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Welcome to NPTEL online course on machine learning and deep learning fundamentals 

and applications. In my last class, I explained the concept of k-means clustering, which is 

an unsupervised  clustering technique. In the k-means clustering algorithm, first I have to 

randomly select k number of centroids. After this, I have to assign data points to the 

centroids based on the nearest neighbor distance and after this I have to recompute the 

centroids and this process I have to do iteratively until the convergence condition is not 

satisfied. And that is the fundamental concept of the k-means clustering. In the k-means 

clustering, I will be getting the hard decision boundaries. 

 

That means a particular data sample is assigned to a particular cluster. There is no 

possibility that a particular data sample may belong to another cluster. Today in this class, 

I will be explaining the concept of the fuzzy k-means clustering. In this case, the concept 

is very similar to the k-means clustering. 

 

Only one difference is in this case, I will be getting the soft decisions. That means a 

particular data sample may belong to another class also. That means a particular sample 

may belong to another cluster also. So that possibility is defined by the fuzzy membership 

grid. The fuzzy membership grid lies between 0 and 1. 

 

Suppose the fuzzy membership grid is 0.9, that means there is a high possibility that  a 

particular sample may belong to another class. So that consideration I will be considering 

in case of the fuzzy k-means clustering. And fuzzy k-means clustering and the k-means 

clustering has many applications, particularly  the clustering of data points. And also in 

case of the suppose image processing applications, this can be applied for image 

segmentation. 

 

The fuzzy k-means clustering or simple k-means clustering can be applied for image 

segmentation. This is one important application.  et us discuss about fuzzy k-means 



 

 

clustering, which is a soft decision based clustering technique. So in my last class, I 

explained the concept of the k-means clustering. You can see I have considered some data 

points and randomly I am selecting some centroid. 

 

So in this example, I am selecting three centroids. One is this one, the red one, blue and the 

green one. So these three centroids I am selecting randomly for clustering. After this in the 

step number 1, assign points to the clusters based on the minimum distance. So I have to 

find the distance between the data points and the centroids and based on the minimum 

distance, I can assign a particular data point to a particular cluster center. 

 

That is the centroid. After this, I have to recompute the means. And finally what we have 

to do, repeat the steps 1 and 2 until the convergence condition is not satisfied. So that is the 

concept of the k-means clustering. In my last class, if you remember, cluster centers I am 

defining by 𝜇 and by C. 

 

So in one algorithm, I have shown the cluster center by 𝜇𝑖 and also in another 

representation, I have shown as 𝐶𝑖. But today I am considering this cluster center as 𝜃. So 

I am considering 𝜃 as a cluster center or the centroid. So 𝜃 we are considering.  So in the 

k-means clustering, first we have to select the cluster centers 𝜃1, 𝜃2.…𝜃𝐾 

 

So these are the centroids. So I am considering suppose this is a vector. So these are cluster 

centers. And the input vector is 𝑥¯. That is assigned to a particular class. 

 

The class is suppose 𝜔𝑗. And corresponding to this class, the cluster center is 𝜃𝑗. So that 

means 𝑥¯ is assigned to the cluster center 𝜃𝑗 based on the condition. 

 The condition is if 𝑑2(𝑥¯, 𝜃¯𝑗) < 𝑑2(𝑥¯, 𝜃¯𝑖)∀𝑖 ≠ 𝑗. So based on this distance measure, I 

can assign the data point 𝑥¯ to the cluster center theta j. 

 

And that is actually corresponding to the class 𝜔𝑗 suppose. So class information is not 

available, but we are selecting the centroids randomly. So in case of the k-means clustering, 

what we have to consider, we are having the clusters.  

Suppose this is one cluster, this is another cluster, and maybe this is another cluster. So 

after doing the k-means clustering, I am getting these clusters. 

 

So this is suppose corresponding to the cluster center 𝜃1, this is corresponding to the  cluster 

center 𝜃2, this is corresponding to the cluster center 𝜃3 like this. So we are getting the hard 

decision boundaries, the hard boundaries we are getting. So these boundaries, the hard 



 

 

boundaries or that means, this is also called the crisp. That means we are getting the discrete 

boundaries. The meaning is that this suppose if I consider this particular sample, this 

particular sample will belong to the cluster corresponding to the cluster center 𝜃2. 

 

There is no possibility that this particular sample may belong to another classes. Suppose 

it may belong to this class also, there may be some possibility or this point may belong to 

this cluster also there is some possibility, but that possibilities we are not considering. So 

one particular data point is assigned to a particular cluster. That is the hard boundary or 

hard decision or the discrete boundary we are getting in case of the k-means clustering. In 

case of the fuzzy k-means clustering, we will be considering the possibility that means a 

particular sample may belong to another class, classes also. 

 

So this possibility is defined by the membership grade. So I will be explaining this concept.  

So as I told you the k-means clustering has many applications. Like here I am showing one 

example corresponding to the image segmentation. You can see this is the input image and 

we are doing the clustering based on the intensity information. 

 

So in the second figure, you can see the result of the clustering and in this case we are  

considering the fissure is the intensity value of the pixel. So based on this fissure that is the 

grayscale intensity value, we can do the clustering. And in the third case also what we are 

doing based on the color information we can do the clusters. So clustering based on the 

color. So this k-means clustering algorithm can be employed for image segmentation. 

 

And this is also another example for image segmentation. So you can see I am showing the 

original image and corresponding to this original image you can see I am considering K=2. 

K=2 means I am considering 2 centroids and corresponding to this you can see the results 

of the segmentation.  

This result. Similarly, corresponding to K=3 you can see the result of the segmentation 

K=3. 

 

That means we are considering 3 centroids.  So K=10 you can see the results. So if you see 

the quality of the image in the last row. So you can see the quality of the image 

corresponding to K=10 is better than the K=2.  

So that means the compression depends on the value of K. 

 

If k is equal to high that means I am getting the good quality image segmented image and  

if k is equal to 2 the quality is not significant and you can see all the segmented outputs  

corresponding to the original image the original image already I have shown here. So now 

directly I will explain the concept of the fuzzy k-means clustering. So what is the difference 



 

 

between the crisp case and the fuzzy case. So suppose if I consider a set A okay then 

suppose we are considering a variable suppose the domain is X and suppose 𝑥𝑖  whether it 

is an element of X 𝑥𝑖  is an element of X.  

So we are defining the membership grade that is defined by 𝑈𝐴(𝑥) = 0𝑖𝑓𝑓𝑥𝑖 ∉ 𝐴. 

 

𝑈𝐴(𝑥) = 1𝑖𝑓𝑓𝑥𝑖 ∈ 𝐴. A is a set. This is the example of the Crisp set. So what do you mean 

by Crisp set? I can show you pictorially. So suppose in this side I am plotting x and in this 

side I am plotting the membership grade. 

 

This is a membership grade. So this is I can write this is a membership grade. So if I 

consider a Crisp case it is the representation of the Crisp case. So the high value is 1 because 

it has two value either 1 or 0.  So if 𝑥𝑖  is an element of A then the output is 1 that means 

the membership grade is 1 and if 𝑥𝑖  is not an element of A then the membership grade is 

0. So this is actually corresponding to the Crisp case. 

 

And in case of the fuzzy set what I can show you in case of the fuzzy I can consider a  curve 

like this. This is the representation of a fuzzy set. This is one membership function I am 

showing like this.  So it corresponds to the fuzzy set. So here you see the membership grade 

it may be 0.5 also or it may be 0.9 also.  So the membership grade lies between 0 and 1 

corresponding to the fuzzy set. So the membership grade lies between 0 and 1 in case of 

the fuzzy set it may be 0.9 it  may be 0.8 and in case of the Crisp set only two values we 

are considering either 0 or 1 that is the Crisp set.  

So this briefly I am showing to show the distinction between the Crisp set and the fuzzy 

set. 

 

Now directly I will come to the fuzzy KMS clustering. So let us move to the next slide. So 

fuzzy KMS clustering it is actually the soft decision based partitioning. That means the 

meaning is one element may belong to more than one set. 

 I can write one element may belong to more than one set. 

 

So it depends on the membership grade. Suppose the membership grade is 0.9 that means 

there is a high possibility that particular data point may belong to another cluster also. In 

this case we are considering these classes 𝜔1 𝜔2 𝜔3 these classes we are considering. So 

𝑋¯ is the feature vector 𝑋¯ is assigned to the class 𝜔1 and corresponding to this the 

membership grade is 𝑢1(𝑥¯) that is the membership grade that is actually the degree of 

belongingness.   



 

 

Similarly 𝑋¯ may be assigned to the class 𝜔2 and in this case the membership grade is 

𝑢2(𝑥¯). 

 

So these are actually the membership grade. Membership grade means the degree of 

belongingness. So for fuzzy K-means clustering we are considering the centroid. The 

centroid is 𝜃¯𝑗 that is parameterized representative of the jth cluster. So in this case we are 

considering 𝜃¯ as a cluster center. So 𝜃¯𝑗  means the parameterized representative of the jth 

cluster. 

 

So this vector 𝜃¯ I can write like this [𝜃¯1
𝑇𝜃¯2

𝑇 . . . 𝜃¯𝐾
𝑇 ]𝑇. So all these centroids that means K 

number of centroids we are considering. Since, we are considering the fuzzy k-means 

clustering similar to the k-means clustering. In this case also we are considering K number 

of centroids. So [𝜃¯1
𝑇𝜃¯2

𝑇. . . 𝜃¯𝐾
𝑇 ]𝑇 these are the centroids the K number of centroids. 

 

And we are considering the matrix the matrix is U that is the N x K matrix. So what is N? 

N means number of patterns that means number of data points. What is the meaning of K? 

K is nothing but the number of classes that means number of classes means the centroids. 

So randomly I have to select K number of centroids. 

 

So move to the next slide. So in my previous slide I defined a matrix U and that is the N x 

K.  N is nothing but the number of patterns and K is nothing but the number of classes or  

number of centroids. So (i,j) element of U, U is the matrix is 𝑢𝑗(𝑥¯𝑖) that is the (i,j) element. 

So now we are considering the distance we may consider the Euclidean distance. So 

distance between the input vector 𝑥¯𝑖 and the 𝜃¯𝑗 𝜃¯𝑗 is nothing but the centroid that is we 

can find the similarity or dissimilarity between the vector 𝑥¯𝑖 that is the input vector and 

the 𝜃¯𝑗 that is the centroid. 

 

We find the similarity between 𝑥¯𝑖 and 𝜃¯𝑗. Now we are defining the fuzzy distortion or the 

cross function the fuzzy distortion or the cross function 𝐽(𝜃¯, 𝑈) =

∑𝑖=1
𝑁∑𝑗=1

𝐾𝑢𝑖𝑗
𝑞
𝑑(𝑥¯𝑖 , 𝜃𝑗). So we are defining the fuzzy distortion or the cross function 

like this. This 𝑢𝑖𝑗 already I told you this 𝑢𝑖𝑗 is nothing but the membership grade that is 

the degree of belongingness that means the meaning is what is the meaning of membership 

grade Grade of membership of 𝑥¯𝑖 in the jth cluster.  So that means what we are considering 

the grade of membership of 𝑥¯𝑖 in the jth cluster. 

 

So for all the clusters we have to determine the grade of membership. In this case you can 

see I am considering one parameter here the q is the parameter if I consider q=1 that is 



 

 

actually the hard decision or maybe I can write the Crisp that is the Crisp case q=1 and if 

q > 1 that corresponds to the fuzzy decision. So we may consider q=2 q=3 like this and 

typically we can consider q=2 that is the fuzzy decision for fuzzy decision q should be 

greater than 1 and if I consider q is very very high q is suppose very very high suppose q 

is equal to infinity then actually it is the total fuzzy total fuzzy that means total ambiguity 

that we cannot distinguish these patterns. So that is not the ideal case the case is q should 

be greater than 1 that is the fuzzy  decision and if q=1 that is nothing but the simple k-

means clustering. So if I consider q=1 that is nothing but the simple k-means clustering 

that is the hard decision or the Crisp decision I am getting. 

 

So these are the parameters the q is a parameter after this I am considering some constraints 

in case of the fuzzy k-means clustering. So move to the next slide. So some of the 

constraints we are considering so what are the constraints ∑𝑗=1
𝐾𝑢𝑖𝑗 = 1. So for all the 

clusters we are considering the membership grade∑𝑗=1
𝐾𝑢𝑖𝑗 = 1. So where this the 

membership grade should lies between 0 and 1. 

 

So 𝑖 = 1,2, . . . , 𝑁 that means N number of data points and 𝑗 = 1,2, . . . , 𝐾 that  means K 

number of centroids and also we are considering the condition the 0 < ∑𝑖=1
𝑁𝑢𝑖𝑗 < 𝑁.  So 

𝑗 = 1,2, . . . , 𝐾.  Actually here you can see what actually we are determining what is the 

meaning of this is the grade of membership of 𝑥¯𝑖 in the jth cluster is related to to the grade 

of membership of xi to the rest of K-1 clusters. That means we are considering the grade 

of membership of 𝑥¯𝑖 in the jth cluster is related to the grade of membership of 𝑥¯𝑖 to the 

rest of remaining clusters.  So these constraints we are considering for the fuzzy k-means 

clustering. 

 

Now let us write the algorithm of the fuzzy k-means clustering. So move to the next slide 

the algorithm fuzzy k-means clustering. So first like that simple k-means clustering we 

have to randomly select the centroids.  So choose 𝜃¯𝑗(0) is the initial estimate for 𝜃¯𝑗. 

 

So 𝑗 = 1,2, . . . , 𝐾. So randomly I have to select the centroids that is the initial estimate for 

𝜃¯𝑗.  So K number of centroids I have to consider. After this I have to initialize the iteration 

number. So t=0 that is the iteration number. 

 

So I am considering these two loops. So first loop is for i = 1 to N because we have N 

number of data points for  j = 1 to K, K number of cluster centers and we are considering 

this is the  membership grid in the iteration t 𝑢𝑖𝑗(𝑡) =
1

∑𝑝=1
𝐾 (

𝑑(𝑥¯𝑖,𝜃¯𝑗(𝑡))

𝑑(𝑥¯𝑖,𝜃¯𝑝(𝑡))
)

1
𝑞−1

.  So we have to 

determine the membership grid. So this expression I can determine from the cost function 



 

 

the fuzzy cost function I can determine this membership grade. 

 

So equation number 1 I will later explain how to determine this one. So we have to 

determine the membership grade like this and after this end for i end for j this is in the first 

iteration what actually we are doing we are finding the distance between 𝑥¯𝑖 and 𝜃¯𝑗. So 

these are the clusters all these clusters from 𝑥¯𝑖 we are finding the distances to all  the 

clusters. So suppose this is 𝜃¯𝑗 so we are finding the distances between 𝑥¯𝑖 and 𝜃¯𝑗. 

 

So based on this actually we can determine the membership grade. So if you see the 

expression for the membership grade in the numerator you can see what we are doing we 

are finding the distance between 𝑥¯𝑖 and the 𝜃¯𝑗.  In the denominator what we are 

determining we are considering the distance between 𝑥¯𝑖 and all the clusters because the p 

is from 1 to K so for p=1 we have to determine the distance between 𝑥¯𝑖 and 𝜃¯1 for p=2 I 

have to find the distance between 𝑥¯𝑖 and the 𝜃¯2 like this for K number of clusters I have 

to determine this that is in the denominator. In the numerator of the expression of the 

membership grade I have to find the distance between 𝑥¯𝑖 and the 𝜃¯𝑗 so that I have to 

determine. After this move to the next slide we have to consider the next iteration because 

this is about the membership grade how to determine the membership grade based on this 

we can determine the degree of belongingness the membership grade means the degree of 

belongingness and after this I have to recompute the centroids.  So move to the next slide 

so we are considering the next iteration that is t=t+1. 

 

Now for j = 1 to K K number of clusters parameter update or I can say the centroid update.  

So centroid is given by 𝜃¯𝑗 =
∑𝑖=1
𝑁 𝑢𝑖𝑗

𝑞
(𝑡−1)𝑥¯𝑖

∑𝑖=1
𝑁 𝑢𝑖𝑗

𝑞
(𝑡−1)

 and end for j. So we have to update the 

centroids that means I have to recompute the centroids that is very similar to the simple k 

means clustering. After this I have to consider the convergence condition so what is the 

convergence condition I have to consider until a termination criteria termination criteria is 

met. So termination criteria is ||𝜃¯(𝑡) − 𝜃¯(𝑡 − 1)|| and we are considering one parameter 

that is the threshold is epsilon we are considering. 

 

So in this expression actually this actually represents any vector norm any vector norm and 

this epsilon is a small user defined parameter. In the k means clustering what we considered 

for the termination criteria if there is no significant changes of the position of the centroids 

in two successive iterations then I can stop the iteration I can stop the algorithm. Similarly 

in this case also we are observing if any significant changes of the values of the 𝜃, 𝜃 means 

the centroids in two successive iterations that means ||𝜃¯(𝑡) − 𝜃¯(𝑡 − 1)||. So we are 

observing that whether in two successive iterations any significant changes in the position 



 

 

of the centroids if it is less than epsilon then we can stop the algorithm that is the 

termination criteria and that is very similar to the k means clustering. 

 

So this is the k means the fuzzy k means clustering algorithm. Now we have defined the 

membership grade in the equation number 1 in the previous slide. So if you see the equation 

number here in the previous slide we define this membership grade this is a membership 

grade. So we determine the membership grade like this in equation number 1 that is the 

degree of belongingness. So how to determine this 𝑢𝑖𝑗 and that I can show you so you have 

to do some mathematics. So let us see how we can determine that expression for the 

membership grade. 

 

So we have the expression for the fuzzy cost function. This expression already you know 

so fuzzy distortion function or the cost function we have shown.  So this is the fuzzy cost 

function that already I have explained. Now we are considering the Lagrangian function.  

So 𝐽(𝜃¯, 𝑈) = ∑𝑖=1
𝑁∑𝑗=1

𝐾𝑢𝑖𝑗
𝑞
𝑑(𝑥¯𝑖 , 𝜃¯𝑗) − ∑𝑖=1

𝑁𝜆𝑖(∑𝑗=1
𝐾𝑢𝑖𝑗 − 1). 

 

So we are considering this after this we have to differentiate J with respect to the 

membership grade suppose we are considering delta 𝑢𝑟𝑠. So if I differentiate this one then 

I will be getting 𝑞𝑢𝑟𝑠
𝑞−1

𝑑(𝑥𝑟 , 𝜃𝑆) − 𝜆𝑟 = 0. After this we have to do some mathematics I 

am not showing all the steps. So finally you will be getting the membership grade 𝑈𝑟𝑠 =
1

∑𝑗=1
𝐾 (

𝑑(𝑥𝑟,𝜃𝑆)

𝑑(𝑥𝑟,𝜃𝑆)
)

1
𝑞−1

 this variable r is considered to consider the number of  samples and s is 

considered to show number of clusters. 

 

So finally we are getting the expression for the membership grade like this. So this is how 

you can determine the membership grade in the previous slide. So in between you have to 

do some mathematics I am not showing all the mathematics here you can get in the book 

but this is the procedure to determine the membership grade. So you have to consider the 

Lagrangian function. In this class I explained the concept of the fuzzy k-means clustering 

which is a soft decision  based clustering technique. In fuzzy k-means clustering we have 

to determine the membership grade that is the degree of belongingness. 

 

That means a particular data point may belong to another cluster that depends on the 

membership  grade that is the degree of belongingness. If the membership grade is very 

high suppose 0.9 or 0.8 that means there is a high possibility that particular data sample 

may belong to another cluster. 

 

So that is considered in case of the fuzzy k-means clustering. In the simple k-means 

clustering we are not considering that aspect but in the fuzzy k-means clustering we are 



 

 

considering that belongingness. And you can understand the fundamental difference 

between the fuzzy k-means clustering and the  k-means clustering. So let me stop here 

today. Thank you. 


