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  Welcome  to NPTEL online course on machine learning and deep learning fundamentals 

and applications.  In my last class, I explained the concept of the deep learning and also I 

explained  the concept of the convolutional neural network that is CNN.  For the training 

of the network, I can employ the back propagation training algorithm that  already I have 

explained.  And if I increase the number of layers of a particular network, it is expected 

that  the performance of the network may improve.  Also the network can extract more 

number of features from the input image.  That means, I will be getting more 

representations of the input data or the input image with  the help of more number of 

layers. 

 

  So I am repeating this.  So if I increase the number of layers of a particular 

convolutional neural network or  the deep architecture, it is expected that the performance 

may improve.  But practically it is not happening in many cases because of the problem 

of the vanishing  gradient.  The opposite of the vanishing gradient is the exploding 

gradient. 

 

  So today I am going to discuss this concept, the concept of the vanishing gradient.  So 

before explaining this concept, I will be explaining the concept of the single layer  

perceptron.  And after this, I will be explaining the concept of the multilayer perceptron 

and also the  back propagation training algorithm.  And after this, I will be explaining the 

concept of the vanishing gradient problem.  So let me begin this class. 

 

  So in this case, I have shown one single layer perceptron SLP.  So we have the input 

signals X1, X2 up to Xm, you can see in the figure.  So I have the input signals.  And you 

can see I have shown the summing junction.  And you can see the connecting weights. 

 

  So Wk1, Wk2, Wkm, these are the weights, the connecting weights between the input node  

and the summing junction.  And also we are considering the bias input.  Bk is the bias 



input.  And you can see these are the input signals.  So this is the single layer perceptron. 

 

  So we do not have any hidden layers, we have the input layer.  And you can see the 

output, that is the output node.  And we are considering the activation function.  So at the 

kth node, the input Xj, these all the inputs are multiplied by their weights,  the 

corresponding weights along with the bias Bk are sum.  So already this concept I have 

explained. 

 

  So I have to consider weighted inputs.  So input is multiplied with the corresponding 

weights.  And we have to sum up.  And also we have to sum the bias.  So we have to 

consider bias also. 

  At kth node, the inputs Xj multiplied by their weights, the weights are Wkj along with 

the  bias Bk are sum.  And we are considering the activation function phi that controls the 

magnitude of the accumulated  output.  So why I need the activation function that already 

I have explained in my artificial  neural network class.  So this activation function phi 

controls the magnitude of the accumulated output.  So mathematically how to determine 

Yk. 

 

  So Yk is the output.  So that is nothing but ϕ(Vk).  So Vk is nothing but the accumulated 

output.  So that is nothing but first what we are considering the inputs are multiplied with  

the corresponding weights plus bias, the bias is the Bk.  So it is sum up. 

 

  So j is equal to 1 to m because we are considering m number of input signals X1, X2 up 

to Xm.  So this is the mathematical representation.  And in the vector from I can write in 

this from that is nothing but 𝑊𝑘
𝑇𝑋 + 𝐵𝑘 and Bk is the bias input.  So this is the concept of 

the single layer perceptron.  So in this case we are considering this activation function ϕ 

is the activation function and  Vk is the accumulated input. 

  So the output of this is 1 if you see the output, output is 1 when the Vk > 0.  That is the 

𝑊𝑘
𝑇𝑋 + 𝐵𝑘 > 0 that is nothing but 1 the output will be 1.  Otherwise the output will be 0.  

So for this we are considering the step function, step function as an activation function.  

So here I have shown the step function as an activation function and the bias is 

considered to change the position of the decision boundary. 

  But I cannot sense the orientation of the decision boundary only I can sense the position  

of the decision boundary based on the bias value.  So bias changes the position of the 

decision boundary.  So this is the concept of the SLP the single layer perceptron.  Now 

during the training what will happen you can see because already I told you SLP is  good 

only for the simple classification problems.  And if the problem is very simple and 

suppose the problem is the linearly separable classes  then we can employ the single layer 



perceptron. 

 

  So here you can see I am considering the inputs x1, d1.  So corresponding to x1 input 

the desired output is d1 and corresponding to xn the desired  output is dn.  So because 

this is the supervised training so corresponding to particular input what  is the desired 

output that I know.  So corresponding to x1 the output is d1 that is the desired output 

corresponding to x2  the desired output is d2 like this I have the training samples.  So 

during the training first I have to randomly initialize the weights and after this we have  

to compute y that y I can compute that is the output we can compute. 

 

  So that is nothing but W(t). xj so we are having this equation the input is  multiplied 

with the weights and we are considering the activation function the activation function  is 

ϕ.  After this we have to update the weights the weight W(t + 1) that is the weight in the  t 

+ 1 iteration is equal to W(t) that is the weight in the tth iteration plus we  are considering 

the error the error is nothing but the desired output minus actual output  that is considered 

that is the error.  Because already I told you during the back propagation training the 

error is back propagated  to the input.  So this dj - yj that is nothing but the difference 

between the desired output and  the actual output that we are considering and we have to 

minimize the error.  So for this I am updating the weights by considering this weight 

updation rule. 

  So this is the weight updation rule we are considering.  So I have to do the iterations 

until the cost function and the cost function already I have  defined that is nothing but the 

difference between the desired output and the actual  output.  So until a particular 

convergence condition is not obtained.  So you can see the error should be less than the 

parameter the parameter is γ.  So γ is the user defined parameter that is the threshold and 

if the cost function  is less than this γ then I can stop the iteration. 

 

  So by considering this back propagation training we can find a decision boundary 

between the  classes but the problem is it can be employed if the problem is very simple 

the problem  means the pattern classification problem and the classes should be linearly 

separable then  only I can apply the single layer perceptron algorithm.  So for complex 

tasks I have to consider multi-layer perceptron MLP that is the feed forward network  

with hidden layers.  In SLP I do not have hidden layers only input layer and output layers 

are available but  in case of the MLP I have to consider hidden layers between input layer 

and output layer.  So the drawbacks of the SLP so the output of a perceptron can take 

only one of two binary  value so either it is 1 or 0.  So it is not also this SLP not able to 

solve complex problems the complex pattern classification  problems and picks up many 

solutions of varying quality. 



  So that already I have explained in my previous slide so it is very difficult to find the  

best decision boundary between the classes.  If the vectors are not linearly separable 

learning will never reach a point where all  the vectors are correctly classified.  So if the 

problem is not linearly separable then this SLP cannot give good accuracy and  the 

problem is the misclassification.  So if I consider a very complex problem and if the 

samples are not linearly separable  then I have to consider MLP the multi-layer 

perceptron.  So let us move to the next slide. 

  So in this figure I have shown the concept of the multi-layer perceptron MLP.  So input 

is first test from using a learned nonlinear transformation.  So maybe we can employ 

some nonlinear transformations for mapping that concept I have explained  in case of a 

radial basis function.  So this allows nonlinearly separable input data to become linearly 

separable.  So I have to consider nonlinear transformations of the input data and if I do 

this transformation  and the data will be linearly separable. 

 

  So that concept I have explained in case of the radial basis function and in the figure  I 

have shown one single hidden layer MLP.  So you can see the input layer.  So this is the 

input layer.  So the nodes are X1, X2, X3 and we are considering one hidden layer and 

the nodes are H1 and  H2 and we have the output node that is Y.  So it is a very simple 

network that is a single hidden layer MLP we are considering. 

 

  So what will be the output at the node Y?  So we are considering the activation function 

ϕ.  Now I need to determine the output of the node Y.  So by considering this equation 

that is nothing but we are considering the activation function  ϕ and weight is multiplied 

with the input.  The input is Hj and the corresponding connecting weight is Wj.  So I am 

getting the output Y that is nothing but the ϕ that is the activation function. 

 

  The Wj is multiplied with the input the input is Hj.  So this is my input.  So this 

expression the ϕ(∑ 𝑊𝑗𝐻𝑗𝑗 )  that can be represented like this ϕ(∑ 𝑊𝑗 ϕ(∑ 𝑊𝑖𝑗𝑋𝑖))𝑖𝑗  

because what is the output?  What is the output in the node H1 and H2?  So that is 

nothing but the input Xi is multiplied with the corresponding weights the weights  are 

Wij.  So corresponding to Hj that is the output my input is Xi.  So Xi is multiplied with 

the corresponding weights that is the connecting weights Wij  and we are considering the 

activation function ϕ. 

  So I can represent like this.  Now I have to optimize the loss function J(W).  So that is 

nothing but the minimum and we are considering the difference between the  actual 

output and the desired output.  So dK is the desired output so that the loss function we are 

considering.  So by considering this equation we can determine the actual output and we 

are considering the desired output that is the dK is the desired output. 

 



  So we can consider this loss function.  So the dK is the target to the output node Yk.  So 

dK is the target to the output node Yk.  So in this case the k is equal to 1 because we are 

considering only one node in the output  layer.  So we can consider the back propagation 

training for weight updation. 

  So move to the next slide.  So what is the back propagation algorithm?  So it has two 

phases first one is the propagation and another one is the weight updation.  So in the 

propagation forward propagation of a training patterns input through the neural  network 

in order to generate the network outputs value.  So we are getting the output values 

corresponding to the input patterns the input values and  after this the back propagated of 

the output activations through the neural network using  the training pattern target in 

order to generate the difference between the target and the  actual output value.  So that 

concept already I have explained.  So that is the cost function that is nothing but the 

difference between the actual output  and the target value that is the desired output. 

 

  So that we have to minimize for minimization of this I have to adjust the weights of the  

artificial neural network.  So we have to calculate the gradient loss function.  So gradient 

value we have to calculate because I have to find a minimum value.  So that is why I am 

taking the gradient of this.  And finally we are considering the weight updation rule. 

 

  So that is nothing but W(t + 1) = W(t) – γ ∇(J(W)) and we are considering the  gradient 

of the loss function.  So we are updating the weights and this gamma controls the speed 

and the quality of the  learning.  So that means it controls the learning rate.  So that is the 

parameter gamma is the user defined parameter and it controls the speed  and quality of 

the learning.  So in this discussion I am considering the sigmoid activation function. 

 

  So activation function is 𝜎(𝑥) =
1

1+𝑒−𝑥 .  So one advantage of the sigmoid function is 

that the derivative can be easily computed  for the sigmoid function.  So here you can see 

I am just computing the derivative of the sigmoid function.  The sigmoid function is 
1

1+𝑒−𝑥 and you can see just  I am taking the differentiation and finally I am getting this 

expression 𝜎′(𝑥) that is the first order derivative is equal to 𝜎(𝑥)(1 − 𝜎(𝑥)).  So you can 

see it is easy to determine the derivative of the sigmoid function. 

 

  So that is why in artificial neural network we consider the sigmoid function.  So during 

the weight updation already I told you we considered gradient descent algorithm.  So that 

algorithm already I have explained in one of my classes.  So you can see in y axis we are 

considering the cost function and W is the weight and  this point we have to reach that is 

the global cost minima.  So that point I have to obtain during the iteration that is the 

global minimum. 



  So suppose my initial point already I have shown this is my initial weight and if I take  

the gradient of this then the gradient at this point will be in this direction in this  direction 

that will be the direction of the gradient.  But to get the minimum I have to move in the 

opposite direction of the gradient.  So that is why this minus sign is because of this.  So I 

am moving in the negative direction of the gradient.  So that is why we considered the 

negative sign and this γ is nothing but the learning rate. 

  So if the learning rate is very high then during this iteration so this value may go  to this 

point this value may go to this point like this I have the oscillations and for  the 

convergence it will take time.  But if I consider this γ is small then you can see this 

convergence the convergence  will be like this.  So I am getting this one like this I am 

getting these gradients and after this I am getting  this minimum point that is a global 

minimum point I am obtaining.  If I consider the γ is very high then the faster will be the 

convergence but it  may not be accurate.  But if I consider lower γ then I will be getting 

the more accurate convergence during  the training but it will take time. 

 

  So that is the concept of the gradient descent algorithm.  So I am moving in the opposite 

direction of the gradient and the parameter γ controls  the learning rate.  The parameter γ 

controls the learning rate.  If γ is high then the faster is the convergence.  If γ is low then 

the more accurate in the training but it will take time for the  convergence. 

 

  Now I will show the mathematical derivation of the back propagation learning 

algorithm.  So here I am considering a multi-layer perceptron that is the feed forward 

network.  I have one input layer one hidden layer and one output layer.  So corresponding 

to this input layer the inputs are X1, X2, X3, X4 these are the nodes of  the input layer 

and H1, H2, H3 these are the nodes of the hidden layer and I have two nodes  in the 

output layer.  The connecting weights between the input layer and the hidden layer that is 

Wij and the connecting  nodes between the hidden layer and the output layer is Wjk. 

 

  So a single hidden layer ANN is considered for simplicity.  So let us consider the 

derivation of the back propagation training algorithm.  So we can determine Yk.  So we 

are considering the 𝜎.  𝜎 is the activation function. 

  The weight Wjk is multiplied with the input.  So input is H1, H2, H3 for the output Y1, 

Y2.  So now we are considering the weight updation for the hidden and the output layer.  

So only this portion of the network we are considering.  So inputs will be H1, H2, H3 and 

the output will be Y1 and Y2. 

  So what is the Yk?  Yk is nothing but 𝜎(∑ 𝑊𝑗𝑘𝐻𝑗𝑗 ).  I am multiplying the inputs.  The 

input is H1, H2, H3 with the weights, the corresponding weights Wjk.  So this expression 



I am obtaining by replacing Hj by this one.  So what is Hj?  Hj is nothing but the output 

corresponding to the input. 

  The inputs are X1, X2, X3, X4.  So in terms of this I can write Hj.  So Hj is nothing but 

𝜎  if you see this part 𝜎  and we are considering the input  is multiplied with the 

connecting weights and it is sum up.  That means we are considering the weighted inputs.  

And the cost function is again that is J(W) that is nothing but the desired output and  the 

actual output.  So we are considering Yk is the actual output and Dk is the desired output 

that is the target  output. 

  And based on this I am formulating the cost function.  So now I have to take the 

derivative of the cost function with respect to the weight and  in this case we have to do 

for two cases one is for the output nodes and one is for the  hidden nodes.  So we have to 

do the differentiation with respect to the weight and in this case I have  to consider the 

output nodes and the hidden nodes.  So you can see here in the output node I am 

differentiating the cost function with respect to the connecting weights. 

 

  So the connecting weights are Wjk. So this is the connecting weights.  So that can be 

written like this 
𝜕𝐽(𝑊)

𝜕𝑖𝑛𝑘

𝜕𝑖𝑛𝑘

𝜕𝑊𝑗𝑘
. So what is ink?  That is the input to the output node Yk.  So 

ink is the input to the output node Yk.  So this 
𝜕

𝜕𝑖𝑛𝑘

1

2
∑ (𝜎(𝑖𝑛𝑘) − 𝑑𝑘)2𝐾

𝑘=1  .  So this 

expression I am getting that is nothing but the J(W) that is the cost function and this  part 

I am differentiating ink with respect to Wjk. 

 So what is ink?  Ink is nothing but Wjk Hj. So that is the ink.  So ink we can determine and 

that is nothing but Wjk Hj and if I take the differentiation  of this one so this will be this.  

So I am just taking the differentiation of this.  This is the sigmoid function and finally I 

am getting this expression.  The expression is 𝛿𝑘Hj. So what is the 𝛿𝑘?  𝛿𝑘 is nothing but 

(𝜎(𝑖𝑛𝑘) − 𝑑𝑘)𝜎′(𝑖𝑛𝑘) . 

 

  So 𝜎′is nothing but the first order derivative.  So this expression you can see.  It is a 

very simple expression and these mathematical steps you have to see how to  derive this 

equation.  Now at the hidden node we have to consider this one.  The differentiation of 

the cost function with respect to the weight Wij.  So Wij is nothing but this Wij that is the 

connecting weights between the input nodes and the hidden nodes. 

 

  So this I can write in this form.  So that is 
𝜕𝐽(𝑊)

𝜕𝑖𝑛𝑗

𝜕𝑖𝑛𝑗

𝜕𝑊𝑖𝑗
.  So that is by the chain rule we are 

considering this expression.  So that is by considering the chain rule I am getting this 

expression.  So this J(W) already I have defined that is nothing but the difference 

between the actual  output and the desired output.  And this is nothing but what is inj?  inj 

is nothing but it is the input to the hidden node. 



  So that is nothing but WijXi.  So the input Xi is multiplied with the corresponding 

weights and it is sum up.  So that is the inj and after this I have to do the mathematics.  

You can see the steps all the steps.  So just I am doing the differentiation and finally I am 

getting the expression that is  𝛿𝑗Xi and what is 𝛿𝑗?  The 𝛿𝑗 is I am obtaining like this.  So 

it is a very simple derivation and in this derivation you have to see how to get this  

expression. 

 

  So at the hidden node I am determining this and in the previous slide at the output node  

we are determining this.  So at the output node we are determining the differentiation of 

the cost function with  respect to the connecting weights and at the hidden node again I 

am determining the differentiation  of the cost function with respect to the connecting 

weight.  So connecting weight is Wij.  So I am getting this expression.  So now how 

actually we do the back propagation training so that illustration I want to show  you. 

 

  So this is a simple network I am considering and the inputs are X1 and X2.  In this 

network I have 2 hidden layers.  So this is my input.  So this is my input and I have 2 

hidden layers and this is my output node.  So how to do the back propagation training in 

this case?  So let us see.  So you can see first I am determining Y1 that Y1 I can 

determine that is the output Y1 I  can determine corresponding to this node. 

 

  So Y1 is nothing but F1 is the activation function W(X1)1 that is the connecting weight  

between X1 and the node of the hidden layer.  So W(X1)1 X1 that is the X1 is the input 

W(X2)1 so that W(X2)1  you can see the width the  connecting weight between the X2 and 

the node the node is 1 the hidden node is 1.  So W(X2)1 X2 so we are getting the value Y1 

that is the output in the hidden node 1  of the first hidden layer.  So after this we are 

determining the activation this activation we are determining so that  is nothing but Y2 

Y2 is nothing but the activation function F2 and we are just multiplying the  weight 

W(X1)2  you can see in the figure into the input the input is X1 and W(X2)2 X2.  So it is a 

simple equation and we are determining the activation in the hidden neuron. 

 

  We are determining the activation in the hidden neuron and similarly the Y3 

corresponding  to this neuron can be determined like this.  So we are determining the 

activation or the output corresponding to this hidden neuron  and after this we are 

considering the second hidden layer and you can see this activation  or this output we can 

determine like this F4 that is the that is the activation function  W14.Y1 + W24.Y2 + 

W34.Y3 so that we are determining and after this  we have to consider the second the 

node this node we are considering and we are getting  the output output is Y5 we are 

getting.  After this come to the last node of the output node so that is the output node and 

we are  determining the activation that is the output Y is equal to F6 that is the activation 

F6 (W46.Y4 + W56.Y5) so that we are considering to get the activation at the output 



node.  Now let us consider how actually we do the back propagation so we are 

determining the  difference between Z-Y so Y is nothing but that is the actual output we 

have determined  and Z is suppose the desired output that is the target output we are 

considering.  So 𝛿 is nothing but the error that is the difference between the target value 

and  the actual value so Z is the target value and Y is the actual value so that difference  

we are considering that is the error. 

  So error should be back propagated to the input to adjust the weights of the artificial  

neural network so you can see in the previous slide we are determining 𝛿 so this error  is 

back propagated you can see so 𝛿4 we are determining that is nothing but W46.𝛿 so we 

can now determine the 𝛿4.  So corresponding to this hidden node we can determine the 𝛿4 

and corresponding to  this node hidden node we can determine 𝛿5 so 𝛿5 is nothing but 

W56.𝛿 so you can see I am back propagating the error after this come to the next hidden 

layer so  if I consider this is the hidden layer the corresponding this hidden node I can 

determine  𝛿1 that is nothing but W14.𝛿4 + W15.𝛿5 so I am moving towards left  that 

means I am moving towards the initial layers similarly corresponding to this node  this 𝛿2 

is determined and finally I am adjusting the weights the connecting weights  between the 

input node and the hidden nodes that is the W(X1)1 so this is the updated width  and 

W’(X2)1 so I have two weights that is the corresponding to this node corresponding  to this 

hidden node I have two weights connecting weights so one is W(X1)1 and another one is  

W(X2)1 so these two weights I am updating by considering the width updation rule so by  

considering the width updation rule I am updating the weights the connecting weights 

between  the input node and the hidden nodes so I am obtaining W’(X1)1 and W’(X2)1 I am 

obtaining  similarly I am getting the values W’(X1)2 and W’(X2)2 so all these connecting 

weights I am  determining by this width updation rule so that is the width updation rule 

for the back  propagation training and in this case you can see I am just back propagating 

my error  from the end to the beginning from the end to the beginning I am back 

propagating the  error from the end to the beginning and during this back propagation I 

am considering the  gradient the gradient operation we are considering so again 

corresponding to this neuron and  we can determine the connecting weights W(X1)3 and 

W(X2)3 we can determine so I am repeating  this during the back propagation I am moving 

from the output side to the input side that  means I am moving in this direction and I am 

computing the gradients so I am computing  the gradients and based on this the width 

updation rules I am updating the weights so  that is the concept of the back propagation 

training algorithm and after this again we  are determining this weights W(X1)4 ,W(X2)4 

,W(X3)4 so all the weights I can determine and again  W(X1)5 ,W(X2)5 ,W(X3)5 so all the 

weights I am determining and finally I am determining the  weights between the output 

node and the hidden layer 2 so the weights between the hidden  layer 2 and the output 

node that is also determined that is nothing but W’46 and W’56  so this we have 

determined so this is the concept of the back propagation training algorithm  so let us 

consider one numerical problem here the numerical on back propagation so suppose  in 



this network I have shown one network that is the feed forward network and I have two  

inputs X1 and X2 and we are considering the bias input is 1, 1 is the bias input so the  

bias values are B1 and B1 this two bias we are considering B1 and B1 so it is a very  

simple network and another bias is also considered this is the bias input and 

corresponding to  this bias the weight is B2 that is the bias weight is B2 and in this case 

two input nodes  two nodes in the hidden layer that is H1 and H2 and one node in the 

output layer that is  Y1 so corresponding to this input X1 = 0.05 and X2 = 0.1 the target  

output is Y that is equal to 0.01 and we are considering the sigmoid activation function  

so that means corresponding to the input X1 is equal to 0.05 and X2 is equal to 0.1 the  

target output corresponding to the node Y = 0.01 so that information is available.  So first 

I have to initialize the weights of the artificial neural network and generally  it is 

randomly initialized so initial weights we are considering corresponding to W1, W2,  

W3, W4, W5, W6 all the weights so suppose the values are 0.15, 0.20, 0.25, 0.30, 0.40, 

0.45 and  the bias B1 and B2 are suppose 0.35 and 0.60 so these are the weights and 

during the forward  pass that is the forward pass first I have to do the forward pass and 

after this I have  to do the backward pass to adjust the weights of the artificial neural 

network.  So first I am computing inH1 so that is nothing but corresponding to this hidden 

layer and  the hidden node we are determining the inH1 that is nothing but W1 × X1 + W2  

× X2 + B1 × 1 the bias input is considered B1 ×1 so if I put all these  value that will be 

0.3775 and we are determining the output activation at H1 that is nothing  but we have to 

consider the sigmoid function 
1

1+𝑒−inH1  and if I put all these value I will be getting 0.593 

and similarly we can determine  outH2 also we can determine corresponding to H2 also 

we can determine the output that  is outH2 we can determine that is equal to 0.596.  Now 

ino let us consider what is ino so considering the H1, H2 and the bias input we can 

determine  ino  that is the input to the output layer so we are considering now this output 

node  and corresponding to this output node I am determining ino that is nothing but W5 

× outH1 + W6 × outH2 + B2 × 1 so if I put this value I will be getting this  one 1.105 and 

we can determine the outo  we can determine so output we can determine  corresponding 

to this network.  Now we can determine the error so error is nothing but the target value 

minus the actual  output value so that is the error the target value minus actual output 

value and if I put  all these value the error will be 0.274 so that error I have to reduce now 

so I have  to minimize the error so that is corresponding to the forward pass.  So now let 

us consider the backward pass so corresponding to the output layer I have to  find how 

much change in the weight W5 affects the error E so that is why we are considering  the 

gradient of E with respect to W5. 

  So we have to determine the gradient of E that is the E is the error function that is  the 

cost function with respect to the weight W5 and by considering the chain rule I can  get 

this expression.  So this 
𝜕𝐸

𝜕𝑜𝑢𝑡𝑜
 by considering this I can determine this differentiation  



𝜕𝑜𝑢𝑡𝑜

𝜕𝑖𝑛𝑜
 that also I can determine and 

𝜕𝑖𝑛𝑜

𝜕𝑊5
 that also I can determine so values are 0.741, 

0.186 and 0.593 and finally I can determine  the value the 
𝜕𝐸

𝜕𝑊5
 that is equal to 0.082 and 

similarly I can  determine the weight W6 also I can determine so that is nothing but 

0.408.  So like this during the back propagation I can determine the weights W6, W5 all 

the weights  I can determine and after this let us consider the hidden layer and the input 

layer during  the back propagation.  So now we are considering the weights W1, W2, W3, 

W4, W3, W4 so these are the weights  between the input nodes and the hidden nodes.  So 

now we have to update the weights W1 so that is why this 
𝜕𝐸

𝜕𝑊1
 that I am determining and 

with the help of the chain rule we can obtain this. 

  So 
𝜕𝐸

𝜕𝑜𝑢𝑡𝐻1
 we are determining by this expression so we can determine  and the value is 

0.55 and similarly 
𝜕𝑜𝑢𝑡𝐻1

𝜕𝑖𝑛𝐻1
 that also we  can determine that is equal to 0.241, 

𝜕𝑖𝑛𝐻1

𝜕𝑊1
  that is 

0.05 and  from this I can obtain 
𝜕𝐸

𝜕𝑊1
 that is 0.0006 so that is 0.0006.  So based on this I 

can determine the weights W1, W2, W3 and W4.  So similarly we can find the other 

weights W2, W3, W4.  So you can see during the back propagation I am obtaining the 

values of the weights that  is I am adjusting the values of the weights W1, W2, W3, W4, 

W5 and W6.  So this is the concept of the back propagation training. 

 

  So now let us discuss the concept of the vanishing gradient.  So what is this problem?  

So the vanishing gradients in deep neural networks.  So in the figure I have shown two 

cases one is the training another one is the testing  and I have shown the iterations in both 

the figures.  So in the first case I am considering a 20 layer deep neural network and in 

the second  case I am considering a network having 56 layers.  So corresponding to the 

first network that is the 20 layered neural network so you can  see the training error. 

 

  So it goes on decreasing with number of iterations.  So you can see the training error 

corresponding to the 56 layer deep neural network and also  you can see the training error 

corresponding to 20 layered deep neural network.  The training error is significant 

corresponding to 56 layered deep neural networks.  Similarly in the case of the testing 

also the performance of the 56 layered neural network  is not good as compared to 20 

layered deep neural networks.  So this is because of the problem of the vanishing 

gradient. 

 

  So what is this problem?  So for explaining this problem let us move to the next slide.  

So the vanishing gradient problem.  So to explain this concept I am considering a simple 

network having 4 layers.  So a network is considered and this F1, F2, F3 these are the 

activations corresponding  to these 4 layers.  This is the first layer, this is the second 



layer, third layer and this is the fourth  layer.  The input to the network is X and I have 

shown the connections here and output of the network  is O, O is the output of the 

network and I have to consider the weights the connecting  weights. 

 

  So W1, W2, W3, W4 so these are the weights corresponding to this 4 layered network.  

So we are assuming that this W1, W2, W3, W4 these are scalars and the activation 

functions  are also scalar.  So that means the corresponding output will be also scalar.  So 

what will be the output of the network?  The output of the network is O.  So I can write in 

this form so F4(W4 F3(W3 F2(W2 F1(W1 X)))). 

  So the output of the network I can write like this.  So this expression I will be getting 

like this what will be the output of this node  or the output of this network corresponding 

to this point.  So output of the network is activation is F1 and it is W1 X.  So like this I 

can compute the outputs of the nodes.  So outputs of different layers I can compute like 

this and O is the final output. 

  So for mathematical convenience I will be representing like this.  So this W1 X that I 

can consider as 𝜃1 and this W2 up to this point this I can  consider as 𝜃2.  So this up to 

this point I can consider it as 𝜃3 and up to this point this I am  considering as 𝜃4.  This is 

for the mathematical convenience I am considering.  So if you see this expression what is 

this expression?  The output of the network that is actually F4(W4 F3(W3 F2(W2 F1(W1 

X)))) that is the output of the network. 

  So what is actually these outputs?  The output is O.  So in terms of θ I can write like this 

O = F4 (𝜃4).  This 𝜃4 = W4 F3(𝜃3).  𝜃3 = W3 F2 (𝜃2).  𝜃2 = W2 F1 (𝜃1) and finally the 

𝜃1 = W1 X.  So I will be getting these values or I will be getting these outputs 

corresponding to  the 𝜃1, 𝜃2, 𝜃3, 𝜃4. 

  So O = F4 (𝜃4).  This 𝜃4 = W4 F3(𝜃3).  𝜃3 = W3 F2 (𝜃2).  𝜃2 = W2 F1 (𝜃1) and finally 

the 𝜃1= W1 X.  So I can get this output.  So now let us move to the next slide.  So again I 

am writing the previous equation the previous equation I am writing again. 

 

  So that is F4(W4 F3(W3 F2(W2 F1(W1 X))))..  So the previous equation was like this 

and we considered this as 𝜃1, this as 𝜃2  this as 𝜃3 and finally this as 𝜃4.  So argument 𝜃4, 

argument 𝜃3 , argument 𝜃2 , argument 𝜃1  I can consider like  this.  This is for the 

mathematical convenience.  So corresponding to a particular network already I have 

explained during the back propagation  I have to adjust the weights of the artificial neural 

network. 

 

  So that is why the error is back propagated to the input that means the gradient is back  

propagated to the input.  So if I want to update a particular weight suppose W1 then I 

have to determine the gradient  of the output with respect to the weight W1.  So the 



gradient I have to compute because the gradient value is back propagated to the  input to 

adjust the weights of the artificial neural network.  So this is the principle of the back 

propagation training.  So now corresponding to this case suppose if I want to update the 

weight W1 so for this  I have to determine this gradient.  So by using the chain rule this 
𝜕𝑂

𝜕𝑊1
 that I can write by using the chain  rule 

𝜕𝑂

𝜕 𝜃4

𝜕𝜃4

𝜕 𝐹3
 

𝜕𝐹3

𝜕 𝜃3
 

𝜕𝜃3

𝜕 𝐹2

𝜕𝐹2

𝜕 𝜃2
 

𝜕𝜃2

𝜕 𝐹1

𝜕𝐹1

𝜕 𝜃1

𝜕𝜃1

𝜕 𝑊1
. 

 

  So which can be written like this X. F1’. W2. F2’. W3. F3’. W4. 
𝜕𝑂

𝜕 𝜃4
.  So I can write 

like this.  So this actually you can write like this if you see this one this is nothing but X 

if  you see this one this is nothing but F1’.  So like this I am getting these values so all 

these values I am getting like this. 

  This is for the weight W1 so I have to determine the gradient of O with respect to W1.  

Similarly if I want to adjust the weight W2 I have to determine or I have to estimate  this 

gradient of O with respect to W2.  So that is nothing but 
𝜕𝑂

𝜕 𝜃4
 
𝜕𝜃4

𝜕 𝐹3
.  So this is by using the 

chain rule 
𝜕𝐹3

𝜕 𝜃3
 
𝜕𝜃3

𝜕 𝐹2

𝜕𝐹2

𝜕 𝜃2
 

𝜕𝜃2

𝜕 𝑊2
.  So corresponding to this I can write in this from F1. F2’. W3. 

F3’. W4. 
𝜕𝑂

𝜕 𝜃4
. 

  So I can write in this form.  So in this case if you remember in case of the artificial 

neural network we considered  the sigmoid activation function.  So suppose the sigmoid 

activation function is F(x) and if I take the differentiation of  the sigmoid activation 

function that is nothing but F’(x) = F(x)(1 -  F(x)).  So this is the derivative of the 

sigmoid activation function and it is maximum so it is maximum  at x = 0 and 

corresponding to this the maximum value will be 1/4. 

 

  So the maximum value is 1/4 corresponding to this sigmoid function.  So it is less than 

1.  So if you see this expression so we are multiplying this all the activation functions that 

is  the derivative of the activation function that is the F1’. F2’.  So these are mainly the 

derivative of the sigmoid activation function in case of the artificial neural networks or in 

case of the deep networks we randomly initialize weights  during the back propagation.  

During the training of the artificial neural network or the deep networks we considered  

back propagation training and for this we randomly initialize weights of the network.  So 

we can assume that these weights can come from a distribution function with the mean  0 

and the variance 1.  So I am repeating this so weights are randomly initialized and we can 

assume that these weights  come from a probability distribution function with mean 0 and 

the variance is equal to 1. 

  So if you see this equation here you can see this is nothing but the product of F1’. F2’. 

F3’ and already I told you the weights are from a probability distribution  function with 

mean 0 and the variance 1.  So because of this this product will be less than 1 and it will 



go on decreasing if I increase  the number of layers.  So as we move towards the earlier 

layers for weight updation the number of products go  on increasing.  So if I compare this 

equation equation number 1 and equation number 2 suppose so number  of products in 

equation 1 is more than the number of products in equation number 2 because  we are 

considering the earlier layers. 

  So I am repeating this as we move towards the earlier layers for weight updation the  

number of products go on increasing.  So because of this since we are doing the 

multiplications of the sigmoid activation  function that is the derivative of the sigmoid 

activation function the gradient will go on  decreasing decreasing with each and every 

layers.  So if I compare the equation number 1 and equation number 2 so the gradient 

value will  be less in case of the equation number 1 because we are considering the earlier 

layer that  is W1 we are considering that is the first layer we are considering but in the 

equation  number 2 we are considering the second layer.  So as we move towards earlier 

layers the number of products go on increasing. 

  So that is the concept of the vanishing gradient.  So the gradient value will go on 

decreasing.  So what is the weight updation rule?  So what is the weight updation rule if 

you remember that weight updation rule.  So we have considered this we have considered 

this weight updation rule so W(t+1) that  is the weight at the (t + 1) iteration and this is 

the weight in the t th iteration minus  the learning rate η and we are computing the 

gradient.  So we are computing the gradient.  So since this gradient value will go on 

decreasing so this will go on decreasing then what will  happen the weight at (t + 1) 

iteration will be same as that of the weight at the t th iteration. 

 

  So I am repeating this since the gradient of W it will go on decreasing with increasing  

number of layers.  So that is why the weight at (t + 1) iteration will be not updated 

because it will be same  as that of the weight at the t th iteration.  So this will be 

negligible this term will be negligible because the gradient of the  W that will be very 

very small.  So that is why the weight will not be updated the weight at the (t + 1) 

iteration will  be same as that of the weight at the t th iteration.  So weight at (t + 1) 

iteration will be same as that of the weight at t th iteration that  means the weights will 

not be updated. 

  Because the gradient value will go on decreasing with increase number of layers.  So if I 

increase the number of layers the gradient value will go on decreasing because  of this 

problem and opposite is the exploding gradient.  So if the gradient value is very high so 

what will happen it will go on increasing and because  of this it is very difficult to get the 

convergence condition and oscillations will take place.  So that is the concept of the 

exploding gradient that is the opposite of the vanishing gradient.  And the vanishing 

gradient because of the number of layers if I increase the number  of layers the gradient 

value will go on decreasing and because of this the weight will not be  updated the 



weights will not be updated.  But in case of the exploding gradient the gradient value is 

greater than 1 and because  of this the gradient value will go on increasing and because of 

this it is difficult to get  the convergence condition and the oscillation will take place. 

 

  So how to consider this issue and this vanishing gradient problem so how to consider 

this issue.  So let us move to the next slide.  So to consider this issue how to consider the 

first point is the choice of activation  function ReLU  instead of sigmoid function instead 

of the sigmoidal function.  So in case of the deep networks we are considering more 

number of layers as compared to artificial  neural networks because we are considering 

the deep architecture.  So to consider this problem the problem of the vanishing gradient 

we may consider ReLU  activation function instead of the sigmoidal activation function. 

 

  So that is one option.  The second also what we can consider appropriate  initialisation 

of weights.  So suppose I have a network so n number of terminals are there.  So now 

how to consider the appropriate weights.  So in this case we can consider the distribution 

0 mean distribution we can consider but variance  we can consider as 1/n we can 

consider.  So in the earlier case we considered the variance is 1 corresponding to this 

distribution because  the randomly we are initialising the weights and corresponding to 

this we can assume that  these weights are coming from a probability distribution 

function with mean 0 and variance  1.  But in this case what we are considering the 

distribution having the mean 0 and the variance  is equal to 1/n and sometimes also 2/n is 

also considered. 

  So either 1/n or 2/n we can consider for this initialisation of the weights.  So variance 

will be 1/n or the 2/n and the mean will be 0.  And finally another technique is that I am 

not going to discuss that is the intelligent  back propagation learning algorithm.  So we 

may employ this technique that is the intelligent back propagation learning algorithm  we 

can also consider.  So with the help of these techniques and that is the one important 

technique is the ReLU  activation function. 

  ReLU activation function we can consider instead of the sigmoidal activation function.  

That is why the ReLU function is popular in case of the deep neural networks instead of  

the sigmoidal activation function.  In this class I explained the concept of the back 

propagation training and also I explained  the problem of the vanishing gradient and the 

exploding gradient.  So if I increase the number of layers of a particular network the 

performance of the  network may not improve because of the problem of the vanishing 

gradient and the exploding  gradient.  To consider this issue we may consider the ReLU 

activation function instead of the sigmoidal  activation function.  Also we can 

appropriately select the weights of the network that already I have explained  and also we 

can consider the intelligent back propagation algorithm.  So these are the techniques to 



consider the vanishing gradient problem or the exploding  gradient problem.  So let me 

stop here today.  Thank you.  


