
 

 

Course Name: Machine Learning and Deep learning - Fundamentals and 

Applications 

Professor Name: Prof. M. K. Bhuyan 

Department Name: Electronics and Electrical Engineering 

Institute Name: Indian Institute of Technology, Guwahati 

Week-7 

Lecture-29 

 

 

Welcome to NPTEL online course on machine learning and deep learning fundamentals 

and applications. In my last class, I discussed the concept of linear discriminant analysis 

that is LDA. In LDA, I have determined a best projection direction for this what I have 

considered, I maximize between class scatter and minimize within class scatter. And based 

on this, I have defined the criterion function. And based on this, I can determine the best 

projection direction. LDA is a supervised technique, because we considered class 

information. 

 

Today, I am going to discuss the same concept, the LDA linear discriminant analysis. This 

LDA can be extended for multiple classes, and that is called the multiple discriminant  

analysis.  

So, today I am going to discuss the concept of MDA that is the multiple discriminant 

analysis  for C number of classes. And before going to that, let us consider one example. 

 

So, in this example, I am considering two classes and suppose samples for class 𝜔1. So, 

what are the samples? 𝑋¯1 is a two-dimensional sample. So, the samples are (4, 2), (2, 4), 

(2, 3), (3, 6) and suppose (4, 4). 

 So, I have 5 samples. And similarly, suppose I am considering samples for class 𝜔2. 

 

Samples for class 𝜔2. So, it is suppose 𝑋¯2 and again we are considering two-dimensional 

samples. So, samples are suppose (9, 10), (6, 8), (9, 5), (8, 7) and (10, 8). So, we are 

considering two classes and we are considering two-dimensional samples for each of the 

classes. And corresponding to this, you can see the plot of these samples by MATLAB. 

 

So, corresponding to the class 𝜔1, you can see the red samples and corresponding to the 



 

 

class 𝜔2, you can see the green samples. So, one sample point is not coming into this figure.  

So, this red samples that belongs to the class 𝜔1.  

So, you can see the samples are (2, 4) and (2, 3) and (4, 2) and also (3, 6) and also (4, 4). 

So, these are the samples belonging to the class 𝜔1. 

 

And these are the samples belonging to the another class that is 𝜔2. So, corresponding to 

this case, I have to find the best projection direction I have  to determine. So, the problem 

is I have to compute the LDA, the linear discriminant analysis LDA projection I have to 

determine. So, we have to compute the LDA projection, what is the best projection I have 

to determine.  

So, corresponding to this, I have to determine the means, the class mean we have to 

determine. 

 

So, let us see how we can determine the class mean. So, move to the next slide. So, the 

class mean, class mean we can determine first one is suppose 𝜇¯1
and that is nothing but 

1

𝑁1
∑𝑥¯∈𝜔1

𝑥¯ and corresponding to this I have 5 samples corresponding to the class 𝜔1.  So, 

the samples are (4,2) + (2,4) + (2,3) + (3,6) + (4,4). So we can compute this one. 

 

So, this value will be (3, 3.8). This is the mean corresponding to the class 𝜔1. Similarly, I 

can determine the mean 𝜇¯2
 and that is nothing but 

1

𝑁2
∑𝑥¯∈𝜔2

𝑥¯ and in this case it is 

1

5
[(9,10) + (6,8) + (9,5) + (8,7) + (10,8)]. So, 5 samples we are considering and 

corresponding to this the class mean is 8.4 and 7.6, this  is the second mean 𝜇¯2
. So, we can 

determine means. After this we can determine the covariance matrix of the first class. So, 

what is the covariance matrix of the first class? So, this is 𝑆1 = ∑𝑥¯∈𝜔1
(𝑥¯ − 𝜇¯1)(𝑥¯ −

𝜇¯1)
𝑇. So, this is the covariance matrix. 

 

So, this can be computed like this [(4,2) − (3,3.8)] + [(2,4) − (3,3.8)] + [(2,3) −

(3,3.8)] + [(3,6) − (3,3.8)] + [(4,4) − (3,3.8)]. So, finally, I am getting the covariance 

matrix of the class 1 that is [1 -0.25 -0.25 2.2].  So, this is the covariance matrix of the class 

1 the first class. Similarly, we can determine the covariance matrix of the second class.   

So, move to the next slide and that covariance matrix for the second class that is 𝑆2 =

∑𝑥¯∈𝜔2
(𝑥¯ − 𝜇¯2)(𝑥¯ − 𝜇¯2)

𝑇 and finally, after doing all these calculations you will be 

getting the covariance matrix for the second  class is[ 2.3 -0.05 -0.05 3.3]. So, you can 

determine the covariance matrix for the second class. After determining that this covariance 

matrix we can determine within class scatter matrix. So, what is the within class scatter 



 

 

matrix? So, that is 𝑆𝑤, 𝑆𝑤 is nothing, but 𝑆1 + 𝑆2. 

 

So, if I add these two covariance matrix. So, we are getting 𝑆𝑤 = [3.3 -0.3 -0.3 5.5]. So, 

this is the within class scatter matrix. After this we can determine the between class scatter 

matrix, between class scatter matrix that also we can determine and that is nothing, but 

𝑆𝐵 = (𝜇¯1 − 𝜇¯2)(𝜇¯1 − 𝜇¯2)
𝑇. So, we have these values the 𝜇¯1

 and 𝜇¯2
and based on these 

values we can determine the 𝑆𝐵 the value of 𝑆𝐵 will be [29.16 20.52 20.52 14.44]. So, that 

you can compute because you have 𝜇¯1
and 𝜇¯2

and from this just you can calculate and 

value this 𝑆𝐵 the between class scatter matrix you can compute. After this we have to 

determine the base projection direction. So, for base projection direction we have to 

consider the solution of the generalized  Eigen value problem.  

So, move to the next slide that is the solution we have to consider the solution of the 

generalized Eigen value problem that already we discussed what is the generalized Eigen 

value problem for the solution what we need to consider for the solution 𝑆𝑤
−1𝑆𝐵𝑤¯ = 𝜆𝑤¯.  

So, the we have to find the solution of this. 

 

So, that is nothing but |𝑆𝑤
−1𝑆𝐵𝑤¯ − 𝜆𝐼|, I is the identity matrix is equal to 0. So, this can 

be written like this [3.3 -0.3 -0.3 5.5] and we are taking the inverse of this [29.16, 20.52, 

20.52, 14.44] - 𝜆 and 

 we have to consider one identity matrix [1 0 0 1] and that should be equal to 0. 

 

So, after computation of this just you have to do the computations. So, I will be getting 

[9.2213 − 𝜆 4.2339 6.489 2.9794 − 𝜆] we are getting and that is equal to 0. So, after this 

we have to do the solution of this.  So, we will be getting 𝜆2 − 12.2007𝜆 = 0. So, that 

means, that 𝜆(𝜆 − 12.2007) = 0. So, corresponding to this I will be get corresponding to 

this I will be getting two Eigen values. So, one is 𝜆1, 𝜆1 = 0 and another is 𝜆2. So, 𝜆2 =

12.2007. So, I will be getting two Eigen values one is 0 another one is 12.2007 and I have 

to determine the base projection direction based on this Eigen values. So, move to the next 

slide. So, we have to compute the LDA projection.  So, based on this Eigen values. 

 

So, this is [9.2213 4.2339 6.489 2.9794]𝑤¯1 width. So, 0 that corresponds to the this 0 that 

corresponds to the Eigen value 𝜆1 = 0 and 𝑤¯1 𝑤¯2 that is the weight vector because we 

have to compute the LDA projection the direction we have to determine. And another one 

is 9.2213. So, that is 12.2007 that corresponds to the second Eigen value. So, corresponding 

to this two equations I can determine 𝑤¯1 that is the one projection  direction. So, one 

projection direction is 𝑤¯1that is [-0.5755 0.8178].  So, this is the weight vector that 𝑤¯1we 



 

 

have computed 𝑤¯1we have computed for the Eigen value 𝜆1 is equal to 0 and 𝑤¯2also we 

can compute that is the 𝑤¯2weight  vector and that is computed based on 𝜆2. And this 

𝑤¯2that is the direction the projection direction and that would be the optimum direction. 

Because we are considering the largest Eigen value.  So, I have two Eigen values 𝜆1is equal 

to 0 and 𝜆2 is equal to 12.2007.   

 

So, this larger so the largest Eigen value gives the best projection direction. So, that means 

the 𝜆2 gives the best projection direction. So, that means I can write this statement I can 

write the optimal projection is the one that gives maximum lambda.  That means 

corresponding to the maximum lambda that is the Eigen value I have to find the  best 

projection direction. So, that means the largest Eigen value gives the best projection 

direction. 

 

So, this we can also obtain directly.  So, how to obtain it directly you can see what is the 

best projection direction I can  obtain directly same result I will be getting. So, you can see 

in this example I am getting this is the best projection direction 𝑤¯2 and that I can obtain 

directly.  So, move to the next slide. So, how to obtain it directly? So, because we know 

that the best projection direction 𝑤¯
∗ = 𝑆𝑤

−1(𝜇¯1 − 𝜇¯2). So, this equation I know and 

corresponding to this I can compute this one [3.3 -0.3 -0.3 5.5] inverse and I have to 

subtract 𝜇¯1
− 𝜇¯2(3,3.38) − (8.4,7.6). So, corresponding to this I will be getting the 

weight vector 𝑤¯
∗ that is the optimum weight vector that is the direction. 

 

So, I am getting the same result as we obtain in the previous slide. So, same result we are 

getting in the previous slide you can see we obtain 𝑤¯2 this is the optimum projection 

direction and directly also we can compute 𝑤¯
∗ and we are getting the same result. So, this 

can be shown pictorially. So, how to get the best projection direction? So, move to the next 

slide. In this case you can see corresponding to the smallest Eigen value I am showing the  

pink line that is the direction of projection. 

 

So, you can see the projection vector corresponding to the smallest Eigen value and in this 

case you can see the two classes the samples of the two classes will be overlapping. If I 

consider that direction of the projection that is the pink direction if I consider and that is 

corresponding to the smallest Eigen value and that can be shown in this right figure also 

you can see here.  

So, if I consider the class conditional density this pdfs. So, you can see they are 

overlapping. 

 



 

 

So, that means, it corresponds to bad separability. So, this is not a good separation this is a 

bad separation. So, I have to consider the largest Eigen value and corresponding projection 

direction I have to consider. So, I can show this one into the next slide. So, here you can 

see I am considering the largest Eigen value and the corresponding projection direction 

that is the green colored projection direction and corresponding to this you can see I am 

getting good separability between the samples of two classes and that you can see from this 

plot also that you can obtain good separation between the samples between two classes. 

That means, you are obtaining good separations between the samples of two classes that is 

the concept of the best projection how can I obtain the best projection I have to consider 

the largest Eigen value and the corresponding the projection direction I can obtain and if I 

consider that direction the projection directions I will be getting the best separability  

between the samples of two classes. 

 

So, this is the concept of the LDA. This concept of the LDA that can be extended to C 

number of classes the C number of classes that can be extended. So, let us see how it can 

be extended for C number of classes. So, the LDA for C classes C number of classes. So, 

earlier we considered only two classes the same principle can be extended to C number of 

classes and that is called multiple discriminant analysis. So, this is called a multiple 

discriminant analysis that is LDA for C number of classes. 

 

So, now we have C number of classes we are considering now.  So, now we have to obtain 

C-1 number of projections. So, that means to obtain to obtain C-1 projection directions C-

1 projections I have to determine and suppose this is [𝑦1, 𝑦2, . . . , 𝑦𝐶−1]. So, by means of 

C-1 projection vector 𝑤¯𝑖.  So, 𝑤¯𝑖 is the projection vector and so you can see to obtain C-

1 projections [𝑦1, 𝑦2, . . . , 𝑦𝐶−1] by means of by means of C-1 projection vectors projection 

vectors 𝑤¯𝑖.  So, this 𝑤¯𝑖 can be arranged by columns into a projection matrix. 

 

So, suppose the projection matrix the projection matrix is represented by W that means 

what we are considering this 𝑤¯𝑖 can be arranged by columns into a projection matrix the 

projection matrix is W. So, that is nothing but we are considering these columns 𝑤1 𝑤2 all 

these projection vectors we are considering. So, we have C-1 number of projection vectors.  

So, corresponding to this suppose 𝑦𝑖 = 𝑤¯𝑖
𝑇𝑥¯. 

 

So, that means 𝑌 = 𝑊𝑇𝑋. So, in this case what is X this X is a vector and dimension is m 

x 1.  So, this X is 𝑥1 up to 𝑥𝑚 and what is 𝑦𝐶−1 that is the projection after the projection 

after the projection I am getting the projection vector. So, this is nothing but 𝑦1 𝑦2 all these 

projections we are considering. So, we have C-1 number of projections we have to consider 

and what is this W W is  a matrix that is m x (C-1) and that is nothing but 𝑤1 𝑤2. So, the 

columns we are considering the columns are nothing but the projection vectors. 



 

 

 

So, this is the weight matrix. So, you can see what we are considering we have this input 

vector X is the input vector and Y is the projection matrix and this W W is nothing but the 

projection matrix. So, this is the projection matrix. So, after this what I need to consider I 

have to consider that projection. So, how to do the projection? So, let us move to the next 

slide. So, we have n feature vectors and we can stack them into one matrix as follows. 

 

So, 𝑌 = 𝑊𝑇𝑋 that means, that means we have n feature vectors and we can stack them 

into one matrix like this 𝑌 = 𝑊𝑇𝑋. So, where X is a matrix m x n and what are the 

elements of this matrix? The elements of this matrix are [𝑥1
1𝑥1

2. . . 𝑥1
𝑛]. So, here this is 𝑥1𝑚. 

So, this is a first feature vector and up to [𝑥1
2𝑥𝑚

2 . . . 𝑥𝑚
𝑛 ]. So, dimension is m x n and 

similarly what is the projection matrix? Y is the projection matrix and dimension is (c-1) x 

n and that matrix will be 𝑦1
1. 

 

So, this column is 𝑦1
1 this is the first projection. The second projection is 𝑦1

2𝑦𝐶−1
2  and like 

this 𝑦1
𝑛 and this is 𝑦𝐶−1

𝑛 . So, this is the projection matrix we are getting dimension is (C-1) 

x n and what is  the weight matrix? The weight matrix is W and dimension is m x (C-1) 

that is already I explained. So, we have this the projection vectors [𝑤¯1|𝑤¯2|. . . |𝑤¯𝐶−1]. 

So, this is the projection matrix. So, after this what we have to consider in case of the two 

classes what we determine? We determine within class scatter and similarly in this case 

also we have to determine the within class scatter. 

 

So, what is the within class scatter? So, what is the within class scatter? Within class scatter 

is 𝑆𝑤 for two classes we computed like this 𝑆1 + 𝑆2. So, this can be generalized for C 

number of classes. So, for C classes we can compute within class scatter 𝑆𝑤 = ∑𝑖=1
𝐶𝑆𝑖 . 

So, where this 𝑆𝑖 = ∑𝑥¯∈𝜔𝑖
(𝑥¯ − 𝜇¯𝑖)(𝑥¯ − 𝜇¯𝑖)

𝑇and what is this 𝜇¯𝑖
? The 𝜇¯𝑖

=

1

𝑁𝑖
∑𝑥¯∈𝜔𝑖

𝑥¯.   

So, 𝜇¯𝑖
 is the mean of the class 𝜔𝑖. So, like this we can determine the within class scatter 

matrix we can determine. So, this is the within class scatter matrix. So, this within class 

scatter matrix I can show in this figure this you can see we have  determined the within 

class scatter that is nothing but 𝑆𝑤 = ∑𝑖=1
𝐶𝑆𝑖 . 

 

So, we can determine the within class scatter. So, what is 𝑆𝑖  from the previous slide what 

we have obtained ∑𝑥¯∈𝜔𝑖
(𝑥¯ − 𝜇¯𝑖)(𝑥¯ − 𝜇¯𝑖)

𝑇. So, we can determine 𝑆𝑖  like this and what 

is 𝜇¯𝑖
 that already I have explained in my  previous slide. So, this is nothing but a mean 

corresponding to the class 𝜔𝑖. So, we are considering all the samples belonging to the class 

𝜔𝑖. So, in this figure you can see so here what is 𝑁𝑖  actually 𝑁𝑖  is the number of samples 



 

 

corresponding to the class 𝜔𝑖. 

 

So, it is the number of samples number of samples in class 𝜔𝑖. So, in this case we are 

showing this example of two dimensional features. So, in this illustration what we are 

considering the two dimensional features we are considering that means we are considering 

m=2 and we are considering the three number of classes. For three classes you can see one 

is the red one is the green another one is the blue I have shown the means one is 𝜇1 another 

one is 𝜇2 and the 𝜇3 corresponding to the class 3 the last class 3 classes we are considering.  

And you can see I am showing the scatter within class scatter 𝑆𝑤1 𝑆𝑤2 and 𝑆𝑤3. Now after 

computing this within class scatter I have to determine the between class scatter. 

 

So, let us move to the next slide. So, how to determine the between class scatter? So, for 

two classes what we have determined for two classes we have determined the between class 

scatter like this (𝜇¯1 − 𝜇¯2)(𝜇¯1 − 𝜇¯2)
𝑇. So, for C number of classes that we can also 

determine the between class scatter. So, we can measure the between class scatter which 

respect to the mean of all the classes. So, that means for C classes for C number of classes 

we can measure the between class scatter which respect to the mean of all the classes. 

 

So, I can write like this 𝑆𝐵 = ∑𝑖=1
𝐶𝑁𝑖(𝜇¯1 − 𝜇¯)(𝜇¯1 − 𝜇¯)

𝑇. So, in this case what is 

actually 𝜇¯? 𝜇¯ =
1

𝑁
∑∀𝑥𝑥¯ that means for all feature vectors irrespective of the classes we 

are determining the mean. So, that means we are determining the total mean total mean 

means we are considering for all the classes. So, in the figure you can see I have shown 

this one this is the mean that mean 𝜇¯ is computed for all the classes. 

 

So, that means for all 𝑥¯ we are computing the mean and that is the mean of all the classes  

we are determining. So, that means in this case what is N? N is nothing but that that means 

all the samples of C classes. So, all the samples of C classes are considered that is the N 

capital N.  

 

So, we can determine this and the mean the mean of all the classes we can determine and 

after this this 𝜇¯𝑖
can be determined this 𝜇¯𝑖

=
1

𝑁𝑖
∑𝑥¯∈𝜔𝑖

𝑥¯.  So, what is 𝑁𝑖  now? 𝑁𝑖  is the 

number of samples number of samples number of data samples in class 𝜔𝑖. So, you can see 

here in this figure I am computing the mean for all the classes and based on this mean I am 

determining the between class scatter. So, we can determine the between class scatter what 

is the between class scatter that I can  say like this it is a distance between the mean of a 

particular class and the total mean the total mean is 𝜇¯ a mean of all the classes. So, like 



 

 

this you can see 𝑆𝐵1 𝑆𝐵2 𝑆𝐵3 we can determine and these are the between class scatters and 

already I have explained how to determine the within class scatter that  is 𝑆𝑤1 𝑆𝑤2 𝑆𝑤3 that 

you can determine. 

 

So, one is the between class scatter another one is the within class scatter. So, in this figure 

it is clear so, how to determine that within class scatter and the between class scatter. So, 

for determining the between class scatter we have to determine the mean of all the classes  

we have to determine that is the 𝜇¯ we have to determine and after this what we can consider  

we can define the mean vector of the projected sample that is the projected sample is y. So, 

the mean vectors mean vectors for the projected samples we can determine the projected 

sample is y how to determine 𝜇¯1
˜ =

1

𝑁𝑖
∑𝑦∈𝜔𝑖

𝑦 and also we can determine the total  mean 

the mean of all the classes after the projection. So, after the projection we can determine 

so, that is nothing, but y and this y is for all the classes the all the classes we are considering 

that is the projected mean of  all the classes. 

 

Now, this the scatter matrix for the projected sample y can be determined like this. So, 

scatter matrix scatter matrix for the projected samples samples y can be determined like 

this 𝑆𝑤
˜ = ∑𝑖=1

𝐶𝑆𝑖
˜ = ∑𝑖=1𝐶∑𝑦∈𝜔𝑖

(𝑦 − 𝜇¯𝑖
˜)(𝑦 − 𝜇¯𝑖

˜)𝑇. So, for all the classes we have 

to determine this. So, for all the classes I have to determine the scatter matrix. So, this is 

the within class scatter matrix and similarly we can determine the between class scatter 

matrix we can determine that is 𝑁𝑖(𝜇¯1 − 𝜇¯)(𝜇¯1 − 𝜇¯)
𝑇. 

 

So, we can determine the between class scatter matrix after the projection. So, for the two 

classes what we have determined you can see this for two classes we have obtained this 

one 𝑤¯
𝑇𝑆𝑤𝑤¯ that is we have expressed the scatter matrix of the projected samples in terms 

of the original samples. So, that means we obtain like this. So, 𝑆𝑤 we obtain like this and 

𝑆𝐵 also we obtain like this 𝑤¯
𝑇𝑆𝐵𝑤¯. So, for two classes we have considered like this for 

two classes. So, what is my objective? My objective is to I have to find the base projection 

direction that maximize the ratio of the between class to the within class scatter. 

 

So, I am repeating this what is the objective of the LDA or the multiple discriminant 

analysis  I have to find the base projection direction that maximizes the ratio of the between 

class  to within class scatter. So, since the projection is no longer a scalar because now it 

is C-1 dimension. So, we have to use the determinate of the scatter matrix to obtain a scalar 

objective  function. So, how to obtain the scalar objective function? So, move to the next 

slide. 

 

So, what will be the objective function corresponding to the C number of classes. So, 𝑆𝐵
˜
 

and 𝑆𝑤
˜
 that is nothing but 𝑤¯

𝑇𝑆𝐵𝑤¯ 𝑤¯
𝑇𝑆𝑤𝑤¯. So, you can see the projection is no longer 



 

 

a scalar because it has C-1 dimension. Then we use the determinate of the scatter matrix to 

obtain the scalar objective function. And after determining this objective function, we have 

to find the best projection direction we have to find what we have to find the projection we 

have to find the projection and that is given by 𝑤∗ that maximize this ratio that maximizes 

the ratio. 

 

So, what is this ratio? The ratio is this. For two classes how actually we have obtained the 

best projection direction we showed the Eigen value problem and that is nothing but 

𝑆𝑤
−1𝑆𝐵𝑤¯ = 𝜆𝑤¯ that we considered and where 𝜆 = 𝐽(𝑤¯) = 𝑆𝑐𝑎𝑙𝑎𝑟. So, for C number of 

classes we have C-1 projection vectors. Hence the Eigen value problem can be generalized 

to the c classes case as follows. So, for C classes what I have to consider for C classes we 

have to consider like this 𝑆𝑤
−1𝑆𝐵𝑤¯𝑖 = 𝜆𝑖𝑤¯𝑖.  So, where 𝜆𝑖 = 𝐽(𝑤¯𝑖) = 𝑆𝑐𝑎𝑙𝑎𝑟 and we 

are considering C number of classes 𝑖 = 1,2, . . , 𝐶 − 1. 

 

So, that means what we are considering in two classes we are considering the Eigen value  

problem the solution of the Eigen value problem and 𝜆 is a scalar and in case of these C 

classes we have C-1projection vectors. Hence the Eigen value problem can be generalized 

to the C classes. So, we have generalized like this so 𝑆𝑤
−1𝑆𝐵𝑤¯𝑖 = 𝜆𝑖𝑤¯𝑖. I have C-1 number 

of projection direction so it is 1 to up to C-1 projection directions. So, it can be shown that 

the optimal projection matrix the optimal projection matrix is the optimal projection matrix 

is projection matrix is 𝑤∗ that is the optimal projection matrix. 

 

So, it can be shown that the optimal projection matrix is the one whose columns are the 

Eigen  vectors corresponding to the largest Eigen values of the following generalized Eigen  

value problem. So, that means we have to determine the optimal projection matrix and for 

this we are considering the generalized Eigen value problem what is the generalized Eigen 

value problems. The generalized Eigen value problem we have to consider because we 

have to determine the optimal projection matrix 𝑤∗ we have to determine and already I 

told you that which one is the optimal projection matrix that is the one whose columns are 

the Eigen vectors  corresponding to the largest Eigen value of the generalized Eigen value 

problem.  So, this is the generalized Eigen value problem 𝑆𝑤
−1𝑆𝐵𝑤

∗ = 𝜆𝑤∗ this is the 

generalized Eigen value problem. So, move to the next slide so from the previous slide you 

can see what is the generalized  Eigen value problem that is 𝑆𝑤
−1𝑆𝐵𝑤

∗ that is the projection 

matrix the optimal  projection matrix 𝜆𝑤∗. 

 

So in this case where 𝜆 = 𝐽(𝑤∗) that is a scalar corresponding to this we can determine the 

optimal projection matrix that is 𝑤¯1
∗  and if you see the columns this is the optimal 

projection vector corresponding to the class 𝜔1 this is the 𝑤¯2
∗  is the  projection vector 

corresponding to the class 𝜔2 and like this we have C-1 number of projection directions 



 

 

and just we are putting in the columns and we are getting the matrix 𝑤∗ and that is the 

optimal projection matrix W star is the optimal projection matrix. So, we can see how to 

determine 𝑤∗.  So, for C number of classes the principle is same we are extending the 

concept of the that simple LDA that is for the two classes that can be extended for C number 

of classes. So, this is the concept of the multiple discriminant analysis. In this class I 

explained the concept of LDA and I have shown how it can be extended for C number of 

classes and that is the multiple discriminant analysis. 

 

So, the concept is same I have to increase or I have to maximize between class scatter and 

I have to minimize within class scatter and that is the fundamental concept of multiple  

Discriminant analysis. So, let me stop here today.  Thank you.  


