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  Hello everyone.  Welcome to today's lecture of Machine Learning and Deep Learning 

Fundamentals and Application.  In this lecture, this would be a continuation of the 

problem solving session as we did in  the previous class.  So here also we will be looking 

into few numericals related to different concepts of machine learning.  So without delay, 

let us start the class.  So the first question is there are 18 points in an axial plane such that 

this set of points  belongs to class 1 and this set of points belongs to class 2 and also there 

is another  set of points given by this which belongs to class 3. 

 

  Now there is a new point P which is equal to 4.2 and 1.8 and it is introduced into this 

plane.  Now we have to find out to which class does this point P belongs to. 

 

  Now we are going to use KNN technique with K equal to 5.  So how to solve this 

problem?  So first we have to find Euclidean distance between the point P and the other 

points.  So that is  this Euclidean distance between point P and the other points.  So the 

Euclidean distance is given by d (X, Y).  So x and y are the points and it is equal to 

√(𝑥1 − 𝑦1)2 + (𝑥2 − 𝑦2)2  

 

  So this is the formula.  So now let us consider this one to be the X1 point, X2, X3, X4, 

X5, X6, X7, X8  X9, X10, X11, X12, X13, X14, X15, X16, X17 and finally X18.  So 

now we have the points now.  So now let us find the Euclidean distance between the 

point P and X1 first.  So it is given by d(X1, P) which is equal to 

√(0.8 −  4.2)2 + (0.8 − 1.8)2 . So if we calculate this we will get the value 3.54.  So 

similarly let us find the distance between the other points and that is X2 to X18 and  P. So 

let us move on to the next page.  So now let us write the distance first here X1 and P. So 

it is 3.54.  So this we have already calculated.  So similarly we can write for other points 

as well.  So d (X2, P) it would be 3.32.  So this I have already calculated. 

 

  If you use the same formula you will get the same result.  d(X3, P) = 3.16, d (X4, P) = 

3.45.  And d (X18, P) = 1.12.  So we have calculated the euclidean distance of each point 



from X1 to X18 and P. Now  since k = 5 which is already given in the equation so we 

find the nearest neighbors  to P.  So nearest neighbors to P are so we will find those 

points which has the least distance.  So least 5 distance would be considered.  So if we 

look at this so the first or the lowest or the least distance is going to be  this one 0.82.  If 

you look at this distances this is the least value and second we have this point  alright and 

third is this.  Similarly the fourth point is going to be this one and finally the fifth point is 

going  to be this one.  So we can write the nearest neighbors are X17 in ascending order 

X8, X11, X16, and  X7 and if we see the classes so the classes of these points are 3, 2, 2, 

3, and 2 alright.  So now when we do the voting so if we do the voting here so we get 3 

points belong to class  2 and 2 points belongs to class 3.  So according to the majority 

voting we can conclude that the point P belongs to class  2. 

  So this is the solution alright.  So let us move on to the next problem.  So this problem is 

consider the data points given by this set and find out the principal  component for this 

set of points and plot it on a graph.  So this is going to be our second problem.  So let us 

write down the given data points. 

  Data points are given as (2, 1) so we are just writing in the vector form (3, 5), (4, 3), (5, 

6), and (6, 7) right.  Now we find the mean of these points so the mean is given by mean 

mu is equal to (4, 4.4). Now let us calculate (xi – 𝜇) for i = 1 to 5. 5 because there are 5 

points alright.  So if we do this we will get this result - 2 point sorry (-2, -3.4) when  we 

do the subtraction of mean from (2, 1) we get this result and similarly for other  points we 

get (-1, 0.6), (0, -1.4), (1, 1.6), (2, 2.6).  Now since we are done calculating (xi – 𝜇) let us 

find out calculate (xi – 𝜇) (xi – 𝜇)T alright.  So for the first point we can write (-2, -3.4), 

(-2, -3.4) so this is equal  to [
4 6.8

6.8 11.56
].  So this part is simply (x1 – 𝜇) (x1 – 𝜇)T 

alright.  So similarly if we do this multiplication we get the following results.  So for the 

first point we have I am just writing it again [
4 6.8

6.8 11.56
] right  for the second point we 

have [
1 −0.6

−0.6 0.36
], for the third point we have [

0 0
0 1.96

],  [
1 1.6

1.6 2.56
], and finally, we 

have [
4 5.2

5.2 6.76
]  alright.  Now from this we can calculate the covariance matrix. 

 

 So, the covariance matrix is given  by 
1

5
∑ (xi –  μ) (xi –  μ)T5

𝑖=1  because there are 5 

points. So, we have already calculated this part now we just have to add  all those 

matrices and divide it by 5. So, the result comes out to be [
5 2.6

2.6 4.64
] alright.  So now 

this is going to be transformation matrix for us. Now we calculate the eigenvalues.  So 

eigenvalues are calculated using this equation that is A X = λX alright. So,  the A value 

we have already calculated which is the transformation matrix. 

 



 So, we can write  [
5 2.6

2.6 4.64
] X = λX. Now we already know determinant of (A – λI) is 

equal to 0 alright. So, this gives [
5 –  λ 2.6
2.6 4.64 –  λ

] = 0  which implies λ2 − 9.64λ +

16.44 = 0.  So, this is the quadratic  equation that we get. Now solving this equation 

solving say 1 solving equation 1 we get λ1 = 7.42 and λ2 = 2.21 alright. Now  since λ1 >

λ2, we will calculate the eigenvector for λ1 alright since we are more interested in the 

principal component alright. Thus, we can write [
5 –  7.42 2.6

2.6 4.64 –  7.42 
] [

𝑥1
𝑥2

] = 0 . 

 

  So, this is for λ1 alright. So, this gives the following set of equation. So, - 2.42 x1 + 2.6 

x2 = 0 alright and 2.6 x1 - 2.78 x2 = 0 alright we have this set of linear equations. Now 

its augmented matrix is given by   augmented matrix is given by   

 So, this augmented matrix is given by [
−2.42

2.6
2.6

−2.78

|
|

0
0

] alright. So, we are using 

the Gaussian elimination method here to obtain the eigenvector. So, using Gaussian 

elimination method alright. So, we also know this by a  row reduction method ok. So, 

now doing this operation R2 + 1.07 × R1 and replace the R2 row. So, this gives us 

[
−2.42

0
2.6
0

|
|

0
0

]. So, we  arrive at this. 

 Now in linear system it is represented as -2.42 x1 + 2.6 x2  = 0 alright. Now from this 

we will get x1 = 
2.6

2.42
 x2 = 1.07 x2 alright. So, therefore, the eigenvector or say the 

principal  component is (1.07, 1) alright. So, this is the answer. 

 Now let us see how it look in  a graph. So, we are also asked here in the question to plot 

a graph right. So, this can  be done this way.  So, the principal component can be drawn 

as. So, let me draw a rough graph here. So, 1, 2, 3, 4, 5, 6, 7, 8, 9, and let me draw here as 

well alright. 

 So, and the points are (2, 1) right.  So, (2, 1), (3, 5) somewhere around here (4, 3) let us 

approximately consider this is the point  (5, 6), (6, 7) alright. So, we have the points here. 

So, let us consider the point (1.07, 1) which  is the principal vector. 

 

 So, for that we plot the point 1.07 and 1. So, there will be somewhere  around this point 

alright. So, now, we just draw a straight line joining the point (0, 0)  and (1.07, 1). So, 

this would be approximately this one alright. So, this is going to be  the principal 

component for our problem alright. 

 So, we have obtained the result here.  So, let us move on to the next problem. So, the 

next problem is use LDA for 2 classes  C1 and C2 to cluster into 2 groups. So, C1 and C2 

are given by these matrices and  the new transformation point will be. So, we have to find 

out the new transformation  point. 



 For this case we find the mean of this one and this one. So, it will be given by 𝜇1 = (3, 

3.6) and similarly we will obtain the mean for the second class as well.  So, it is given by 

(4.67, 2) alright. Now, we need to find the scatter matrices. So, scatter matrices given by 

Si are 𝑆𝑖 =  ∑ (x –  μi) (x –  μi)T𝑥∈{𝐶1,𝐶2}  . So,  there are 2 classes that is why x belongs to 

C1 and C2 and (x –  μi) (x –  μi)T. So, now if I include something like 1/n here. So, it 

would become covariance  matrix, but that is not required for LDA. 

 

 So, we stick to scatter matrices alright.  So, let us calculate S1 here. So, S1 is calculated 

like this (1, 2) - (3, 3.6). So, here  we are just simply doing this (x –  μi) (x –  μi)T. So,  

this is similar to this operation and we would be adding that value for other points as 

well. 

 

  So, that would be (2, 3) - (3, 3.6) alright. So, let us do for the other cases as well.  And 

finally, we have (5, 5) - (3, 3.6) whole square alright. So,  like this we calculate the S1. 

 

 So, when we add it up we get the result [
10 8
8 10

] alright. And similarly for S2 we get 

[
5.33 1

1 6
] alright.  Now we know within class scatter matrix Sw is given by S1 plus S2 

alright. So, what  we will do? We simply add this two this one and this one alright. 

 

 So, we get Sw = [
15.33 9

9 13.20
] alright. Now we calculate the between class scatter 

matrix. Between class scatter matrix given by Sb = (μ 1 - μ 2)( μ 1 - μ 2)T alright. 

 

  So, we get Sb = [(3, 3.6) - (4.67, 2)][(3, 3.6) - (4.67, 2)]T alright.  So, if we do this 

calculation we will get this between class scatter matrix  as [
2.79 −2.67

−2.67 2.56
] alright. So, 

we have these values. After this we know w which would be the transformation point is 

given by 𝑆𝑤−1(μ1 −  μ2) alright.  So, we need to find the inverse of this matrix inverse 

we have to find out inverse. So, how we do that? So, this is a 2 × 2 matrix right. 

 

 So, we will just find the determinant of this  matrix like this 15.33 × 13.20 - 81 alright. 

So, 81 is 9 × 9 alright and we  will just interchange this part alright. So, interchange this 

we get 3.20 15.33 and  simply include a negative here and here. So, this would result in 

the inverse of S w alright. 

  So, and we have 1.67 and 1.6. So, that is μ1 −  μ2 alright. So, now, after we solve this  

we get 𝑆𝑤−1 as [
0.109 −0.074

−0.074 0.126
] alright and after that I have  [-1.67, 1.6]. So, if we do 

the calculations we arrive at this - 0.3 and minus I am sorry 0.326. So,  this is the 

transformation point that we need alright ok. 



 Now, coming to the fourth question.  So, it is given as in the third iteration of Adaboost 

the weight assigned to a misclassified  data point is 0.4. If the initial weight for all data 

points is 1 what is the misclassification  rate of this data point at the end of the second 

iteration. So, we write what we already  know. So, we know that 𝐷𝑡+1(𝑛) =

𝐷𝑡(𝑛) exp(𝛼𝑡) for misclassification  and this is already taught to you right where 𝛼𝑡 =
1

2
𝑙𝑛 (

1−∈𝑡

∈𝑡
) alright. 

 Let us consider this as equation 1 alright.  According to the equation we have this 

expression as 0.4 = 1 exp(𝛼𝑡) and  from this we can obtain the 𝛼𝑡 = ln 0.4 alright. Now, 

substituting this 𝛼𝑡 substituting  𝛼𝑡 in equation 1 we get ln 0.4 = 
1

2
𝑙𝑛 (

1−∈𝑡

∈𝑡
) alright. So, 

this is equal to - 1.832 = 𝑙𝑛 (
1−∈𝑡

∈𝑡
)and this is equal to 0.16 = (

1−∈𝑡

∈𝑡
) which gives ∈𝑡 = 

0.862 equal to which gives 86.2 percent.   

In this class we saw the numerical solutions to four different machine learning concepts.  

So, first we saw a problem related to KNN, then we had PCA, after that we saw LDA and  

then we finally did a numerical problem on Adaboost. So, I hope this helps you to 

understand  or get an idea how to solve the numerical problems related to these four 

machine learning  concepts and I hope you will explore other numerical solution as well 

so that you get  a better understanding of the concepts. 

 So, with this note I would conclude today's lecture.  Thank you and have a great day.  

Thank you. 


