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  Greetings everyone.  Welcome to the online MOOCs course on machine learning and 

deep learning   fundamentals and application.  I am Bivek Goswami the teaching assistant 

for this course.  I am a research scholar under the supervision of professor M.K.  Bhuyan 

sir in IIT Guwahati. 

  Today we will be having a programming session on generative adversarial network and 

unet  architecture.  So let us begin our session today.  So this will be the contents.  We 

will be looking into generative adversarial network and unet architecture. 

 

  So as we have already seen in our theory classes what generative adversarial network is  

generative adversarial network consists of two architectures.  One is a generative network 

and other is a discriminative network.  The generative network takes input as noise and 

generate images and the discriminative  network what it does is?  It compares the results 

with the real images and it can tell us if the image is a real  or a fake.  So the steps that we 

will follow today is first we have to define GAN architecture based  on our application.  

So in today's session our application will be to generate handwritten digits  and the 

discriminator will be trained to distinguish between real and fake data. 

 

  So the real data will consider the MNIST dataset.  MNIST is a very famous handwritten 

dataset that we will be considering for this session.  So first we will train the generator to 

fake the data that can fool the discriminator and  then continue discriminator and 

generator training for multiple epochs so that we reach  a level where the generator can 

generate fake data in such a way that the discriminator  is unable to identify that.  And 

later we will save the generator model to create new and realistic fake data.  So let us 

start with the coding. 

  So you have already seen in the previous programming session how to use Google 

Colab and how to  convert the notebook into a GPU or a TPU settings and how can you 

train convolution neural network.  So for training this GAN or U-net we will be also 



considering convolution neural network  as a backbone.  So here you can see we have 

first imported the MNIST dataset from the tensorflow.keras.dataset and later in the next 

layers we have imported these layers which is the input layer, the  dense layer, the 

reshape layer and the flatten layer. 

  We have also imported back normalization.  Leaky ReLU we will be using rather than 

ReLU activation function that will be more suitable  for training this GAN network and 

we will be using a sequential model and the model  from Keras model so that we can 

better optimize our code.  For optimizers we will be using Adam optimizer and NumPy 

and Pyplot will be considering for  error manipulation and plotting of the images or the 

graphs.  So first we will be defining our image size.  So we have considered an image of 

28 x 28 x 1. 

  So this is basically a grayscale image that is having only one channel.  Why we have 

considered 28 x 28?  Because taking too much bigger image will be too much resource 

and time consuming for  training.  So we have made our input shape as 28 x 28 x 1.  So 

this is basically our input shape.  Now we will be creating a directory so that we can save 

the images there. 

  So now let us build the generator module first.  So we have defined a function to do that.  

We will be inputting a noise or latent vector.  These are almost the same terminologies 

that are mostly used separately in separate books  or tutorials that you will see.  So I have 

kept both of them. 

  So we will be creating a 1D array of size 100 that is the noise.  So this will be randomly 

created.  As you can see noise shape is written.  So this will be randomly created 1 x 100 

dimensional noise.  Now we will be creating a sequential model. 

  As you have already seen in the CNN tutorial what is a sequential model.  Sequential 

model basically lets us add layers sequentially means one after another.  So we will create 

a sequential model.  This sequential model as you have already seen we have imported 

from our Keras framework.  First we will be adding a dense layer. 

  So dense layer is basically a fully connected neuron layers that we will be first adding.  

Then we will be adding an activation function that is the Leaky ReLU function and then  

we will be adding batch normalization.  This momentum basically tells us how fast it is 

going to train.  And Leaky ReLU alpha value will tell us about the activation constraints.  

So we will be having 256 neurons in the first layer. 

  In the second layer we will be again having 512 neurons and rest will be same.  Your 

alpha value will be 0.2 and momentum is 0.8.  And in the last layer of the generative 

network will have 1024 neurons with the alpha and  momentum value same. 

 



  Now we will be in the last layer we will be using a tanh activation function and we will  

be adding the image shape because at the end of the generator the generator should 

produce  an image that is equal to the size of the input image.  So it should produce an 

image of size 28 x 28.  So what it is doing is that it is taking a 100 dimensional array and 

it is returning  as a 28 x 28 dimension image.  So it is considering a 100 dimensional 

noise and it is returning as a image of 28 x 28.  Now we will be reshaping it to the image 

shape that is this one 28 x 28 but initially we  have shaped the image to be 28 x 28 x 1 

and this is the channel information. 

  So we will be making the model like this.  So what our model will return?  It will 

consider an image and it will consider a noise and it will return as an image.  So as I have 

already shown alpha is a hyper parameter which controls the underlying value  to which 

the function saturates negative network inputs and momentum speed of the training.  

Now we will be defining our discriminator model.  So again we will be calling the 

sequential model. 

  Now we will be adding the flatten layer.  Now the function of the discriminator is to 

return if the image generated by the generator  is real or fake.  As we have already seen in 

this structure the generator generates fake images and input  to the discriminator whereas 

discriminator also takes a real image and tells us if the  image is real or fake.  So that is 

the job of the discriminator.  So again we will be adding dense layer of 512 Leaky ReLU 

dense layer of 256 Leaky ReLU  and at the end a dense layer of 1 because it will be 

outputting the value if it is a  real or fake image. 

  So it is a binary value that it will output.  That is why we are using the activation 

sigmoid because sigmoid works best in case of binary  output.  So again the model will 

return the validity.  So we will be inputting the image and we will be getting the validity 

as output.  So we will be looking into the training. 

  So we will be defining a training function.  So first we will load the dataset like this and 

we will first see that the dataset is  in Uint format.  First we will convert it into a floating 

32 and then scale it to -1 to 1.  We can also scale it to 0 to 1 but I prefer scaling it to -1 to 

1 for the purpose  of better training.  Now you can see I have added a channel that is I 

have expanded it. 

  So for now our image will be like this.  In this step I have included another channel to 

make the image like this.  Again I have taken half the batch because I have considered a 

batch size of 128.  This training function will take input as epoch, batch size and save 

interval.  Then after how many interval or iteration it should save the images in the 

images folder  that I have already created as I have shown in the previous slides. 

 

  So I have considered half batch.  This batch size is 128.  So our half batch will be 



around 64.  Now when epoch in range of epoch so our total number of epochs was will be 

giving that. 

  In the input.  So for every epoch so this tells us for epochs in range of effects so for each 

epoch what  we are going to do the functionalities we are going to look now.  So what we 

will do in this is when we will loop through a number of epochs to train our  

discriminator by first selecting a random batch of images from our true dataset, 

generating  a set of images from our generator, feeding both set of images into 

discriminator and  finally setting the loss parameters of both real and fake images as well 

as the combined  loss.  What does this mean?  This means that first we will be generating 

some random numbers.  This random numbers will be from your 0 to a half batch and it 

will be X dot train dot  shape your X dot train dot shape 0 X dot train dot shape will 

actually return you an array  with the shape of the image.  So for example your X train 

has 300 images of shape 28, 28 and 1. 

  So your X dot train dot shape will return this as an array.  So your shape 0 means this 

300, the number of images present or the number of entries  present.  Okay and we will 

be selecting those random images.  Now what we will do is we will generate some noise 

points between 0 to 1 of size 64 x 100  Okay.  And those images, those noise images will 

be fed into the generator where the generator  will predict or generate a set of fake 

images. 

 

  Now these fake images will be again fed into the discriminator to know the, to get the  

discriminator's loss fake.  And again real images will be fed to the discriminator to get the 

real image loss.  And we will take average of both the losses.  Because based on one loss 

we cannot take a decision so we will be taking average of both the losses.  Now since our 

generator has given us some output and the discriminator has again given  us some 

output, now let us train the generator to better learn it and generate better images  so the 

discriminator cannot identify if it is real or fake. 

  So the training of the, in the training of the generator phase we will be first again  

generating a set of noise similar to the last one that we did.  And now for fooling the 

discriminator we will be considering some validation predicted  outcomes.  So this, what 

this line does is this will create a vector of 1s.  So it is telling the discriminator that 

whatever fake image that the generator has generated  are real images. 

 

  And those are valid.  So again we will be calculating the generator loss by training the 

generator on this noise  that we have created now and this input predicted values that we 

have generated.  That will be used to fool the discriminator that is the real images.  So we 

will be printing those values and will be if the epoch is divided by the save intervals  that 

is 20 then we will be saving image at each epoch.  So basically after every 20 intervals 

we will be saving images to get to know if our generator  is generating good fake images 



and if our discriminator is not able to discriminate  it or not.  Again in this function we 

will be looking at sample images. 

  For example rows and columns I have defined as 5 and 5.  I have generated a random 

noise and predicted that using a generator.  So the generator create some fake images.  

We have rescale the fake images to from 0 to 1 and we have plotted those things.  So if 

created a figure and axis we have kept a count of it and from the range of row to  column 

I have just in the axis this axis that I have created I have plotted the image and  this I am 

saving after a fixed number of epochs. 

  So I hope I am clear till this point.  Now let us define our optimizer.  So as I mentioned 

we will be using the Adam optimizer and we will be considering the lining  rate as 0.0002 

and our momentum to be 0.5 here.  Now we will be building the discriminator and we 

will be compiling it using binary cross  entropy and matrix will be considering as 

accuracy. 

 

  Why binary cross entropy?  Because I have already mentioned the discriminator will 

discriminate if the image is a real or  a fake and that is a binary classification problem.  

That is why we are using a binary cross entropy loss and the matrix we have used as an 

accuracy.  Again we will be building the generator with the binary cross entropy as well 

because the  generator also generate images that are based on two categories either they 

are fake or  they are real.  So we will be inputting a 100 shape noise point to the generator 

and the generator will  generate fake images.  Now why this discriminator trainable 

function?  We have set to false here because at the time of training the generator we do 

not want our  discriminator to get trained as well because we have seen and it is a proven 

fact that  when we train two network separately it is giving better outcome and it is 

actually good. 

  So while the generator is training we stop the discriminator training and we make sure  

that the discriminator is not training at the same point of time.  This saves us resources as 

well as it is better when it comes to the outcome.  So now since our generator has been 

trained we will be sending the images generated by  our generator into the discriminator 

and after that we will be combining both the models.  So in this step it is very important 

to understand this step.  In this step we have combined the models and also set our loss 

function and optimizer till  now. 

  So we are training the generator we are setting the discriminator training to false and 

then  again sending the images generated by the generator to the discriminator to get the  

validation of the images.  Now we have to create this combined model where stack 

generator and discriminator takes.  So in this model a noise in input into the system, the 

system generates images and determines  its validity.  So this model basically is 

combining generator and discriminator into the same model and  this is what a generative 



adversarial network is.  Again we have considered binary cross entropy and optimizer, 

that is Adam, optimizer  we are using. 

  We will be training this for 1000 epochs that means it will run for 1000 iteration with  a 

batch size of 32 and a same interval of 50.  And then as I have already mentioned in the 

steps we will be saving this generator so  that we can generate good fake images later 

after the generator is properly trained.  So this is the summary, this is the discriminator 

summary while this is the generator summary.  So we can see in the discriminator the 

total trainable parameters is this and the total  trainable parameters in generator is this.  

Whereas the total trainable parameters in discriminator is this. 

 

  The number of parameters in generator is more compared to discriminator because 

discriminator  is a very simple network which basically does it, it predicts if the image 

input is valid  or not.  Whereas the generator generates a set of images from noise data 

and that is why it is a more  complex network.  You can see the parameters at every 

stages and based on these parameters you can actually  know how much training time is it 

going to take or how much memory it is going to take  and all those things we can 

configure from this.  How to calculate this training parameters?  There are ways to do 

that, those are different when we are using fully connected networks  or convolutional 

networks.  So we will see in the coming slides if we can look into one of those. 

 

  So this is the training, you can see here the dataset is getting downloaded as we have  

imported it directly from the Keras, so it is getting downloaded here and the training  has 

started.  You can see this is the discriminator loss and this is the generator loss that is 

changing  at every epoch and these are the number of samples that are considered for 

each epoch  that is based on our batch size.  We consider our batch size such that our total 

number of samples divided by the batch size  is the total number of samples that is 

considered for each epoch.  So that is the advantage of having a batch size as you have 

already seen these things  in the previous programming session in the convolutional 

neural network is just the same.  Now since we have trained our GAN and we have saved 

the model, now it is not possible to  save the train the model every time. 

 

  So it is important that you save the generative model or the generator model and later 

you  just load the model and you can generate new images.  So that is what we have done 

here, we have imported the model here and what we are doing  is we are providing 

random noise to the model and it is generating an image.  So this is the image that the 

model has generated.  You can see this resembles to 9 and it is actually a fake image 

which somewhat resembles  to 9 handwritten 9.  Now considering for multiple images, so 

we have defined a function for generating latent  input we just give the latent dimension 

and the number of samples as input to the function  and it generates us a input. 

 



  So we have given 100 dimension and 16 as the number of images that we need.  So this 

is basically plotting of the images where we are considering 4 x 4 dimension and  every 

cell would display an image.  So based on this latent points what this is returning we have 

generated some fake images  using our model the saved model and we have plotted here.  

So you can see this pretty much resembles the handwritten digits and these are actually  

fake images generated by our generator network.  So this is all about generative 

adversarial network and this is what we have seen the  generative adversarial network for 

generating handwritten digits. 

  Now we will be looking into another very important architecture that you have already 

seen in  the theory classes the UNET architecture.  So UNET architecture is basically 

used for image segmentation.  It was proposed for biomedical image segmentation and 

that is why I have considered a case of  biomedical image segmentation only where we 

will be segmenting MRI images of brain where  we will be segmenting the brain tumors 

from MRI images.  So this is the architecture that we will be looking into our input image 

will be a 3 channel  input image so that is we have RGB image and we will be having this 

number of filters  and these are the concatenation block these are up convolution of 2 x 2 

and these are  max pooling layers these are convolution layer.  So you can see there are 

multiple convolution layer that are present. 

  So what we thought better would be to define a convolution function only.  I will come 

to this later first I will tell you so this is the dataset that we have considered  is a brain 

tumor dataset segmentation dataset.  So you can upload the zip file of the dataset into 

your Google Colab file system and then  use this snippet of the code to actually extract 

the zip file to a normal folder.  Now we will be implementing this sorry you will be 

importing this libraries that will  be important for our task to implement. 

 

  NumPy as you all know is used for matrix manipulation.  OS lets us have the idea of the 

path and everything.  Glob is a library which lets us select images and consider number 

of images or path.  CV2 which is a open CV library used for image manipulation. 

 

  Matplotlib is for plotting.  Random is another library.  And tensorflow is a framework 

that is used to implement or code deep learning models.  So these are the path of my 

images that is the train valid and test path of the images  and the mask this I have written 

like this.  Now first thing I have to arrange the dataset that is I have to read every image 

and store  it in an array or a list so that I can read from that list and better train the model.  

So I have created a data load function where first I have sorted the images according to  

the path.  The path you have already seen for the mask and the images so I have just 

sorted it and  I have set the image size to 128 plus 128. 

 

  Again this is done to reduce the time and complexity of the network for training and  



resources.  So again we have created two lists.  One for the image and one for the mask.  

Now we will iterate through the image list and we will be reading every image using this  

OpenCV library and we will be resizing those image because those image can be of 

different  shape and different size. 

  So we will be resizing into the size we have mentioned here of 128.  And then we will 

be appending to this image dataset.  Same thing we will be doing for the mask and 

appending into the mask dataset.  Now we will be normalizing the images.  It is important 

to normalize the images so that we can remove the bias towards higher  values and that is 

important for segmentation.  That is why it is done and we will return the image dataset 

and the mask dataset. 

  So again we have called the data load function providing the path of the image and the 

mask.  For again for test we have done the same and for validation set also we have done 

the same  thing.  Now we can see that our training set will have this shape, the validation 

set and the  test set.  Now the height will be this one, the width will be again this one and 

the number of channels  is 3. 

  So when we call the shape of this training set, say train.shape will return me array  of 

this one.  So this is the 0th position index, this is the 1 index, this is 2 index and this is the  

3rd index.  So our first index is our height, the second index is width and the third index 

is channel.  So this is what I have set here and that will be our input shape. 

 

  Image height, image width and image channels.  Now again the number of levels I have 

set to 1 because what we are trying to predict  here is a mask and the mask is basically a 

binary object.  So it has only a foreground and a background.  So mask is basically binary 

that's why I have set the number of levels to 1 and I have set  the batch size to 2 because 

of the memory constraints that our system that will get  trained on will have, that is our 

Google GPU.  So this is one of the image that I have shown. 

 

  This is the MRI image that has the brain structure and this is the tumor.  So you can see 

basically this only has a foreground and a background.  So this is a binary image so we 

will have only one class, this is a binary class.  So that's why I have set the label to 1.  So 

as I have mentioned already we are having many convolutional blocks.  That is a 3 x 3 

convolutional block, a batch normalization and having a relu, there is  an activation. 

 

  So what I have done is I have created a function for those convolution block.  So it's 

taking the input size, the filter size and these are the number of filters.  So this is how 

convolution block is added as you have already seen in the previous programming  

session.  This I am adding the batch normalization and then an activation layer.  So this 

filter size will be 3 x 3 as you will see here when I am inputting the filters  I am 

considering 3 x 3 and the number of filters will change for every layer that you have  seen 



already that this are having 32 filters, these are having 64 filters, 128, 256, 512  and so 

on. 

 

  So first we will be considering the downsampling.  Downsampling you are knowing that 

is this layer.  This is known as the downsampling that is extracting the features and this is 

known  as the upsampling and this is the downsampling.  Now first we will be defining 

the downsampling layer.  So the first having convolution layer having 32 filters, 3 x 3 is 

the filter size and inputs.  So your input will be basically a input layer with input shape 

and your data type will be  float32. 

  So this function that I have created for defining unet will take in as the input shape.  So 

here our input shape will be 128 x 128 x 3.  This we have defined earlier only.  The 

number of classes we know will be 1 because it is a binary segmentation. 

 

  So input layer we have built.  This is the first CNN layer.  Now we will be having the 

first max pooling layer.  So see we are having two CNN layers and then we are having a 

max pooling layer.  So we have defined two CNN layers and then we are defining the 

max pooling layer with  pool size 2 x 2.  Again we are considering 64 filters of same 3 x 

3 and we will be having again two  CNN layers here. 

  So here two CNN layers we are having, sorry, here we are having two CNN layers.  

Again here also we are having two CNN layers.  This you can see here we are having two 

CNN layers.  We will be having two feature maps at every step. 

 

  Again we will be having a max pooling.  Again two CNN layers but this time 128 

filters.  Again max pooling, 256 filters, two CNN layers, max pooling and finally 512 

filters.  Now you know that in an unit architecture it is important to upscale as well as it is  

important to concatenate as well to get the spatial features and also to get the features  

which are extracted by the downsampling or the encoder section.  So those are important 

and to revise the spatial feature we do the up-convolution.  So in the upsampling layers 

we will first do an upsampling or the up-convolution and  then we will be concatenating 

the last layer with this layer. 

  So we will be first upsampling this or convolving this and then concatenating from this 

one.  So we are upsampling it and concatenating it.  So 512 we are having, we are 

upsampling it and we are concatenating this one.  So it is basically 256, 256 and then we 

will be having a convolution to get the 256 filters here. 

 

  So that is what we have done.  Similarly for the next layers we have done the same 

thing.  But in the final layer I have used a 1 x 1 convolution to number of classes.  So 

what 1 x 1 convolution does is 1 x 1 convolution reduces the number of filters to the 

required  number of filters keeping the spatial dimension same.  So from this layer I will 



be getting an image of 128 x 128 x 1 that is similar to the input  image that we have 

initially input to the network.  Again we will be applying batch normalization and 

sigmoid layer. 

  Sigmoid layer why?  Because we are considering binary segmentation.  So this final 

layer an input considering this will be creating the unet model and will return  the model 

for this function that we have created for unet architecture.  Now we will be calling the 

unit architecture with the shape 128 x 128 x 1 and we are printing  the summary of the 

network as we have seen for generator and discriminator summaries.  Again we will be 

compiling the optimizer with Adam binary cross entropy and matrix will  be considering 

is that accuracy.  So this is basically the summary of the network you can see this is our 

input this is the  next layer that we are having this is again the next layer we are having 

and these are  the number of parameters for every layer.  So for this convolution layer 

how did we get this parameter is that we are having the number  of filter size as 3 x 3 

okay and what is the number of filters here also 3 so it will be  3 x 3 x 3 + 1 into the 

number of filters that is 32 that is 28 x 32 if you do this  you will get to 896. 

 

  So this is how we get parameters for convolution layers.  So we can see again till this 

point we are having 32 filters number of filters get on  increasing this is the first 

convolution block we have 32 filters again the second convolution  block we had 32 

filters only okay from the third convolution block the number of filters  became 64 and it 

goes on like this 64 then 128 then 256 512 and it again decreases in  the up sampling 

block and finally we get the input dimension only and this is the total  trainable 

parameters that we are having okay.  So we will start the training we have imported time 

so note the start time and the end time  so we will train this for 15 epoch just to give the 

demo we have made shuffle false so  that the data is not shuffled it is the same when the 

this every epoch we consider the  number of images it is not shuffled it is taken 

sequentially.  So in the model.fit I have provided with the mask and image verbose one it 

sets the model  to print these values while it is training this values while it is training 

okay batch  size we have already set the batch size to 2 and this is the validation set the 

validation  set is actually used to fine tune the network and we have trained it for 15 

epochs again  we have taken the stop time to just get the execution time and later we have 

saved the  unet model.  So this is the training in each epoch this number of samples are 

considered and you can  see the loss is converging the validation loss is also converging 

and we are getting  surge in our accuracy okay. 

 

  So these are the loss curves and the accuracy curve that we have plot based on our 

model  so you can you have seen when while training I have saved the training in this 

unet history  and later on from this unet history I am just plotting this graphs by 

considering the  loss and validation loss and considering the total number of epochs and 

dividing it into  15 so 1 to 15 and how our loss is decreasing with the number of epochs 



we are looking into  this and how our accuracy is also increasing with the number of 

epochs.  So since we have you are considering very less amount of accuracy sorry less 

amount  of epoch so we are having this oscillation in the graph if we consider it for more 

epochs  and consider a smaller learning rate then you will have a very smooth curve that 

is  actually learning fast and it will converge to a point where your model will be able to  

segment any new data that you input into this.  So this is all about the graphs that we have 

plot we are just plotting this B gives us  the color and this is the label that we are 

providing for every this graph so this blue  one is the training accuracy while the red one 

is the validation accuracy and similarly  for loss okay.  Now predicting using unet so for 

predicting we have considered the mean IOU and the F1 score that we have imported like 

this IOU is intersection over union  it has the formula of so it basically tells you if these 

two are  the images it tells you this intersection over the total union and how much 

overlap  is there between the mask and the image. 

 

  So it gives us the ratio of the overlap by the area of the union okay.  Another metric that 

we have considered is the F1 score which basically is the mean of  the precision and 

recall the harmonic mean.  What precision told us to tells us is that the ratio of the true 

positive to the total  number of data points that are predicted positive by the model 

whereas recall tells  us the ratio of the samples predicted positive out of the total sample 

of in the classes  So the both tells us about the prediction of positive so F1 score gives us 

a relative  ratio between both of this and that is why it is important when considering 

biomedical  images or data because in biomedical images we cannot rely only on 

accuracy as it gives  the overall accuracy is more important to know the false positive and 

then false negative  in case of biomedical data okay.  So here again we have considered 

randomly image from the test set and the ground truth  we have extracted we have 

expanded the dimension and we have made the model to predict.  So the model is 

predicting on the test image and we are checking if for all the prediction  that are greater 

than 0.5 as set as 1 and less than 0.5 as set as 0 to get this mask  okay and then we are just 

plotting this mask using this subplots we have created 3 subplots  and one is the testing 

image this is the testing level and this is the prediction level.  So you can see we have got 

the mean IOU of 91.43% which is considerable this we have  considered like this number 

of classes and the prediction and the IOU we have calculated.  Again we have done it for 

multiple images so we have taken a set of images in our test  set so we have iterated in 

our test set for every image we have calculated the predicted  mask and we have 

calculated the mean IOU using this one and we have appended the IOU  into a array. 

 

  So finally we have calculated the F1 score and we have calculated the mean IOU and 

the  F1 score.  So average F1 of all the frames we have got to be 98.02 which is quite 

good and new IOU  on the test set is 71.27% which is also considerable.  So if we 

increase the number of epochs and we adjust the learning rate the accuracy or  the 



performance could be better improved for this network.  So in today's class what we have 

seen is we have seen two very important deep learning  networks that is the generative 

adversarial network and another is the unet architecture. 

 

  Generative adversarial network is used to generate fake images that could be used for  

different purposes such as since there are less images present for some application and  it 

requires more images that could not be tackled by generating some fake images that  

could be even generative adversarial networks are very important for data augmentation 

task  where conventional data augmentation could be replaced with generative adversarial 

networks  for better implementation or better generation of fake images.  Later we have 

seen unit architecture which is another very important deep learning architecture  for 

image segmentation that is mostly used in biomedical image processing or biomedical  

segmentation task and is a very important architecture because it gives us an encoder  

decoder structure where we input the image and we get the mask output of the same 

dimension. 

 

  So those are the two networks that we have seen in today's session.  So let us stop here 

today. Thank you.  Thank you. 


