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  Welcome to NPTEL online course on machine learning and deep learning fundamentals 

and applications.  In my first class, I introduced the concept of bias and the variance.  So if 

I consider the problem of classification or the problem of regression, if I consider  high 

bias, the problem is the error is significant in case of the training and also it is significant  

in case of the testing.  That means for the unseen data, the error is significant.   

That means high bias means I am considering a very simple model for classification or  

maybe for regression.  And another case is the high variance. 

 

  That means I can consider a very complex model for classification or maybe for 

regression.  So if I consider high variance, the problem is during the testing, the error will 

be significant.  But during the training, the error is minimum because I am considering a 

complex model.   

So during the training, the error will be minimum,  

but for the unseen test data, the  error will be significant. 

 

  So that is the high variance.  So that is why we should compromise between bias and the 

variance.  Bias should not be too high and also the variance should not be too high.  That 

means the model should not be too simple and the model should not be too complex for  

the problem of classification and the regression.   

So there should be a tradeoff between bias and the variance. 

 

  So today I am going to discuss the concept of bias and the variance and the tradeoff  

between bias and the variance.  So let us discuss this concept, the concept of bias and the 

variance and how to consider  the tradeoff issue of bias and the variance.  So in this figure 

you can see I have shown that is the concept of the bias and the concept  of the variance.  



In the x-axis you can see I have shown model complexity and in the y-axis I have shown  

the error.  So if I consider a very simple model, that means I can consider it is a very simple 

model  here and this side I can consider a very complex model. 

 

  So let us see what will happen in these two cases.  So if I consider a very simple model, 

you can see here during the testing or first let  us consider during the training the error is 

significant.  So here you can see this is the training, this dotted curve is for training.  So 

error is significant because we are considering a very simple model and you can see the 

testing  also during the testing also error is significant.  So this green curve it shows the 

testing that is for the unseen data and in case of  a high variance that means if I consider a 

complex model 

 then you can see the training  error that is the training error  

that is shown by the black color dotted line the curve. 

 

  So this is not significant it is very small in case of the training, but during the testing  that 

is shown by the green colored curve.  So you can see here during the testing the error is 

significant and that is the overfitting  that is the concept of the overfitting.  Overfitting is 

because of the high variance and underfitting is because of the high bias.  So one is the 

underfitting and another one is the overfitting.  

 So this green curve shows the testing and this black dotted curve shows the training  error 

and this blue curve the dotted blue curve shows the variance. 

 

  If you see if I consider a very complex model that means in this case the variance is very  

high and if I consider a very simple model the variance is small.  So this is about the 

variance and you can see I have shown also the bias that is the  bias squared.  So this is the 

bias squared.  So for a simple model this bias is very high and for a complex model the 

bias is less.   

So you can see the difference between these two one is the underfitting another one is  the 

overfitting. 

 

  So that means underfitting is not good and the overfitting is also not good.  So there should 

be some compromise between the high bias and the high variance.  So if I consider the 

model complexity at this point that means not a very simple model and  not a very complex 

model then corresponding to this case you can see during the testing  also the error is not 

so high and during the training also the error is also not high  in this case.  So that means 

there should be some trade-offs between bias and the variance.   



So there should be a trade-off between bias and the variance. 

 

  So bias should not be too high and variance should not be too high.  So the generalization 

test error that is the error in unseen data can be decomposed into  bias error that means I 

can write the test error  that is the error in unseen data and that can be decomposed into the 

bias error that  is because of the high bias that is the error from wrong model assumptions 

plus another  error I can consider that is the error due to high variance.  So that is the error 

from sensitivity to small fluctuations in training data plus I can consider  another error that 

is the irreducible error.  So in the figure also I have shown the irreducible error that is 

because of inherent noise in  the problem itself.   

This irreducible error is because of inherent noise in the problem itself. 

 

  So this irreducible error is irrelevant of the underlying model and it is because of  the 

inherent noise in the problem.  So maybe the noise coming from the data quality or maybe 

inaccuracies in collecting the data.  So for these reasons I have the irreducible errors and 

high bias already I told you because  we are considering a very simple model and high 

variance because of the over complex  assumptions.  So this is the concept of the bias 

variance and you can see the test error I can decompose  into bias error the error due to 

high variance and also the irreducible error.  

 So corresponding to the high bias and it is actually the under fitting and corresponding  to 

the high variance that is nothing but the over fitting. 

 

  So our objective is to build a model that achieves a balance between bias and the variance.  

So that the combined error of these competing forces is minimum and that is the objective  

of the bias variance tradeoff.  So move to the next figure here I have shown a classification 

problem.  So two class problems.  So in the first case what I am considering I am 

considering a very simple model and this  simple model is not good for classification 

because I am getting a decision boundary between  the classes and you can see there are 

many misclassifications and in this case I am considering  a very simple model. 

 

  In the third case I am considering a very complex model and corresponding to this during  

the training I am getting this decision boundary between the classes and during the testing  

the error will be high because for the unseen test data there will be misclassifications.  So 

that is the case of over fitting.  The first case is the case of under fitting and there should 

be compromise between these  over fitting and under fitting.  So in the middle I have shown 

the good compromise and I am getting a decision boundaries between  these classes.   

So this concept is also true for regression. 

 

  So here in this in the curve I have shown corresponding to the under fitting that is  the 



high bias you can see the error is significant both for training and for the testing.  So training 

is shown by the green curve and the testing is shown by the red curve and  for the over 

fitting that is the high variance for the training the error is not significant  it is minimum 

but during the testing that means for the unseen data the error is significant.  So that is why 

we have to go for good compromise that is the tradeoff between high bias and  the high 

variance.  So if you consider this point here then you can see during the training the error 

is not  so significant and during the testing also the error is not significant.  So that means 

we have to consider the tradeoff between bias and the variance. 

 

  So mathematically how to consider this problem.  So let us move to the next slide.  So the 

problem definition  suppose we have one independent variable X independent variable is 

suppose X and one is  a dependent variable.  So one dependent variable is Y so Y depends 

on X so Y value I can write like this 𝑌 =  𝐹𝑋 +  𝜀 that means Y value depends on X and 

also Y value can also be  affected by noise.  This noise cannot be modeled explicitly. 

 

  So 𝑌 =  𝐹𝑋 +  𝜀 that means the Y depends on X and also the Y value can  be affected by 

noise.  So that is why I am writing 𝑌 =  𝐹𝑋 +  𝜀.  So noise is modeled by a random variable 

epsilon.  So this is the noise so that is modeled by a random variable epsilon with 0 mean 

and  the variance sigma epsilon square.   

So this noise is the 0 mean and the variance of the noise is sigma epsilon  square that is the 

variance. 

 

  So this magnitude of variance represents the level of uncertainty about the underlying  

phenomenon.  So I am repeating this I am considering the random variable epsilon actually 

the noise  is modeled by random variable epsilon with 0 mean and the variance sigma 

epsilon square  and the magnitude of the variance represents the level of uncertainty.  Since 

we are considering 0 mean random variable epsilon so that means the expected value of  

epsilon is equal to 0 and the variance of epsilon that is nothing but the expected value  of 

epsilon square and that is nothing but sigma epsilon square.   

So that is the variance.  Now I want to find a function f hat. 

 

  So suppose I am considering I want to find this one to determine.  So I have to determine 

the function f hat such that it is as close to the true function  f the true function is f and I 

want to find a function the function is f hat such that  it is as close to the true function f and 

this f hat that can be learned from the training  data.  So you can see this I want to write to 

find a function f hat such that it is as close  to the true function the true function is f.  So I 

have to find a function f hat such that it is as close as to the true function f and  it can be 

learned from the training data.  So this function f hat is learned by minimizing  a loss 

function. 



 

  So this f hat is learned by minimizing the loss function by considering the training  data.  

So what is the goal?  Goal is to bring predictions.  So predictions actually from the training 

data prediction of training data goal is to  bring prediction of training data as close to as 

possible to their observed value.  

 That means the mathematically I can show this y should be approximately equal to the  

predicted value is of  𝑓𝑥. 

 

  So that is the goal.  So goal is to bring predictions of training data as close as possible to 

the observed  value.  So observed value is y and the predicted value is f hat x.  So for this 

I am considering one loss function and that loss function is MSE that is the  mean squared 

error.  So mean squared error we are considering that is a loss function.  So the MSE is 

defined like this MSE is equal to expected value 𝑦 − 𝑓𝑥2. 

 

  So this is the expression for the MSE that is the average squared difference of a prediction.  

The prediction is f hat x from its true value y.  So that means what is the meaning of the 

MSE?  The average squared difference of a prediction the prediction is f hat x from the true 

value  y.  So that is the meaning of the MSE the mean squared error.  So now how to define 

the bias?  So bias is mathematically defined like this. 

 

  So bias f hat x is equal to expected value 𝑓𝑥 − 𝑓𝑥.  So mathematically the bias is defined 

like this.  It is the difference of the average value of prediction over different realization of  

training data to the true underlying function f x for a given unseen point x.  So that is the 

meaning of the bias.  So we are considering over different realization of training data that 

means we are considering  different training data sets. 

 

  So I can write it is the difference of the average value  of prediction.  This prediction is 

actually the over different realization of training data to the true underlying  function f x 

for a given unseen point unseen I can  say unseen test point test point x.  So that is the 

meaning of the bias.  So now let us define the variance. 

 

  So move to the next slide.  So now how to define the variance?  So variance I can write f 

hat x that is nothing but the 𝐸𝑓𝑥 − 𝐸𝑓𝑥2.  So this is the definition of the variance.  So what 

is the actual variance?  It is actually the mean square deviation of f hat x from its expected 

value.  So what is the expected value?  Expected value f hat x over different realization of 

training data that means we are considering  different training data sets.  So this I can write 

like this variance is the mean square deviation of  𝑓𝑥. 

 

  So mean square deviation we are calculating.  So mean square deviation of  𝑓𝑥 from its 



expected value expected value what is  the expected value?  Expected value of f hat x that 

is the expected value over different realization of training  data.  So that is the meaning of 

the variance.  So I want to determine a formula that connect the MSE to bias, variance and 

the irreducible  error.  So that means I want to decompose the MSE the mean square error 

into bias, variance  and the irreducible error. 

 

  So the expression for this expected value expected value 𝑦 −   𝑓𝑥 is equal to expected 

value bias f dash x square plus expected value variance f hat  x plus sigma epsilon square.  

So this is a very important relationship.  So what I am considering?  I am decomposing 

MSE the mean squared error into bias, variance and the irreducible error.   

So in this expression you can see the first term is the bias, 

 the second term is the variance  and this is the irreducible error. 

 

  So this is a very important relationship.  I am decomposing the MSE into bias, variance 

and the irreducible error.  So this term is nothing but the MSE the mean squared error.  So 

in this expression if you see the first expectation we are considering the first expectation  

in the term expected value expected value y minus f hat x whole square is over the 

distribution  of unseen point x.  So I am repeating this the first if you see here I am showing 

actually two expectations.  The first expectation in the term expected value expected value 

y minus f hat x whole  square is over the distribution of unseen test point x. 

 

  The second expectation over the distribution of training data and the random variable 

epsilon.  So that is the interpretation of this and this is a very important point.  So I am 

repeating this the first expectation in this term is over the distribution of unseen  test point 

x while the second over the distribution of the training data and the random variable  

epsilon.  So this is the meaning of the these two expectations in the first term.  Here you 

can see the mean squared error can be decomposed into three terms. 

 

  One is the bias, one is the variance and finally the irreducible error.  Now what is the 

proof of this how to prove this equation.  So let us consider the proof of this bias variance 

decomposition.  So move to the next slide. 

 

  That is the proof of bias variance decomposition.  So that is actually the proof of the 

equations that already I have explained how to decompose  the mean squared error into 

bias variance and the irreducible error.  So MSE the mean squared error is nothing but 

expected value y minus f hat x square that  is the mean squared error.  So I can write like 

this expected value f x plus epsilon minus f hat x whole square .  So I can write this in this 

way. 

 



  So suppose this is equation number one.  What actually we are doing here you can see 

here we have this information 𝑌 =  𝐹𝑋 +  𝜀.  So just I am putting the value of y the value 

of y is nothing but 𝐹𝑋 +  𝜀.  After this let us expand this equation.  So that is equal to 

expected value f x minus f hat x square.  This is simple expansion expected value of epsilon 

square plus twice expected value f  x minus f hat x epsilon. 

 

  So this is a simple expansion.  So in this case one important point is when two random 

variables are independent the expectation  of their product is equal to the product of their 

expectations.  So this is the fundamental concept of the random variable.  I am repeating 

this when two random variables are independent the expectation of their product  is equal 

to the product of their expectations.  So again I am expanding this one expected value f x 

minus f hat x whole square plus  this  expected value of epsilon square expected value of f 

x minus f hat x  expected value of epsilon. 

 

  So I am getting this expression.  So in this expression if you consider this term that is 

nothing but sigma epsilon square  that is the variance.  And since we are considering the 

zero mean noise so this term will be equal to zero.  So this term will be zero.  So finally 

this MSE the mean square error I can write like this 𝑦 −   𝑓𝑥 is equal  to expected value f 

x minus f hat x square plus sigma epsilon square.   

So suppose this is my equation number 2 and this is my equation number 3. 

 

  So finally I am getting this expression.  So we can see that this MSE the mean squared 

error decomposed to the irreducible error  and the expected value of f x minus f hat x whole 

square.  So that means I am getting these two terms if I decompose the mean squared error.  

So first term is this and another one is that is the irreducible error.   

So I am getting the equation number 3. 

 

  So now I am considering this part.  So how to expand this part?  So how I have to expand 

this part to expand I have to expand this part.  So let us move to the next slide how to 

expand this part of this equation.  So we have the expected value from the previous slide f 

x f hat x square.  So we have this expression and how to decompose this expression into 

bias and the variance.  

 So that is equal to expected value f x minus expected value f hat x  minus f hat x minus 

expected value of  𝑓𝑥. 

 

  So I can write this like this I am getting equation number 4.  So how to actually get this 

one?  This actually I am getting by subtracting that is a subtract and add expected value  of 

f hat x.  So I am getting this like this.  So subtract and add expected value of f hat x. 



 

  This is very simple.  After this move to the second step.  So we are now expanding this 

one this expected value of f x minus f hat x square.  So now we are expanding this one.  So 

it is expected value expected value of f hat x minus f x square plus expected value  f hat x 

minus expected value f hat x  minus 2 expected value of f x minus expected value of f hat 

x f hat x minus expected value  of f hat x.  So this is the equation number 5. 

 

  So that means we are expanding the term inside the square.  So I am getting the equation 

number 5.  After this you can see the expected value f hat x  minus f x square plus expected 

value f hat x minus expected value f hat x.  Minus twice f x minus expected value f hat x.  

Expected value of f hat x minus expected value of f hat x. 

 

  So this is the equation number 6.  So in this expression if you see here this is the actually 

the bias that is the bias  of f hat x that is the bias.  And if you see this term this term is 

nothing but the variance of f hat x.  So bias is the expected value of f hat x minus f x whole 

square that is the bias.  It is a constant since we subtract f x from the expected value of f 

hat x.  So here f x is a constant and the expected value of f hat x is also a constant. 

 

  So that is why the bias is a constant.  So just at this point I can write here this bias is a 

constant bias is a constant since  we subtract f x f x is a constant from the expected value 

of f hat x which is also a  constant.  So the bias is a constant since we subtract f x is a 

constant from the expected value  of f hat x that is also a constant.  So therefore applying 

expectation to squared bias does not have any effect.  So that is the meaning of this.  I am 

repeating this so applying expectation to squared bias does not have any effect. 

 

  So the meaning is expected value we are taking the expected  value of f hat x minus f x 

square is equal to expected value  of f hat x minus f x square.  So this is the interpretation 

of this.  In equation number 6 we are able to pull f x minus expected value of f hat x out of 

the  expectation because it is a constant.  So that principle we are applying in equation 

number 6. 

 

  So after this again we are going to expand this one.  So move to the next slide.  So from 

the previous slide we are considering this term.  So from equation number 6 I can write 

bias f hat x square that is a squared bias plus  variance f hat x minus twice f x minus 

expected value of f hat x  expected value of f hat x minus expected value of f hat x.  So this 

is the equation number 7.  So equation number 7 actually we are considering because of 

the linearity of expectation that  principle we are applying the linearity of expectation. 

 

  So we are getting the equation number 7.  So finally I am getting the expected value of f 

x minus f hat x whole square that is  equal to bias of f x hat that is the squared bias plus 



variance f hat x.  So we are getting this expression.  So this is the equation number 8.  So 

we see in the equation number 8 that is the expected value of f x minus f hat x whole  square 

is the sum of squared bias and the variance. 

 

  So I am getting the equation number 8.  Now we can combine equations 3 and 8.  So if 

you see the equation number 3 in my previous slide and equation 8 already I have  derived.  

So from these two equations I can write expected value of y minus f hat x is equal to bias  

that is the squared bias plus variance plus irreducible error.  So this expression is only for 

the given test point x but usually we have a set of test  points.  So if I consider a set of test 

point then this expression I can write like this.  So expected value y minus f hat x is equal 

to just I am giving that expected value because  I am considering a set of test point. 

 

  So that is why I am taking the expectation bias plus expected value variance plus 

irreducible  error.  So I am getting this final equation.  So this is the proof of bias variance 

decomposition. 

  So this is nothing but the mean square error but we are considering a set of test points  and 

this is the bias term. 

 

  This is the variance term and this is nothing but the irreducible error.  So you can see here 

that MSE can be decomposed into bias variance and the irreducible error.  So that is the 

proof of bias variance decomposition.  So this is the proof of bias variance decomposition.  

So in this class I explain the concept of bias and the variance and also one important  thing 

is the bias variance decomposition.  

 The mean square error can be decomposed into bias, variance and the irreducible error. 

 

  And already I told you the high bias and the high variance it is not good.  High bias means 

we are considering a very simple model and high variance means we are  considering a 

very complex model.  So high variance means overfitting and the high bias means 

underfitting.  So we should compromise between high variance and the high bias and that 

is the bias variance  trade-off.  And finally I have shown already the mathematical equations 

for bias variance decompositions.  So let me stop here today.  Thank you. 


