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  Hello everyone.  Welcome to this lecture on Machine Learning and Deep Learning 

Fundamentals and Applications.  In this lecture, I am going to walk you through a few 

programming examples on machine learning  and deep learning.  The goal of this lecture 

is to get you acquainted with the practical implementations of the  concepts that has been 

taught to you in this course.  These examples are going to be on four machine learning 

algorithms and a custom made CNN  that is Convolution Neural Network algorithm.  

Now this is going to be a basic demonstration. 

  You can definitely work on it and prepare your own complex course and get the results  

there as your journey progresses in the field of machine learning and deep learning.  So 

let us start the class.  So this is going to be the content of today's lecture.  First we will be 

talking about why we are using Python as the environment for programming  this 

machine learning and deep learning algorithms. 

  Then we will talk about the use of Colab which is basically used for accessing the free 

GPUs  that has been provided to you by Google and we can definitely make use of this 

free GPUs  that has been provided to us and after that I am showing the practical 

implementation  of these four machine learning algorithms.  They are linear regression, 

k-means clustering, KN classification and SVM classification and  after that I will show 

you the custom CNN classification algorithm.  So now why Python?  So you see here in 

the middle of this slide I have written a code in C to print the statement  hello world.  

Now you see here in order to print this statement I am writing three lines of codes.  The 

first line is to initialize the header for library and then I am using this main  function here 

and then I am writing the statement within this curly braces. 

  Now since this is a function I have to return this 0, right.  Now see just to print this 

single statement I am writing four lines of codes.  So this is becoming a cumbersome 

affair.  Think what would be the scenario when we would be coding for ML algorithms 

and deep learning  algorithms.  But this is not the case for Python. 



  So when we are printing a statement using Python we just have to write print hello 

world.  So you see here there is no specific requirements needed and most importantly the 

syntax of  Python is similar to the English language and also it allows the coder or 

developer  to write codes in fewer lines and on top of that we have a very strong support 

system  on the net.  So if we have any issue or if we encounter any error during coding if 

we write that issue  or that error in the net in certain platforms we will instantly get the 

reply as a solution.  So it makes life easier for our coders as well as the developers.  So 

these are the reasons why we have chosen Python. 

  Now after this let us see how to use Colab.  Now we are using Colab because Google 

provides us with a few resources.  There is some GPUs where we can train our model.  

Now this makes life easier for us because it reduces the training time of our algorithm  

and one important thing is that in order to use Colab we need to have a Gmail account  in 

Google.  So before starting Colab just sign in to the Google or the Gmail account and 

after that  type Colab in Google. 

  After that we see this page appearing in front of us.  So here we just have to click on this 

link that is welcome to Colabratory and then this  window pops up in front of you.  Now 

in this window we have this button here that is new notebook.  So if we click on this, this 

layout appears in front of us.  So this is similar to the Jupyter notebook layout. 

 

  So here we see the cell.  So we will be coding our algorithms in this location and then 

we can just change the file  name here.  Now initially we would not be provided the 

access to the Google servers.  So in order to access the GPUs we first have to click on 

this runtime button and then in  this drop down menu we just need to select change 

runtime type.  After clicking on that this window pops up in front of us. 

 

  Now when we select this button here that is the T4 GPU and click on save we see that 

the  T4 name appears on the top right corner of your notebook.  Now this assures that you 

have selected the GPU.  Now you just have to connect to the servers by clicking on this 

button.  Before that I would like to draw attention to one of the icons here in this 

notebook.  You see this icon here. 

  So this icon is basically used to access the content of the Colab.  So this is how the 

content appears.  So this space is provided by Colab where you can upload or down or 

save certain models  or specific files to the Google Colab storage place temporarily.  Now 

why this temporary?  This because once you log out or log off from the session this 

content space deletes.  So what I mean to say is that all the files that you have uploaded 

or you have saved in  this content it would be deleted. 

  So if you want certain things to get saved or you want to retain something you either  

have to copy it to your Google drive or you need to download it.  Alright.  So this the 



things that are stored here are temporary.  Now there would be certain files that you 

would like to access from your Google drive.  Mostly the datasets that you have created 

or you have downloaded. 

  So those datasets would be residing in Google drive.  So in order to access those files 

you just have to click on this icon.  So this icon basically mounts your Google drive.  So 

when you click on that this window appears in your screen asking for your permission  to 

access the Google drive files and after that you click on this button here.  Once you do 

that you see here in the content space this drive folder appears and also the  icon which 

you click to mount the Google drive is crossed out. 

 

  So this means that the drive has been accessed or you are able to access the drive now 

and  it has been uploaded to your content space.  And one more important thing that I 

would like to draw your attention.  Once your notebook is connected to the Google 

servers you will see a green tick here with  the RAM in this space shown in this portion 

of your notebook.  Alright.  So now the Google Colab is almost ready. 

 

  Now you just have to write your codes in this cells and if you want more cells you just  

have to click on this button here.  So it will insert a new cell or also you can just hover 

your mouse pointer at this location  and then this buttons would pop up.  And when this 

button pops up you just click on this code button and a new cell would reappear.  And the 

third option is you can just go to this insert button in this bar click on it  then a drop down 

menu appears through which you can just insert a cell.  So now you can start coding with 

Colab. 

 

  Now let us move on to the next slide where I am actually implementing a linear 

regression  problem.  So what I am doing here is that first I am importing a 

matplotlib.pyplot library.  So this library basically helps us to plot different graphs or 

curves.  So what we have here is a list that contains the ages of 13 cars which has been 

assigned  to the variable x and then we have a second list which contains the respective 

speeds  of these 13 cars when they passed through a toll gate. 

 

  And this list is assigned to the variable y.  Now what we are doing we are using this 'plt' 

object that contains a matplotlib.pylot  library and using the scatter plot function we are 

plotting the x and y and this is the  diagram that we got.  So you see here these are the 

dots that represents x and y.  Now in order to fit the line I am taking help of the scipy 

library. 

 

 From this scipy library  I am just importing this stats.linregress function.  Now what it 

does is that it just fits a line to the points that has been assigned to us  or that we have at 



our disposal.  So we are sending the x and the y coordinates of the points and giving it to 

stats.linregress  which fits the line for us. 

  Now as a result or in return it sends 5 arguments or 5 parameters out of which we are 

going  to use only 2.  So these are slope and intercept.  The remaining 3 we are just going 

to ignore that is why we are using underscore in their  place.  After that we are just 

defining a function here the name of the function is myfunct and  it accepts 1 argument 

that is x and then it returns the value which is obtained by performing  the function slope 

× x + intercept. 

  So this is basically mx + c.  So this is the equation of the line.  Now in the next line of 

code we are just assigning an empty list to y1 and then we are running  a for loop to the 

entire length of x.  After that each value in x is sent to the function myfunct and this value 

is calculated  that is mx + c and it is stored in the variable value and after that we are just  

appending this value to y1.  So at the end we will have a list y1 whose length is going to 

be 13.  Now we are just plotting the original points which is given by xy and its color is 

kept  blue and after that we are plotting the line that we have fitted or obtained through 

this  linregress function. 

  So it is given by plt.plot (x , y1) and we see the regress line here.  So line fitted alright.  

So we have obtained our result here.  So this is the final outcome of the linear regression 

process.  Now let us come to the unsupervised machine learning algorithm that is k-

means clustering. 

  So in this case I am just using another library that is numpy.  So it helps us to work with 

arrays and then we have this matplotlib library which help  us to plot and then we have 2 

variables which contains 2 list and now we are just scatter  plotting this x and y and this 

is the output here.  Subsequently what we are doing we are just zipping x and y so that we 

can form a coordinate.  So that coordinate will contain one value from x and one value 

from y and we are just  displaying it using print data. 

  So you can see the output here.  So this is the output.  So you see one value from x and 

the other value from y.  Now we will do the k-means clustering on these points.  So for k-

means clustering I am taking help of the k-means function that has been already  given to 

us by the library sklearn.cluster.  Now what we are doing we are creating an object k-

means using this k-means function and we  are sending n cluster as argument.  So n 

cluster will determine how many clusters we want as output.  So in this case I am using 2 

alright.  But you can definitely play with this cluster value and see how it performs.  Now 

one thing is that in this data you see we can make out that this is going to be one  cluster 

and the other one is this one. 

  So it is easier for us by just visually looking at it.  But in real world scenarios this is not 

going to be the case alright.  But let us see this let us consider this because our goal is to 



just learn how to use this  algorithm.  We are not looking into the complexities alright. 

 

  So okay.  So now once this k-means object is created we are just fitting the data here 

and then  we are plotting the xy values.  But this time what we are going to do we are 

going to assign the points that belong to  a particular cluster with a single color the points 

that belong to the other cluster with  a different color.  So that would be taken care of by 

c equal to k-means.levels alright.  Now you see here the points belonging to cluster 1 are 

level or colored yellow and  the points that belongs to the other cluster are leveled with 

blue color. 

  So this is the second cluster.  Now I talked about this number right this cluster number.  

So this cluster number would not be easy to initialize at first.  So if you want to get a 

proper method how to initialize this cluster you can look at  this elbow method.  So it is 

in the next slide. 

  So this is the elbow method.  So what it does is that it finds out how many number of 

clusters are possible that is the  minimum and the maximum value.  So if we are having 

10 points here so maximum value of the cluster is going to be 10 and  the minimum is 

going to be 1 right.  So that is why we are running a for loop from 1 to 10 alright and we 

are just calling in  the x-means function here and sending n clusters is equal to 1.  So we 

will be iterating it till it reaches 10 alright and for each object k-means we  will be fitting 

the data and then we are just appending the value of k-means.inertia to inertias.  So this 

variable is initialized here.  So inertia was initially a empty list and after appending it or 

running it for 10 times  we would be getting a list containing 10 elements or 10 scalar 

values alright.  Now you might be wondering what this k-means.inertia is all about.  This 

inertia is sum of the square distance of the samples to their closest cluster center  alright 

and after we are done calculating this we are just simply plotting this inertia  here in this 

line and this is the output we got. 

  So you see here clearly in this plot there is an elbow at this point.  So this is the 

discontinuity because this part is linear and this part also we can consider  almost linear 

right, but the discontinuity is occurring at this position.  So we are choosing 2 as the 

optimal number of clusters alright.  So this is a technique to determine how many clusters 

we should be picking up for the distribution  of data that we have at our hand.  One 

important thing that I forgot to mention is the use of this library here. 

 

  So we are importing this library that is warnings so that we can ignore the warnings that 

occurs  while executing this code.  Now in this case you see few of the warnings will 

appear, but those warnings are not detrimental  to the execution of the program.  Now 

since these are not detrimental so we can just simply ignore them and that is what  we are 

doing in this line alright.  So let us move on to the next algorithm here so that is KNN 

classification.  So this is K nearest neighbor classification and for this we are importing 3 



libraries  one is numpy which help us to work with arrays then we have the matplotlib 

library which  help us to plot and the other one is pandas. 

 

  So this library helps us to work with tabular data alright.  Now we are taking help of the 

sklearn library and importing the dataset function and this  helps us to load the iris 

dataset.  So now this iris dataset consists of flowers basically the iris flowers so this 

contains  150 samples and contains 3 levels which means 3 classes alright.  Now these 3 

classes are basically the species of iris which are iris satosa, iris virginica  and iris 

versicolor and each sample here has 4 features they are sepal length, sepal width,  sepal 

length and peal width and this values are in centimeters alright.  So once the entire 

dataset is loaded into this variable we are just segregating it into  data and levels so it is 

shown in these 2 lines and after this we are just using this  train test split to split it into 

training set and testing set alright. 

  So that what would be the ratio for dividing it would be determined by this.  So we are 

considering 25% of the total training set as testing set and the remaining  75% would be 

considered as the training set and this is stored in this 4 variables  alright.  So, this 

variables contains x_train and x_test which contains the training and the testing  data 

respectively and y_train and y_test contains the testing sorry training and the  testing 

levels respectively.  Now here I am using another function that is standard scalar which I 

have imported from  sklearn.preprocessing.  So this is basically used to standardize our 

data, standardize our data. 

  So what it does is that it makes mean of the distribution 0 and the standard deviation  as 

1 alright.  So this is what is being done in these 2 lines.  So we are just standardizing the 

x_train and the y_test data storing it in these 2 variables  and after that we are using this k 

neighbor classifier function that is been already present  in this library that is 

sklearn.neighbors and we are creating a classifier object here.  So in this object we are 

just sending how many numbers of neighbors we are considering  that is what is the value 

of k this going to be so that we have chosen as 5 and we are  using metric Minkowski and 

p equal to 2.  So this basically considers the distance as standard Euclidean distance. 

 

  So the metric that we will be using to calculate the 5 neighbors would be the Euclidean 

distance.  So that is the meaning of this metric and p value alright.  So once this classifier 

is constructed we are just fitting it with x_train and y_train  just because it is a supervised 

learning technique alright and once the learning is done we are  just predicting the x_test 

value which is being stored in this variable y_pred.  Now the y_pred is printed here.  So 

y_pred contains the levels of the test data and in order to show it in a more visually  

appealing manner or you can say more informative manner we are using the confusion 

matrix. 

 



  So confusion matrix is a function that is being imported from the sklearn.metrics  and 

then we are sending these 2 as the arguments and this CM variable will contain the 

confusion  matrix which being shown in this place and also we are calculating the 

accuracy score.  So that is provided here.  So we are getting an accuracy of 94.7%.  So 

that is really a good accuracy here and you might be seeing here that in most of the  

algorithms or in this algorithm only we are using the sklearn library quite a lot. 

 

  So this sklearn library is very important when we talk about ML and DL algorithms 

okay.  So you need to know about this library.  After this I am just showing the real 

values and the predicted values in a tabular format.  So I am using this pandas function to 

show it in a tabular format and you see here the  green sorry the blue rectangles which 

shows the misclassified data.  So now you see here this is the true data and this is the 

predicted data. 

  So this should not have been predicted as 1, it should have been predicted as 2 but  yeah 

this is the misclassification that we got from this classifier.  So there are 3 instances here 

and I am just showing you 23 samples here because the other  samples I could not fit into 

this slide.  So when you try it out on your own you will get a bigger table alright.  So this 

is all about the k nearest neighbor algorithm.  Now let us move on to the another 

supervised machine learning classification technique  that uses SVM that is support 

vector machine. 

  So like I used in KNN here also I am using 3 libraries that is numpy, matplotlib, pandas  

and also I am using the sklearn library to load the iris dataset here.  So this is being done 

here, the loading of iris dataset and then I am just splitting  the train and the test using this 

line and then I am just standardizing the data using  this code.  So this is similar to the 

one that we did in KNN and after that I am importing this  function SVC that is support 

vector classifier from sklearn.svm and creating the  classifier object here.  So here we are 

sending the kernel as linear, so we are considering linearly separable data  that is why 

kernel is linear and random status 0 and then we are fitting the x_train and  y_train data. 

 

  So the learning process is going to take place in this step.  So once this is done we are 

predicting the test data, so it is done in this step and  we are just assigning the values of 

this step to the variable ypad and this is shown in  this portion.  So this is the labels that 

we have predicted and to show it in a more readable manner or  more informative manner 

we are using this confusion matrix here and also we are showing  the accuracy score.  So 

now if you look at this value here, accuracy score is 97.36% and this is the confusion  

matrix. 

 

  So you see here that the accuracy is more in case of svm compared to KNN.  So svm is 

a better classifier for this data set that is what we can conclude and this  is the tabular 



form that I am showing.  So for real values I am showing this column and for the 

predictive values I am showing  this column and you see there is only one instance where 

we are having image misclassification  alright.  So these are the machine learning 

techniques that we are going to discuss in this class.  Now we move on to the deep 

learning algorithm which is the convolution neural network. 

 

  So we are going to do a classification task in this case.  So here also we are using this 

library numpy and then we are using a new library that is  tensorflow.  Now this 

tensorflow is a python friendly open source library for numerical computation  that 

makes machine learning and developing neural networks faster and easier.  So we are 

going to import a few functions from this tensor flow that is keras and another  one is 

layers. 

 

  Now this keras.dataset.mnist is used to load the MNIST dataset.  So MNIST dataset is a 

10 class classification dataset which contains the images of the  digits that is from 0 to 9.  

So now this dataset would be load into these variables.  Now here we do not have to do 

the train test split because it is already has been splited  by this function that is 

keras.dataset alright.  Now after we have loaded it to this variables what we are doing we 

are taking the x_train  and the x_test and we are just changing the data type of these 

values or these variables  that is we are converting it into float 32 and float 32 here and 

after that we are dividing  it by 255. 

  So this is basically the normalization step.  So this is done so that the scale of the image 

comes between the range 0 and 1.  So that we maintain a uniformity there and 255 

because this is the highest possible value  that we can obtain for a 8 bit image alright and 

after that we are just expanding the dimension  of these images.  Now the important thing 

is that when we consider grayscale image it always has height as well  as width but no 

channel alright.  So when we are working with CNNs or TensorFlow or the PyTorch 

library they always expects  that we have a channel associated with a image.  Now since 

there are no channel associated with grayscale image we are just including  one here 

alright. 

 

  So making it a 3D tensor alright.  In case of color images you always have h, w and 

channel.  So this channel is going to be 3 because we have red, green and blue channels 

that comprises  the color image.  So therefore in order to get a channel there we are just 

expanding the dimension of the  images by using np.expand_dims and we are using axis 

as -1. 

  So -1 means it will be expanding in the last dimension ok.  So the similar thing is being 

done for the x_test as well alright.  Now we are printing the x-ray in shape so you can see 

it over here.  So it says 60000 , 28 , 28 , 1.  So 60000 is the batch size batch 28 is the 



height this 28 is the width and this 1 is  the number of channels alright. 

 

  And before this I just forgot about this initialization part.  So here I am initializing two 

variables so one is number of class which is assigned as  10 because we are doing a 10 

class classification problem and the input shape of each image  is going to be 28 , 28 , 1.  

So this 1 is for the channel and 28 and 28 are for height and width of that image alright.  

Now in the final steps of this cell what I am doing I am trying to categorize or convert  

the numerical data into categorical data.  Now what actually it is?  So if you consider 

numerical data and suppose say a label is or suppose say an image is labelled  as 2. 

 

  So in numerical it has the label 2 alright.  So in categorical what would be the result?  

The result would be 0 0 1 0 0 0 0 0 0.  So you see here all the values that belongs to the 

other classes would be numbered as  0 and the place that belongs to 2 would be numbered 

as 1.  Now you might be wondering why not consider this place because in python the 

counting  always starts from 0 okay.  So since this level was 2 so we are going to this 

third place that is 0 1 2 and in the  third place we are just assigning 1 and the rest we 

would be having 0. 

  So this is the categorical form.  So this helps in increasing the speed for algorithm.  So 

that is the reason that is why we are considering categorical and it also has other benefits  

so which I am not going to cover in this lecture alright.  So we have converted into a list 

which contains 0s and 1 and 1 is only for that place for  which we have the label alright 

okay.  So now we are forming the model in this portion.  So we are considering a 

sequential model here which I have imported from the Keras function  here which we 

have imported in our previous slide.  So this sequential basically helps us to stack the 

layers one after the other in a sequential  fashion. 

  So what we are doing here is we are importing this Keras.input layer and we are sending  

in the input shape here.  So this is the first layer and after that we have a convolution 

layer here conv2d which  contains 32 filters each of kernel size 3 x 3 and the activation 

function is relu.  So the non-linearity function is going to be or being introduced by the 

relu function  and after that I have the max pooling layer which has a pool size of 2 x 2.  

Now the important thing is that after its convolution we are introducing this max pooling  

that is because we want to reduce the spatial dimension of the incoming feature map 

alright  and since we are reducing the spatial dimension in the next convolution layer we 

are increasing  the number of filters so that we can encode more information alright. 

 

  So this is just increasing the receptive field of the input or the incoming feature map.  So 

here we are having 64 filters with the kernel size of 3 x 3 and the activation  is going to 

be the relu same as the previous case and then again we have another max pooling  layer 

here alright and after that we are just flattening the incoming feature map.  So this is like 



vectorizing the incoming feature map and after that we are passing it through  a dropout 

layer and then we are moving it to the dense layer which we can consider as  the output 

layer.  So in this case we are having 10 nodes because we have 10 classes and the 

activation this  time is going to be the softmax because it gives us probability values and 

the class  which is having the maximum probability would be assigned as accordingly.  

So the class with the maximum probability is going to be considered as the predicted  

class alright and this dropout layer is basically used for regularization.  So that we do not 

have over fitting issues and in this case we are going to drop out  50% of the nodes 

alright and after creating this model you see here we are just  printing the model of 

summary here and this is the entire model. 

  So we have the layers here so we see conv2d max pooling, conv2d max pooling, flatten  

dropout and finally the dense layer which is the output layer and then we have the output  

shape here that is the shape of the feature map, the shape of the outgoing feature map  

and then we have the parameters here alright and when we sum these parameters here we 

get  the total parameters here.  So total number of training parameters are 34826 alright.  

So this is fairly a very small model when you will be working with deep learning 

algorithms  you will see that the models are having millions of parameters alright but this 

is just for  the demo purpose so I am creating a small network here alright and you might 

be wondering  what this none is all about.  So this none is related to the batch size okay.  

So since now we have just made the skeleton of the model we are not providing any 

information  related to the batch so that is why we are getting it as none alright okay. 

 

  Then now let us come to this so for batch size we have considered 128 and number of  

epochs we have considered 15.  So what is this epoch?  So epoch is one complete pass of 

the training dataset through the algorithm alright.  Now we cannot just send in the entire 

dataset to the model it will just load the model right.  So we are working in batches so in 

this case we are working on a batch of 128.  Now let me explain it to you through an 

example suppose we have 10 samples so these are the 10 samples. 

 

  So now let us consider that we have a batch size of 2.  So what it means is that we will 

be working on 2 samples at a time alright then we will  continue working on it like this.  

So after 5 iterations the entire training set will be complete and this is called one  epoch 

alright.  So there would be 15 epochs as I have already shown here and after that what we 

are doing  we are just configuring the model using model.compile and here we are using 

the loss function as  categorical cross entropy and then we have the Adam optimizer for 

optimization and the  metric that we would be monitoring in this case is the accuracy 

alright.  After that we are just fitting the model here where we are sending in the x_train 

the  y_train and the batch size here and also the epochs and after that we are doing the 

validation  split which is 10% here. 



  So now this the entire training set will be split into 2 parts one containing the training  

set and another containing the validation set.  Now this validation set is required so that 

we can fine tune the model at each epoch alright  and since we are using 15 epochs you 

see the progress of the model for the 15 epochs  here.  So we have the training loss, 

training accuracy, validation loss, validation accuracy here  alright so these are the values 

we see the loss is gradually decreasing here and the  accuracy is gradually increasing 

here.  So this decreasing and this is increasing same goes for validation loss as well it is  

decreasing gradually and it is increasing gradually for the validation accuracy and  I have 

also shown it in a graphical plot.  So you see here the training and the validation accuracy 

are consistently increasing and the loss is consistently decreasing. 

 

  Now when does the problem arise?  Now suppose this validation loss starts to increase 

from this point like this.  So this would be a case of overfitting which we do not want for 

our model alright.  So if overfitting occurs we need to look or maybe change the model or 

maybe work with  the number of layers or maybe introduce some regulation technique.  

So overfitting is something that we do not want for our model alright. 

 

  So we can say that after 8 epochs it is going to overfit if this is the case alright.  Now 

since this is not the case for here so we can say that this is basically a perfect  model that 

we are training here alright.  So now here I am just evaluating the model by sending in 

the x_test and the y_test and  I am just showing the test accuracy and the test loss here. 

 

  So the test loss is 2.54% and the test accuracy is 99.08% here.  So it is a really good 

performing model and after that I am just predicting the model  for the x_test data and we 

are showing it in this variable PRDT.  Now initially since we have converted the levels 

into categorical form we need to convert  it back into the numerical form so that we can 

see the confusion matrix for this data.  So this is what we are doing here we are just 

finding the maximum position where it is occurring.  So we are using np.argmax and then 

we are assigning it to the variable y_pred.  Similarly for the ground truth data we are 

doing np.argmax for y_test and storing  it in y_classes variable. 

 

  And then we are sending in the y_classes and y_pred which is the ground truth and the  

predicted value to the confusion matrix and we are obtaining the confusion matrix here.  

So you can see directly this is the confusion matrix here and we are also plotting the 

accuracy  score sorry we are printing the accuracy score so this is the accuracy score here 

alright.  So you can see that the CNN performs much better than the other machine 

learning algorithms  though we are using separate data set but you see here in this case 

we use the 10 class  data set in the previous case that is the machine learning case we use 

the 3 class data  set and in spite of that we are getting a better performance alright.  And 

in this case I am just trying to show the confusion matrix in a more visually appealing  



manner by using this library this seaborn.heatmap alright so this I have imported here. 

 

  So you see what is the output of this seaborn.heatmap so this is what we get as the 

output.  So you see here the diagonal elements are shown in light color to show that this 

has  got the higher values as we can make it out from the color bar and the non-diagonal 

elements  are having low values which is good for us and this is shown in the color bar 

here alright.  So this is visually more appealing diagram for the confusion matrix so you 

can definitely  use the seaborn packets to get things more visually appealing alright.  So 

in this class we talked about Colab how to use it and how to access the GPUs that  is 

being provided to us by Google and then we talked about 4 ML algorithms they are linear  

integration, k-means clustering, k-nearest neighbor and SVM that is support vector 

machine  and out of this KNN and SVM are classification algorithms.  After that we have 

also tried the CNN a custom made convolution neural network which perform  very good 

for a 10 class classification problem.  Now this is just a basic demonstration of this 

algorithms and I hope that you got an  idea of how to practically implement this ML and 

DL algorithms and you can definitely  explore the other complex algorithms in this field 

that is the ML algorithms and the deep  learning algorithms and see how it performs for 

those cases. 

  I hope you learned something from this class and you enjoyed this class and with this 

note  I conclude today's lecture.  Thank you and have a great day. 


