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   Welcome to NPTEL MOOCs course on machine learning and deep learning 

fundamentals and applications.  In my last classes, I discussed the concept of statistical 

pattern classification. In  statistical pattern classification, I have to determine 𝑃(𝜔𝑖|𝑋) 

. So,  𝜔𝑖 is the class. So, I have C number of classes, i is equal to 1 to C and X is the feature 

vector. So, I have to determine the probability of obtaining a particular class given the 

feature vector that is determine 𝑃(𝑋) and 

 that is  the fundamental objective of statistical pattern classification. 

 

  In the regression, we have to find the relationship between two variables. One is the 

independent variable and another one is the dependent variable. Suppose X is the 

independent variable and Y is the dependent variable. So, I have to find the statistical 

relationship between X and Y and that is the main objective of regression. 

 

 So, X is the observed data point.  Suppose I have some data points and that is represented 

by X, the variable is X and I  have to fit a model so that it best fit the data points, the 

observed data points. So,  that is the objective of the regression. And if I consider that 

relationship, that is actually  the statistical relationship between X and Y and this is not the 

deterministic. 

 In deterministic  by considering a mathematical equation, I can determine a particular 

value. 

 

  Suppose the temperature is given in the centigrade and I can determine the temperature 

in Fahrenheit  by considering one mathematical equation. But in the regression, what we 

have to consider  the statistical relationship between two variables, one is the dependent 

variable and another  one is the independent variable. And suppose X is a vector. So, I have 



some components  X 1, X 2 like this X is a vector, then we have to consider multiple 

regression. 

  So, let us discuss about the concept of regression. 

 

 So, already I told you that in statistical  machine learning, the objective is to determine 

𝑃(𝜔𝑖|𝑋). That is  the objective of the statistical machine learning. So, we have to determine 

this.  

So,  I have C number of classes and X is the feature vector.  

So, I have to determine the determine 𝑃(𝑋). 

 

 But in case of the linear regression, if I consider the linear regression,  I have two variables, 

one is Y another one is X. So, suppose I have Y that is I can say  it is the dependent variable 

and another one is the independent variable.  So, I have to find a relationship between that 

is the statistical relationship between  X and Y and that is the regression. So, if I consider 

X is a suppose vector, then I will  be getting them the multiple regression. So, what is the 

linear regression?  

So, linear  regression is a statistical method that allows us to model the relationship between 

a scalar  response that is the dependent variable and one or more independent variables. 

 

 So, this  can be done by fitting a linear equation to the observed data.  So, suppose I have 

the observed data observed data points are available. So, how to do the  regression by fitting 

a linear equation to the observed data. So, this is the objective  of the regression.  

So, this dependent variable is called the response, sometimes this dependent  variable is 

called response or also it is I can say outcome and this independent variable  and this is 

called the predictor or I can say the regressor. 

 

  So, I have to predict Y from X that is the objective of the linear regression. So, if  I 

consider only one independent variable, then it is a case of simple linear regression.  But if 

I consider two or more independent variables, then it is called a multiple linear  regression. 

So, we have to find the statistical relationship between the dependent variable  and the 

independent variables.  So, now let us consider the simple case simple regression. 

 

 So, in the simple regression,  what we are considering only one dependent variable and 

one independent variable. So,  in this example, I am considering only one dependent 

variable, dependent variable and  only one independent variable. So, that means in the 

simple regression, the problem is very  simple and this problem is actually the line fitting, 



line fitting on a 2D XY plane. So,  I have some data points, suppose these are main data 

points. 

  So, I have to find the best fit line. 

 

 So, suppose if I want to fit a line, so this is  the best fit line, best fit line between the data 

points. So, these are the data points.  So, the problem is mainly the line fitting on a 2D XY 

plane. So, we are considering a  set of points in the XY plane. So, set of points in XY plane. 

 

 So, the points I can represent  like this xi, yi, these are the points xi, yi and i is equal to 1, 

2 up to n. So, I am  considering n number of points in the XY plane. So, what is the objective 

of the linear regression?  The linear regression attempts to find a line in 2D which best fits 

the points, the points  are xi, yi. So, n number of points are available in the XY plane.  

The most popular method of  fitting of a line is the method of least square, least square 

method for fitting of  a line. 

 

 So, we can consider this the least square method for fitting of a line. So, what  we have to 

consider? We have to minimize, actually this method minimizes the sum of  the squares of 

vertical distances  from each data point to the line. So, I can show pictorially. So, suppose 

this is the  2D plane and I have the points, the points are like this.  

These are the points in the  XY plane. 

 

 So, I have to represent this point that means, based on the least square method,  I have to 

determine the line. So, this line I am determining like this between the sample  points 

between the data points. Now, what we have to consider I have to minimize the  sum of the 

square of vertical distances from each data point to the line.  So, this is the best fit line 

suppose, best fit line I am considering suppose between  the data points and now we are 

considering the distance between the vertical distance  between the data points and the line. 

So, this is the distance between the data points  and the line. 

 

 So, these distances we are considering and we have to minimize the distances all  the 

distances we have to minimize and based on this minimization condition, I can get  the best 

fit line. So, you can see I have considered n number of points n data points  we are 

considering and this in this n data points that is the observed data points, I  am fitting a line 

and that is the best fit line I want to determine and the condition  is the least square method. 

So, it has to minimize the sum of the squares of the vertical  distances from each data point 

to the line.  So, the question is how to find the best line how to find the best line. So, we 

have  to consider this least square method and based on this method we have to minimize 

the sum  of the squares of vertical distances from each data point to the line. 

 



 Now, let us consider  the equation of a line. So, this line is represented by two parameters 

one is the slope another  one is the intercept. The slope is suppose a the slope is suppose a 

and another parameter  is intercept. So, for representing a straight line I need two 

parameters one is the slope  another one is the intercept.  

 So, these two parameters we are considering to determine the best fit line. 

 

 So, corresponding  to this you can see and this equation of a line that means I am estimating 

the line.  So, yi I am estimating that is the predicted value I can say 𝑦̂ = 𝑎. 𝑥𝑖 + 𝑏 . So, this 

is a equation of a straight line. Now, you can see I have to consider the least  square method 

that means I have to minimize the vertical distance. So, this is my vertical  distance. 

 

 So, this is the vertical distance. So, I have to consider all the vertical distances.  So this is 

the equation of a line. So, this is suppose the predicted line 𝑎. 𝑥𝑖 + 𝑏 and as per the 

condition that is the least square method, I have to find the error between  the axial point 

and the line because already I told you that I have to find the vertical  distance and I have 

to minimize the distance the vertical distance.  

The error between the  axial point and the line that error I can write like this ei is the error 

this yi is  the axial and this y hat is the predicted value of y. 

 

 So, now I have to compute the  error, error I have to determine error is the e.  

E= 
1

𝑛
∑𝑛

𝑖=1 ((𝑦𝑖 − 𝑦̂𝑖)
2) 

 So, this is the nothing but the mean  square error we are determining. So, this can be 

represented like this 1 by n summation  from i is equal to 1 to n yi and in place of that 𝑦̂𝑖.I 

am writing 𝑎. 𝑥𝑖 + 𝑏 and  whole square. 

 

 So, I am writing this. Now the objective is to find the slope a and the a  and the intercept 

b which gives minimum error e that is the objective of the linear regression.  So, we have 

to find a and b that is the objective which gives minimum error e. So, that is the  objective. 

So, that is why what we are considering we are differentiating the error with respect  to a 

this partial derivative of e with respect to a and the partial derivative with respect  to b we 

have to determine and equating it to 0 and equating it to 0. 

 

 So, that is we  are considering. So, suppose this is equation number 1 and this is equation 

number 2.   

𝜕𝑒

𝜕𝑎
= 0 



                                                                                   
𝜕𝑒

𝜕𝑏
= 0 

So, after putting the value of e in the above equation  equation is 1. So, from equation 1 

what I will be getting.  

2

𝑛
∑

𝑛

𝑖=1

(𝑦𝑖 − 𝑎𝑥𝑖 − 𝑏)𝑥𝑖 = 0 

 

 

 So, this is with respect to a I am differentiating. So, that I can write  like this summation 

it is actually summation for the variable i, i is from 1 to n xi yi  minus a summation for i, i 

is equal to from 1 to n. So, it is xi square minus b summation  i xi is equal to 0. So, 

corresponding to this a i xi square plus b summation i is equal  to 1 to n.  

So, b xi is equal to i xi yi I can write like this. 

 

 So, this is suppose equation  number 3. And similarly, we can apply the same procedure 

for the equation number 2.  So, that means the differentiation of e with respect to b and I 

will be getting a xi plus  n b is equal to yi. So, I will be getting this one from the equation 

number 2. So, I  am getting these two equations equation number 3 and equation number 

4. 

 

 This is these are  linear equations in two variables. So, from these two equations, I can 

directly determine  the parameters a and b and this a and b I can determine and based on 

this I can determine  the line. So, that means I can determine the base fit line I can 

determine. So, the  base fit line between the observed data points.  

So, that is the objective of the linear regression. 

 

  Now let us discuss in detail because I am considering now only the linear line fitting  only 

we are considering a straight line, but maybe we can consider the polynomial curve  fitting 

we can consider. So, in my next slide, I will be explaining the concept of the polynomial  

curve fitting. The case is more complicated than this case, because in this case only  we are 

considering the problem of linear line fitting.  So, move to the next slide. So, what is the 

problem statement of regression? So, I can  say this is a problem statement. 

 

 The problem statement is suppose I have n observations  of x. So, n number of 

observations. So, I can say x is equal to x 1 x 2 up to x n. So,  n number of observations we 

are considering and suppose t is the target value all the  target values we are considering 

corresponding to these observations t 1 t 2 t n. So, what  is the goal? The goal is to exploit 



training set to predict the value of t from x that  is the goal. 

 

 So, I can write the goal is goal is to exploit training set to predict  the value of t. So, that 

is I can say t hat that is the predicted value from the observations  from x. So, this is the 

goal of this regression. So, this is a very difficult problem and this  probability theory allows 

us to make a prediction.  

So, in this case in this figure you can see  we are considering 10 data points. 

 

 So, n is equal to 10 we are considering 10 data  points and how to generate data this data 

data generation. So, this is this data space  uniformly in the range of 0 and 1. So, if you see 

in the x axis. So, you can see x is  the observation and t is the target value. 

 

 So, I can write it again. So, x and t in the  x axis it is x and this observations 10 observations 

and t is the target value. So, these data  generations what we are considering space 

uniformly in the range of 0 to 1 in the range  0 and 1. So, we have all these points n is equal 

to 10 points for this case this example  and this is generated by. So, this is generated by 

generated by a function the function is  we are considering sine suppose twice pi x. So, we 

are considering this sinusoidal function  sine twice pi x and with the help of this we are 

generating this data and 

 maybe we can  consider maybe addition of some noise maybe we can consider Gaussian 

noise. 

 

  So, sine twice pi x considered and maybe we can consider some noises we can consider 

the  Gaussian noise and these noises are typically unobserved variables. So, these noises 

are  typically unobserved variables. So, you can see this approximation if I consider these  

data points that can be generated by the function the sine twice pi x plus some noises  we 

can consider. So, now how to predict these values and these are the observation points  and 

we have to predict the value of t that is the t hat. 

 So, for this we can consider  the case of polynomial fitting. 

 

 So, maybe we can consider a polynomial function. So,  we can explain this concept in the 

next slide.  So, what is the polynomial fitting? For this polynomial fitting we are 

considering a polynomial  function the polynomial function may be like this. The 

polynomial function I can consider  suppose x w, w is the weight vector. So, w naught 

these are the coefficients of this  polynomial function plus w 2 x square plus w m x to the 

power m. So, which can be written  like this summation j is equal to 0 to m j is equal to 0 

to m w j x j. 

 

 So, I can write  like this. So, in this case m is the order of the polynomial order of the 



polynomial.  So, these coefficients we are considering the coefficients are w naught w 1 

these are  the coefficients which can be represented by the weight vector which can be 

represented  by the vector w. These are the coefficients a coefficients w naught w 1 w m 

that can be  represented by the weight vector. So, this model we can consider for 

polynomial fitting.  So, this is a nonlinear function of x linear function of the coefficients 

w. 

 

 So, maybe  it can be called as a linear model and with the help of this model we can 

consider the  polynomial fitting. So, now let us discuss about this concept what is the 

polynomial  fitting because for polynomial fitting we have to minimize an error and that is 

nothing  but the sum of square of the error between the predicted value for each of the data 

points  and the target value. So, that error we have to minimize.  

So, let us discuss this concept.   

So, what is this error here you can see we are considering the red line is the best polynomial  

fit. 

 

 So, if you see this red line is the best polynomial fit and we have shown the data  points 

and you can see the target value the target value is the t, t is the target value  and x is the 

observation. So, in case of the polynomial fitting we are considering this  is the error E w 

is the error that is the mean square error 1 by 2 summation n is equal  to 1 to n because we 

are considering capital n number of data points y x n w minus t n,  t n is the target value. 

So, what actually what is the meaning of this expression the  meaning of this expression is 

sum of squares of the errors between the prediction of the  error for each data point x n and 

the target value t n target value is t n. So, that means  you can see this is the error suppose 

this is the vertical distance between the predicted  value for each data points and the target 

value. So, this predicted value is nothing  but the red line that is the best polynomial fit and 

you can see the distance between this  one is the target value this is the target value the 

points in the red line that is nothing  but the predicted value. 

 

 So, that distance should be minimum this vertical distance should  be minimum. So, this 

is nothing but the error. So, for each and every data points I have  to determine the error 

and I have to minimize. So, this is the sum of squares of the errors  between the prediction 

for each data point x n and the target value t n. 

 

 So, this error  we have to minimize. So, we have to solve this one solve by selecting or 

maybe I can  write solve by choosing value of w w is the weight vector for which the error 

should be  minimum E w the error is as small as possible. So, that means this regressor 

minimizes the  error what is the error? Error already I have defined. So, it is 1 by 2 

summation n is equal  to 1 to n y x n that is the predicted value y is the predicted value and 



t is the target  value and we are considering a mean square error. So, that means the meaning 

is the minimizing  the error on the training samples. So, I can write simply I am writing the 

minimizing minimizing  the error on the training samples. 

 

 So, how to learn the weights the learning of the weights?  So, move to this next slide 

learning the weights. So, how to learn the weights? So,  already we have defined the error 

function E w is nothing but 1 by 2 summation n is equal  to 1 to n y x n comma w that is 

the predicted value and the target value is t n square mean  square we are considering. So, 

error function is a quadratic in coefficients w. So, this  error function is a quadratic in 

coefficients w. 

 

 So, we have to minimize this error. So,  that is why we have to take the derivative with 

respect to the coefficients. So, that  means the derivative with respect to  coefficients will 

be linear elements of the weight vector w. So, we have to determine  the minimum error. 

So, this unique minimum unique minimum is denoted by suppose w star.  So, this is after 

derivative and equating it to 0 I am getting the minimum and corresponding  to this the 

resulting polynomial will be just y x w star. 

 

 So, this is the resulting  polynomial. So, we have to learn the weights and objective is to 

minimize the error. So,  first I am taking the derivative and equating it to 0 and we are 

getting the unique minimum  vector that is the w star and corresponding to this I can 

determine the resulting polynomial  that is y x comma w star. Now, how to select the order 

of this polynomial  fit. So, move to the next slide. 

 

 Here I am showing that predictions for different model  values. So, here I have shown that 

model order is 0 1 3 9 and we have 10 data points n is  equal to 10. So, how to select the 

particular model. So, in the first figure if you see  m is equal to 0 we are considering this 

green line corresponds to our observed data and  you can see the predicted line the predicted 

line is the red line.  So, that means this predicted line it cannot perfectly represent the input 

data the observed  data. Similarly, if I consider m is equal to 1 corresponding to m is equal 

to 1 I am  getting this red line and also in this case it is nothing but the poor representation  

of the input function the function is sine twice pi x because we have generated data  by 

considering the function sine twice pi x. 

 

 But if I consider order of the polynomial  is 1 m is equal to 1 then if I do the prediction 

based on this then it is nothing but the poor  representation of the input function the function 

is sine twice pi x. So, it cannot  perfectly represent the observed data points. Similarly, if I 

consider m is equal to 3 in  the third figure so corresponding to m is equal to 3 I am getting 

the best fit corresponding  to the function sine twice pi x. So, you can see the red line the 

red curve and the green  curve. So, they are very close to each other because we are 



considering the complex model  m is equal to 3 is a complex model and with this model I 

can do the prediction perfectly  almost perfectly not exactly because this red and green are 

exactly not exactly equal  but almost overlapping. 

 

 So, that is why I can say it is a best fit corresponding to  the input function the function is 

sine twice pi x.  Suppose in the fourth case I am considering m is equal to 9 that is the more 

complex model  we are considering. So, if I consider in the more complex model then you 

can see overfitting  take place that is nothing but the poor representation of sine twice pi x. 

Here the main problem  is we have limited number of training data samples that is only 10 

data points we are  considering and we are considering a very complex model m is equal 

to 9 and that corresponds  to the curse of dimensionality that we have limited number of 

training samples but we  are considering the complex model and corresponding to this you 

can see the overfitting take place  that is nothing but the poor representation of the function 

sine twice pi x. 

 

  So, you can see the oscillations. So, red line you can see the red line is nothing but  the 

red curve is nothing but the predicted one and you can see the oscillations in the  prediction. 

So, you can see how to select the model order. So, because we have the limited  number of 

training samples. So, we have to consider a simple model rather than a very  complex model 

the complex model is m is equal to 9. 

 

  So, let us discuss the performance of the regressor. So, how to determine the performance  

of regression. The performance of regression. So, suppose during the testing we are 

considering  100 test point. So, test set we are considering test set of 100 points we are 

considering. 

 

  So for each value of m we have to evaluate the error function. So, for each value of  m m 

is the order of the polynomial or I can say it is order of the model evaluate what  I have to 

evaluate the error I have to determine. So, error is E star is equal to 1 by 2 n is  equal to 1 

to n y x n w star w star is the optimum weight that we have obtained during  the training 

whole square and in this case what is y x w star that is nothing but I can  write like this j is 

equal to 1 to m w j star that is nothing but the polynomial I am writing  the polynomial 

equation I am writing x to the power j.  So, for each value of m we have to evaluate this E 

w star we have to evaluate for training  data for both training data and the test data. So, we 

have to evaluate this function  E w we have to determine and corresponding to this we can 

determine the RMS error we  can determine RMS error we can determine the root mean 

square error we can determine that  is nothing but E RMS is equal to root over 2 E w star 

divided by n. So, in this case  we are dividing by n so that means the meaning is the division 

by n allows different sizes  of n to be compared on equal footing. 

 



 So, I am repeating this sentence because it is  nothing but the normalization. So, that is the 

division by n allows different  sizes of n to be compared on equal footing and the square 

root ensures that E RMS is  measured in the same units as t. So, that is why we are taking 

the square root. So,  this is nothing but the RMS error we are determining. So, this 

performance of the regression I can  determine based on this RMS error and pictorially I 

can show you in the next slide here you  can see the blue line represents the training and 

the red represents the testing.  So, if I consider model order is suppose 0 or maybe 1 or 2 if 

you see this is the model  order. 

 

 So, this the error E RMS error during the testing it is high because poor due to  inflexible 

polynomials. So, if I consider a very very simple model then I cannot perfectly  represent 

the observed data. So, that is why I am getting the error during the training  and the error 

during the testing. But if I increase the model order suppose  if I consider this one model 

order maybe 4 m is equal to 4 m is equal to 3 small error  during the training and during 

the testing because if I consider this model order m is  equal to 3 or 4 it can more or less 

represent the observed data. But if I increase the model  order suppose m is equal to 9 that 

is the order is 9 then it means 10 degree of freedom. 

 

  So, if I consider m is equal to 9 that means the 10 degrees of freedom. So, what will 

happen  during the training I can consider a very complex model and during the training 

you  can see that is the blue line the error is minimum. But during the testing that is the  red 

one the error is maximum because we are considering limited number of training samples.  

But we are considering a very complex model m is equal to 9. So, in this case this complex  

model cannot perfectly represent the observed data. So, that is why we are getting the high  

error during the testing  

but in the training it is minimum the error is minimum  

but during  the testing I am getting the significant error. 

 

 So, you can see you can see that exactly 10  training data points and this is because of 

oscillations in the polynomials. So, oscillations  in the polynomial means sometimes that 

is polynomial value will be very high again it  will be very low again it will be very high 

like this oscillation take place. So, we have  to consider a simple model but very very 

simple model will not be also good. So, maybe we  can consider m is equal to 3 4 like this 

we can consider and we cannot also consider a  very complex model  

because we have limited number of training samples. 

 

 If I had more  number of training samples then we can consider a complex model. But in 

this case we are considering  n is equal to 10. So, corresponding to this we cannot afford 

to consider a very complex  model.  So, in summary I can write like this the complex model 



models have large oscillations  in the learned weight. So, this is nothing but the case of 

overfitting. That means overfitting  is taking place because of we are fitting a higher order 

model with limited training  samples. 

 

 So, in this example we have considered only 10 data points training samples. That  means 

the meaning is we are making the model complex that means a complex model.  So, 

overfitting take place corresponding to m is equal to 9 and corresponding to m is  equal to 

9 already I told you the oscillations in polynomial it take place. So, that can  be explained 

in my next slide. Here you see I am considering these are the coefficients  all these are 

coefficients in the polynomial fitting and for different  polynomial orders we are 

considering m is equal to 0 m is equal to 1 m is equal to 6  m is equal to 9. So, corresponding 

to m is equal to 9 already I told you that is the  overfitting take place and oscillation take 

place in the polynomial coefficients. 

 

 So,  you can see sometimes it is a very low value again high value again very low value 

again  high value again low value again high value like this we have these oscillations.  But 

corresponding to the simple model like this you can see m is equal to 6 we have this  

coefficients, coefficients value are 0.31 7.99 like this. But if I consider a very complex  

model like m is equal to 9 you can see overfitting take place and you can see I have the 

oscillations  in the values of the coefficients. 

 

 So, that is the observation. So, as m increases the  magnitude of the coefficients increases 

at m is equal to 9 finally tune to a random noise  in target values. Now how to control this 

overfitting? So, in my next slide I will explain  how to control the overfitting.  So, that is 

the techniques I can write the techniques techniques for controlling controlling  the 

overfitting. So, how to control the overfitting? So, we may consider more number of data 

points.  So, suppose if I consider n is equal to 15 I can consider or maybe n is equal to 100  

that means more number of data points we can consider. 

 

 So, that means for a given model  complexity overfitting problem is less severe as the size 

of data set increases. So, that  means if I increase the size of the data set then we can afford 

a complex model. That means  the larger the data set the more complex we can afford to 

fit their data.  So, the meaning is I can write in a summary the larger the data set the more 

we can afford  to fit the data. So, that means we can consider more number of training 

samples that means  data points and corresponding to this we can consider a complex model 

relatively complex  model. 

 

 And also you can see here in this figure we are considering n is equal to 15 and 

corresponding  to n is equal to 15 you can see the one is the green is the that is the observed 

data  points and we are considering by sine twice pi x and what is the predicted one the 



predicted  one is the red one the red curve.  So, you can see almost perfectly represent the 

observed data points. But if I increase  these data points n is equal to 100 then we can 

consider a complex model very complex  model and you can see this red curve and the 

green curve they are almost coincide.  So that means it is a perfect representation of the 

input data. So, that means we can consider  a very complex model if I have the large number 

of training samples that is the meaning of  this. 

 

 So, this one technique is we may consider the large number of training data samples.  So, 

another technique is by considering the regularizer. So, what is the regularizer we  can 

explain in my next slide. So, regularization of least squares. So, using relatively complex  

model with data sets of limited size. You can see in the previous slide the oscillation  take 

place because we are considering a very complex model. 

 

 Now we can add a penalty term  to error function to discourage coefficients from reaching 

the large values.  So that means what we can consider add a penalty term  to error function 

to discourage  from reaching large values. So, this is the another technique we are 

considering a regularizer  that the penalty term we are considering and corresponding to 

this my error function will  be E w will be already I have explained this that one that is this 

is my original error  function. So, this is my original error function and we are considering 

a penalty term lambda  by 2 w square norm we are considering. 

 

 So, a penalty term we are considering here. So,  this is the penalty term. So, this lambda 

what is the meaning of this lambda? Lambda  determines the relative importance of the 

regularization term to error term. So, in  brief I can write it determines the relative 

importance relative importance of regularization  term to error term. There is the meaning 

of this lambda is a parameter. So, based on  this we are considering this one. So, this error 

function the modified error function  I can write like this and this w square norm is nothing 

but already you know this is w  transpose w that is equal to w square plus w 1 square w m 

square. 

 

 So, we can determine  like this. So, what is the effect of this regularizer? So, we can see 

in the next slide.  So, m is equal to 9 we are considering that is a polynomial using the 

regularized error  function the order is m is equal to 9. So, here we are considering log 

lambda we are  considering. So, you can see ln lambda minus 18 we are considering ln 

lambda is equal to  0 that we are considering and in this case the lambda is equal to 0. So, 

that means lambda  is equal to 0 means there is no regularization and if there is no 

regularization then oscillation  will be there, but if I consider this optimum ln lambda is 

equal to minus 18 you can see  the effect of the regularizer there is no oscillations. So, if I 

consider the large  regularizer also then in this case also the problem is there that is not the 

exact representation  if I see the predicted predicted one the predicted one is the red one. 



 

  So, if I consider this one that is not the exact representation of the input function  the input 

function is sine twice pi x. So, if I consider this optimal value the optimal  log lambda is 

equal to minus 18 then what will happen. So, it is almost exact representation  of the input 

data and lambda is equal to 0 means there is no penalty term that is effect  of regularizer is 

not there. So, you can see here the values of the coefficients corresponding  to no 

regularization. So, ln lambda is equal to minus infinity that means no regularization  then 

you can see the oscillation take place and corresponding to lambda is equal to minus  18 

then in this case you have this values of the coefficients and that is the most optimal  

representation. 

 

 So, that is the effect of the regularizer to minimize the overfitting  because the problem is 

because of the overfitting.  So, move to the next slide. So, in this case you can see that 

lambda controls the complexity  of the model. So, what is the impact of regularization on 

error because we are considering the regularizer. 

 

  So, what is the impact of the regularization on error. So, this lambda parameter we have  

considered actually this lambda controls the complexity of the model complexity of the  

model. So, it is very similar to the model parameter M the model order is M. So, what  we 

have to consider what is the approach for this. So, for the training set we are  considering 

a training set.  So, with the help of this training set first we have to determine coefficients 

W coefficients  of W for different values of M or lambda and after this we have to consider 

the validation  set. 

 

 So, during the validation to optimize model complexity model complexity M or lambda.  

So, like this we have to consider this approach. So, for the training what we have to consider  

we have to determine the coefficients of W and for different values of M or lambda  and 

for the validation what we have to consider we have to optimize the model complexity by  

considering M or lambda. So, this is the approach. So, these are the techniques for 

controlling  the overfitting.  So, that means I can say that partitioning I can say the 

partitioning data into   training set to determine coefficients of this weight vector W and 

separate validation  set to optimize model complexity  M or lambda. 

 

 So, this we have to follow. So, this is the fundamental concept of the  regression. So, now 

I will explain the mathematics behind the regression. So, how to learn the  weight vector.  

So, what is the mathematics behind regression and actually how to learn the weight vector.  

So, we are given n samples of d dimension with scalar target values. 

 

 So, that means  what we are given n number of training samples of d dimensions with 

scalar  target values. So, this is given. So, I can represent like this x1 that is the 



corresponding  to input the target value is t1 corresponding to the second input x2 the target 

value is  t2 like this we have given this training samples. So, xn is given and the target 

value is tn  it is given. So, now let us define M plus 1 non-linear basis functions. So, maybe 

we  can consider M plus 1 number of non-linear basis function phi x that is nothing but 

suppose  phi naught x phi 1 x phi 2 x phi m x this is the non-linear basis function maybe 

we  can consider exponential function as a non-linear basis function. 

 

 So, for a polynomial for a  polynomial feed we can consider this function phi x maybe like 

this 1 x x to the power m.  So, we can consider this polynomial feed case that is we are 

considering the non-linear  basis functions and based on this we can consider the 

polynomial feed. Now, let us  move to the next slide. So, we have to define the weight 

vector and we have to define the  vector corresponding to the predicted value and also the 

another vector corresponding  to the targets the vector of the targets. So, this is the weight 

vector w is the weight  vector and you can see these are the components of the weight 

vector w naught w 1 like this  up to w m this is the weight vector we are considering this 

is the vector of weights. 

 

  We can consider another vector that is y. So, this is y 1 y 2 y n. So, this is a vector  of 

predicted values vector of the predicted value. So, in the first weight vector dimension  is 

m plus 1 cross 1 the second one is the dimension is n cross 1 and the target vector  is t t 1 t 

2 t n n cross 1. So, this is nothing but the vector of targets. So, we are defining  these 

vectors. 

 

 So, what is this predicted value the predicted value we can define like  this the predicted 

values. The predicted values this is nothing but y 1 is equal to  phi transpose x 1 w y 2 is 

equal to these are the predicted values phi transpose x 2  w like this all these we have the 

predicted value y n is equal to phi t x n w. So, you  can see this linear combination of these 

basis functions gives the predicted value for each  of the samples. So, we have this predicted 

value and how to get this predicted value  the linear combination of these basis functions 

gives the predicted value for each of the  samples. 

 

 And in this case what we have to do we have to learn m plus 1 number of weights.  So, 

meaning is from this you can see. So, what is the objective the objective is to  learn the m 

plus 1 number of weights that is the objective. So, you can see how to get  the predicted 

value in terms of the basis functions. So, the linear combination of these  basis functions 

give the predicted value for each of the samples. 

 

 Now we have to define  the error function. So, in my next slide I can explain what is the 

error function in  this case.  So, move to the next slide. So, what is the error function? This 

error function I can  write like this.  So, this is my weight vector w 1 w 2 w m this basis 



function it is the order is n cross  m this weight vector the order is the size is m cross 1 and 

I am getting the predicted  vector the predicted vector is y 1 y 2 up to y n. 

 

 So, what is the size? The size is  size is n cross 1 because it is n up to n. So, size will be n 

cross 1. So, this  phi I can write the phi if I write like the phi like this phi is equal to suppose 

phi  transpose x 1 phi transpose x 2 phi transpose x n that is represented by this matrix phi  

n into m plus 1 the size is n into m plus 1. 

 

 So, size is n cross m plus 1. So, you can  represent like this. So, we can write in this form. 

So, y is equal to phi w. So, from this  I can write y is equal to nothing but phi into w and 

based on this we can write the  error function.  So, what is the error function? So, error 

function I can write the error function is  E w is equal to 1 by 2 summation i is equal to 1 

to n t i minus y i whole square and we  can write in this form 1 by 2 t minus phi w. 

 

 So, in the vector form I can write t minus  phi w. So, I can write in this form. So, that is 

the error function. So, this can be simplified  or it can be expanded this error function now 

I can write like this error function E  w is already I have defined it is 1 by 2 t minus phi w 

t t minus phi w. So, this can  be expanded. So, it is 1 by 2 t transpose t minus w transpose 

phi t t minus t transpose  phi w plus w transpose phi transpose phi w. So, I can write after 

expanding and also  we have this expression we know this w transpose phi transpose t is 

equal to t transpose phi  w we can write this is equal to this w transpose phi transpose t is 

equal to t transpose phi  w.  

𝐸(𝑤) =
1

2
(𝑡𝑇𝑡 − 2𝑤𝑇𝜙𝑇𝑡 + 𝑤𝑇𝜙𝑇𝜙𝑤) 

 

 

 So, I can write like this. So, after this I have  to find the optimal weight vector. So, that is 

why what I have to consider I have to do  the differentiation and after this it is equating to 

0 then I will be getting the optimal weight  vector.  So, move to the next slide. So, what is 

the optimal weight vector? So, just I have to  do the differentiation. So, if I take the 

differentiation I am taking the partial differentiation  because I have to consider 

differentiation with respect to all the components of w. So,  the optimal weight vector that 

is the optimal weight vector is I can write d E w star w  star is the optimal weight vector 

divided by del w is equal to 0 I am equating to 0. 

 

  So, corresponding to this I will be getting phi transpose t minus phi transpose phi w  star 

is equal to 0 and corresponding to this we can determine w star w star is equal to  phi 

transpose phi to the power of minus 1 phi transpose t. So, this is the expression  for the 

weight vector that is the optimal weight vector.  So,  with regularization we can write this 



error  function the E w is equal to 1 by 2 summation i is equal to 1 to n t i minus w transpose  

phi x i square plus I am considering the penalty term that is the regularization term lambda  

by 2 w transpose w we are considering. 

 

 So, this is with the regularization. So, corresponding  to this this optimal weight vector 

will be it can be determined. So, phi transpose phi  plus lambda i, i is the identity matrix to 

the power minus 1 phi transpose t that can  be determined like this. So, corresponding to 

this case we can determine the optimal  weight vector that the phi transpose phi plus lambda 

i, i is the identity matrix to the  power minus 1 phi transpose t. So, this expression I can 

determine. 

 

  So, now let us consider this case the extension to high dimensional input feature. So, how  

to extend to high dimensional input feature. So, the same principle is applicable. So,  move 

to the next slide. This is the extension to high dimension input feature. 

 

 So, extension  to high dimension input feature. So, corresponding to this I can write y x w 

that is the predicted  value. So, w plus w 1 x 1 plus w m this is nothing but the polynomial 

fit that already  I have explained the polynomial fit and corresponding to this that weight 

vector is corresponding  to w naught w 1 up to w m. So, size is m plus 1 into 1 and what is 

the basis function  phi x. So, basis function phi x is equal to 1 x 1 x 2 up to x m m plus 1 

into 1. So,  corresponding to this I can write the predicted value y x w is equal to w 

transpose phi x. 

 

  So, what is x here x is the input vector and that is also m dimensional training feature  

vector. So, this is nothing but the m dimensional training feature vector. So, this is nothing  

but the extension of the previous equations. And based on this how I can write the predicted  

value. So, move to the next slide. What are the predicted values? So, how to write the  

predicted values y 1 I can write y 1 is nothing but phi transpose x 1 w y 2 is nothing but  

phi transpose x 2 w like this y up to y n I can predict phi transpose x n w. 

 

 So, you  can see the linear combinations of basis functions phi x gives the predicted value 

for each of  the samples. And already I told you the idea is to learn m number of weights 

the m number  of weights we have to consider. So, ultimately what we have to consider the 

idea is to idea  is to learn the m number of weights from the training samples.  So, this 

expressions is the predicted values. What is the meaning of this that is the linear  

combinations of basis functions phi x gives the predicted value for each of the samples  that 

is the meaning of this. 

 

 So, we can derive a similar expression like this. So, what is  the optimum value of w? So, 

optimum value of w is nothing but phi transpose phi plus  lambda i to the power minus 1 



phi transpose t. So, we can write like this what is phi  that is the matrix corresponding to 

this basis function. So, it is phi transpose x 1 phi  transpose x 2 like this phi transpose x n. 

 

 So, this is n into m plus 1. So, we can determine  the predicted value like this and this is 

the optimal weight. So, this is nothing but  the optimal weight vector. So, we can explain 

this concept of regression like this.  So, in this class I discussed the concept of regression. 

I explained how to do the polynomial  fit and you can see the concept of the overfitting. 

 

 The overfitting take place when I am considering  limited number of training samples and 

if I consider very complex model. So, if I consider  a very complex model with limited 

number of training samples, then what will happen the  overfitting take place and during 

the overfitting you can see the oscillations of the coefficients  the polynomial coefficients. 

So, how to avoid this overfitting? If I consider more number  of training samples, then I 

can minimize this overfitting problem.  So, also I can consider a regularizer that is the 

penalty term in the error function  I can consider and with the help of this regularizer I can 

minimize the overfitting. So, that is  the concept of the regression. So, let me stop here 

today. Thank you. . 


