma d 

whole square. 

 

  So, this is the expression for the covariance matrix. So, let us move to the next slide. So,  

for the multivariate, this multivariate Gaussian density is represented like this,  it is n that 

is the normal distribution. So, I have the mean vector and the another one is  the covariance 

matrix. So, these two parameters, one is the mean vector, another one is the  covariance 



matrix. And this sigma inverse that is nothing but I am taking the inverse of the  covariance 

matrix. 

 

 So, this is the inverse of the covariance matrix, the inverse. And what is this,  this is nothing 

but the determinant of the covariance matrix. So, this expression for  density already I have 

shown, the density expression is 1 by twice pi d by 2, because  we are considering the d 

dimensional Feature vector 1 by 2 exponential minus 1 by 2 x minus  mu transpose, the 

mean and the inverse of the covariance matrix x minus mu.  And this is the expression for 

the multivariate Gaussian density. And if I consider d is equal  to 1, suppose, in the previous 

case, we are considering the d dimensional Gaussian density,  d dimensional vector, the 

vector is x, suppose d is equal to 1, then this multidimensional Gaussian,  it is converted 

into the univariate Gaussian density. So, this if I consider d is equal to 1,  this multivariate 

Gaussian density is converted into the univariate Gaussian density. 

 

 So,  univariate Gaussian density already I told you know it is twice pi sigma exponential  

minus 1 by 2 x minus mu sigma square. So, this is the expression for the univariate  

Gaussian density. So, this is the univariate Gaussian density and this is the multivariate  

Gaussian density. So, this is the univariate density, normal density. 

 

 So, it has two parameters,  one is the mean and another one is the variance. In case of the 

multivariate Gaussian density,  I have two parameters, the parameters are mean vector and 

the covariance matrix. In  case of the univariate density, I have two parameters, one is the 

mean another one is  the variance. Let us see how to draw this Gaussian. 

 

 Suppose, I am plotting this one,  this is the density with respect to x. So, I am considering 

two Gaussians. So, first  Gaussian is suppose something like this and second Gaussian 

suppose something like the  flat and the mean of these two. So, mean of these two is 

suppose the same mean, the  mean is mu. So, for the first Gaussian, for the first Gaussian, 

this Gaussian the variance  is sigma 1 square and for the second Gaussian, the variance is 

sigma 2 square. So, in this  case, this variance actually controls the spread of the Gaussian. 

 

 So, that means in  this case, sigma 1 square is greater than sigma 2 square. So, this spread 

of the Gaussian  is controlled by the parameter, the parameter is the variance. So, in this 

case, the sigma  1 square is greater than sigma 2 square.  In my last slide, I have shown that 

what is the expression for the covariance matrix,  if I consider the multivariate Gaussian, 

if I consider the multivariate Gaussian, the  expression for the covariance matrix is sigma 

1 square sigma 1 2 sigma 1 d. In my previous  slide, I have shown like this sigma 2 1 sigma 

2 whole square sigma 2 d and finally, sigma  d 1 sigma d 2 sigma d whole square. 

 

 So, this is the expression for the covariance matrix.  So, if I see here, this diagonal 



elements, diagonal elements, sigma ij, that is the variance,  these are nothing but the 

variances of respective, respective xi.  So, that is actually I can write sigma i whole square. 

So, diagonal elements  of this matrix, the matrix is the covariance matrix. 

 

 So, these are the variance of respective xi  of respective xi. So, that is actually I can write 

sigma i whole square. So, diagonal elements  elements, these are the off diagonal elements.  

xi. So, these are the off diagonal elements. So, off diagonal elements, elements, these  off 

diagonal elements are nothing but the covariances, off diagonal elements are sigma  ij and 

that is nothing but the covariance, covariances of xi and xj, respective xi. And  suppose if 

I consider the sigma ij, sigma ij is equal to 0, what is the meaning of this?  If I consider 

sigma ij is equal to 0, then xi and xj are statistically independent. 

 

 So,  I can write xi and xj are statistically independent. So, this covariance matrix is quite 

important.  So, I want to repeat this one, if I consider the multivariate Gaussian density, 

then I  have two parameters, one is the mean vector, another one is the covariance matrix. 

And  if I consider d is equal to 1, that is the dimension of the vector x is equal to 1, this  

multivariate Gaussian density is converted into the univariate Gaussian density. And  

corresponding to this univariate Gaussian density, I have two parameters, one is the  mean, 

another one is the variance, you have seen here. And after this, I have shown the  expression 

for the covariance matrix. And what are the diagonal elements? The diagonal  elements are 

sigma ij, that is nothing but sigma i square, that is the variance of respective  xi. 

 

 And if I consider the off diagonal elements of covariance matrix, that is the covariance  of 

xi and xj. And if I consider sigma ij is equal to 0, that is the condition, that  means xi and 

xj are statistically independent. So, this is the case. In the summary of this,  what we have 

considered that in the multivariate density already you know, and this is the  expression for 

the multivariate density. So, that is the 1 by twice pi d by 2, this  is the covariance matrix 

and exponential 1 by 2 x minus mu transpose sigma inverse x  minus mu. 

 

 So, this is the expression for the multivariate Gaussian density already  I have explained. 

Now, let us define one distance. So, distance is R square. So, distance is  defined like this 

x minus mu transpose that inverse of the covariance matrix x minus mu.  So, this is a very 

popular distance in machine learning. 

 

 This distance is called, it is squared  Mahalanobis distance. So, this is a very popular 

distance, the squared Mahalanobis distance.  We can take also squared root then I will be 

getting the simple Mahalanobis distance. Professor Mahalanobis is from ISI Kolkata. So, 

he is a very famous statistician. So,  he formulated this distance, the distance is the 

Mahalanobis distance. Suppose if I  consider the distance from x to mu, so my vector is x 

and distance from x to mu, you  can determine with the help of this Mahalanobis distance. 



 

 And what is the actually the Euclidean  distance you know what is the Euclidean distance 

or Euclidean norm.  Euclidean distance you know already the distance between x and mu 

that is the Euclidean norm  x minus mu. So, this is the Euclidean distance between x and 

mu. So, in case of the multivariate  distribution, the normal distribution, suppose if I have 

some clusters, some of the samples  are available, these are the samples and suppose I have 

another clusters. So, this cluster  corresponding to the class omega 1, this cluster 

corresponding to the class omega 2,  two clusters. 

 

 This is the center of the cluster, two clusters. The center of the cluster is  determined by 

the mean vector. So, this is the mean vector is suppose mu 1 and another  one is mu 2. So, 

I am considering two clusters and I am considering these are the samples  corresponding 

to the first cluster and that corresponds to the class omega 1 and corresponding  to the 

second cluster I am showing the samples these are the samples of the second class,  the 

class is omega 2. The center of the cluster is determined by the mean vector and shape  of 

this cluster the shape of the cluster may be something like this or maybe like this.  So, 

shape of these clusters are determined by the covariance matrix. So, I am repeating  this if 

I consider suppose these clusters, the clusters corresponding to different classes,  then the 

center of the cluster is determined by the mean vector and shape of the cluster  is 

determined by the covariance matrix. 

 

 So, that is the case. So, my shape of the clusters  may be like this, these are the shape of 

the clusters or maybe that these or maybe that  these so these type of shapes we can consider 

or maybe the circular shape. So, like this  we can consider the shape of the clusters and that 

is determined by the covariance matrix  and the center of the cluster is nothing but the mean 

vector. So, this is the concept of  the normal distribution. One is the univariate normal 

distribution and another one is the  multivariate normal distribution.  So, in this class, I 

discussed the concept of Bayesian decision theory for discrete features  and after this I 

discussed the concept of the performance evaluation of a classifier. 

 

  So, based on these parameters, one is the true positive false positive true negative.  So, 

for all these parameters, how we can determine that discriminability ratio that is nothing  

but the separation between two means of two Gaussian, the two Gaussians corresponding  

to the class conditional density. If I consider two classes, the class is omega 1 and omega  

2. So, corresponding to these two classes, suppose if I consider the distribution is  the 

Gaussian distribution. So, this discriminability ratio can be defined like this the separation  

between these two mean divided by sigma the parameter sigma of the Gaussian 

distribution. 

 

  And after this, I considered the ROC the receiver operating characteristics. And finally, I  



discussed the concept of normal distribution. So, one is the univariate distribution and  

another one is the multivariate distribution. So, in my next class, I will be discussing  the 

concept of the Bayesian decision theory, the same thing I will discuss, but the main  concept 

I will be discussing that concept is how to determine the decision boundary  between the 

classes. So, suppose I have two classes. So, what will be the nature of the  decision 

boundary? Suppose if I consider multiple classes, so what will be the decision boundary  

between the classes, whether it is a plane or whether it is a straight line, whether  it is a 

ellipse. 

 

 So, like this, we have to decide that is the decision boundary between  the classes. So, in 

my next class, I will discuss all these concepts. So, let me stop here today. Thank you. 


