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Welcome to NPTEL MOOCs course on machine learning and deep learning fundamentals 

and applications. In my last class I discussed the concept of KL transformation and the 

PCA the principal component analysis. In the KL transformation from the input vector 𝑋¯ 

I can determine the mean vector and the covariance matrix. From the covariance matrix I 

can determine eigenvalues and the corresponding eigenvectors and with the help of this 

eigenvectors I can determine the transformation matrix A of the KL transformation. So, 

what is KL transformation 𝑌 = 𝐴(𝑋¯ − 𝜇𝑋¯
) that is the KL transformation. 

 

My original data they are highly correlated, but after the transformation the transform data 

will be uncorrelated. So,that is the objective of the KL transformation. So, I am projecting 

data along the direction of the eigenvectors and because of this projection the transform 

data will be uncorrelated.  

And after this I discussed the concept of the truncated transformation matrix. 

 

We are not considering all the eigenvectors in case of the truncated transformation matrix 

and with the help of these eigenvectors K number of eigenvectors I can determine the 

truncated transformation matrix 𝐴𝐾. 𝐴𝐾 is the truncated transformation matrix. And after 

this I can determine the transformation the transformation is 𝑌 = 𝐴𝐾(𝑋¯ − 𝜇𝑋¯
). 

 So, that means I am considering the largest eigenvalues and the corresponding 

eigenvectors and these are the principal components and that is the concept of the principal 

component  analysis. So, one problem of the KL transformation is that in KL 

transformation the transformation kernel is not fixed. 

 

It depends on the statistics of the input data that is the main problem of the KL 

transformation. Unlike other transformation like DFT, DCT the transformation kernel is  

fixed, but in case of the KL transformation the transformation kernel that is the 



 

 

transformation matrix depends on the statistics of the input data that is the problem of the 

KL transformation. And also in case of the PCA you have seen that I am projecting data 

along the direction of the eigenvectors and there is no class information. So, if I consider 

suppose classes different types of classes. So, in case of the PCA class information we are 

not considering only we are determining the best projection direction and that means we 

are reducing the dimension of the input vector. 

 

So, the class information is not available and that is why  the PCA is an unsupervised 

technique. So, the problem of the PCA is that class information  we are not considering we 

are only projecting data along the direction of the eigenvectors. To consider that issue we 

are considering another technique that is called the LDA linear discriminant analysis. In 

this case we are determining the best projection direction considering the class information. 

So, the objective of the LDA is to find a set of vectors which maximize between class 

scatter and minimizes within class scatter that is the goal of the LDA the linear discriminate 

analysis. 

 

So, let us discuss about LDA and already I told you what is the difference between the 

PCA and the LDA in case of the PCA class information is not available, but in case of the 

LDA we have class information that is why LDA is a supervised technique. So, let us now 

discuss about the concept of the LDA the linear discriminate analysis. So, in the LDA 

already I told you the goal is to find a set of vectors that maximizes the between class 

scatter while minimizing the within class scatter. So, now let us discuss about the LDA the 

linear discriminate analysis LDA. So, what is the goal?  

So, LDA uses class information in case of the PCA we are not considering the class 

information and the goal is to find a set of vectors that maximizes that maximize the 

between class scatter while minimizing  the within class scatter. 

 

So, that is the goal of the LDA and we are considering class information in LDA. So, in 

this case LDA considers two criteria's. So, what are the criteria's one is maximize the 

distance between means of the classes. So, that means one objective is we have to maximize 

the between class scatter. So, that is one objective the number one maximize the distance 

between means of the classes and another one is minimize the variations within each class. 

 

That means I have to minimize the within class scatter. So, that is why we are considering  

one quantity the quantity is this the difference between these two means. So, 𝜇¯1
2 - 𝜇¯2

2. So, 

for two classes we are considering this and 𝑆1
2 + 𝑆2

2 that concept I will be explaining later 

on but this is the quantity I have to maximize. So, this quantity I have to maximize. 

 

So, I will explain you later on how to get this quantity but  to fulfill these two conditions I 



 

 

have to maximize this quantity and that is the objective of the LDA.  So, let us explain the 

concept of the LDA and already I told you the difference between the PCA and the LDA. 

So, in this figure you can see in the first figure we are projecting data along the direction 

of eigenvectors and that is nothing but the PCA the principal component analysis. So, this 

is the PCA that means we are projecting data along the direction of the eigenvectors. So, 

what is missing in this case the missing is the class information is missing. 

 

So, the class information is missing here. So, let us see what is the good projection what is 

the good projection. So, in this figure  you can see I am considering two classes suppose 

this is 𝜔1 and another one is 𝜔2. So, you can see the samples belonging to the class 𝜔1 and 

the samples belonging  to the class 𝜔2. So, if I consider the projection direction suppose 1, 

1 is the projection direction another 1 is 2. 

 

So, if I consider the projection direction 1 then you can see the two classes overlap that 

means if I consider the projection direction 1 you can see the two classes overlap and if I 

consider projection direction 2 the second direction the two classes are well separated. So, 

we can consider the projection direction direction 2 but corresponding to the projection 

direction 1 you can see the two classes overlap here the overlapping take place here these 

overlapping but corresponding to the projection direction 2 the two classes are separated 

well separated. So, that means the projection direction 2 is better as compared to the 

projection direction 1. So, we have to find the best projection direction we have to find so 

move to the next  slide. So, what information we have to consider? So, one is the between 

class scatter or the between class distance we have to consider. 

 

So, what is the between class distance? The between class distance is nothing but distance 

between the centroids of different classes. So, in this figure you can see we are considering 

two classes. So, these are the samples corresponding to the class 𝜔1 and these are the 

samples corresponding to the class 𝜔2 and you can see the centroid of the class 𝜔1 and 

centroid of the class 𝜔2 and you can see that this is the distance between these two centroids 

and actually this is the measure of between class distance. So, that is nothing but the 

between class distance and if you move to the second figure in the second figure we have 

considered within class distance. So, that means what is the within class distance 

accumulated distance accumulated distance of an instance to the centroid of its class. 

 

So, here you can see what we are considering corresponding to this class 𝜔1 I have the 

samples and corresponding to the second class I have the samples. So, I am finding the 

distance if you see this is the centroid. So, I have two centroids centroid 1 corresponding 

to the first class and centroid 2 is the centroid of the second class the samples of the second 

class. So, what we are finding we are finding  the distance between the samples and the 

centroid that is nothing but the accumulated distance of an instance to the centroid of its 



 

 

class that is nothing but the accumulated distance of an instance to the centroid of a 

particular class and that is the meaning of the within class distance.  

And what is the objective of the LDA the objective of the LDA is to maximize between 

class distance and minimize within class distance. 

 

So, this is the concept of the between class distance and within class distance. So, that 

linear discriminate analysis finds most discriminate projection by maximizing between 

class distance and minimizing within class distance. So, if I consider in the figure I am 

showing the samples belonging to two classes. So, I am showing the samples belonging to 

two classes 𝜔1 and 𝜔2 and you can see the centroid 1 corresponding to the  samples of the 

class 1 𝜔1 and centroid 2 that is the centroid of the samples of the class 𝜔2. So, what is the 

objective of the LDA we have to find the most discriminate projection by maximizing 

between class distance and minimizing within class distance. 

 

So, in this the second figure you can see I am showing two projection directions. So, 

already I have explained that one. So, if I consider the projection direction 1 and another 

one is the projection direction 2. So, you can see in case of the projection direction 1 you 

can see the samples are overlapping the samples belonging to two classes they are 

overlapping. But in case of the projection number 2 they are well separated. 

 

So, that means I have to consider the projection direction 2 we have to consider the 

projection direction 2 projection direction 2 we have to consider. So, one is not good 

because in case of the one you can see the overlapping of the samples belonging to two 

different classes. So, in case of the one you can see the overlapping take place between the 

samples of two classes. So, now let us discuss the mathematical concept behind LDA. So, 

what is the mathematics? So, let us consider what is LDA the linear discriminnant analysis. 

 

So, suppose we have C number of classes C classes we are considering and suppose each 

class and each class has 𝑁𝑖  number of samples 𝑁𝑖  samples and this is m dimensional 

samples m dimensional samples. So, where 𝑖 = 1,2, . . . , 𝐶. So, we have C number of 

classes and you can see each class has 𝑁𝑖  number of samples and this samples are m 

dimensional. So, how can I write the m dimensional samples m dimensional samples 

samples I can write suppose {𝑋¯
1, 𝑋¯

2, . . . , 𝑋¯
𝑁𝑖}. So, these are the samples the m 

dimensional samples and I have all together 𝑁𝑖  number of samples. 

 

So, if I stack these samples from different classes into one big fat matrix 𝑋¯ such that each 

column represents one sample. So, I am repeating this. So, stacking these samples from 

different classes into one big fat matrix 𝑋¯ such that each column represents one sample. 

So, I will be getting one matrix the matrix is 𝑋¯. So, what is the objective of the this LDA. 



 

 

 

So, we want to obtain a transformation that means to obtain a transformation of 𝑋¯ we are 

doing the transformation of 𝑋¯ to 𝑌  through projecting the samples in 𝑋¯, 𝑋¯ is the matrix 

because how to get the matrix already I have explained. That means, I have to stack the 

samples from different classes into one matrix the matrix is 𝑋¯ such that each column 

represents one sample. So, like this I am getting this matrix 𝑋¯. So, to obtain a 

transformation of 𝑋¯ to 𝑌  through projecting the samples in 𝑋¯ onto onto a hyper plane with 

dimension C-1 C is the number of classes. So, let us see what does this mean. 

 

So, move to the next slide. So, suppose we assume m dimensional samples. So, m 

dimensional samples the samples are 𝑋¯
1 𝑋¯

2 suppose I have N number of samples. So, out 

of this 𝑁1 number of samples that belongs to 𝑁1 number of samples that belongs to the 

class 𝜔1 and 𝑁2 number of samples that belongs to the class 𝜔2. So, m dimensional 

samples we are considering {𝑋¯
1, 𝑋¯

2, . . . , 𝑋¯
𝑁} and out of this suppose 𝑁1 number of 

samples belong to 𝜔1and 𝑁2 number of samples belong to 𝜔2. So, we want to obtain a 

scalar 𝑌 by projecting the samples 𝑋¯ onto a line. 

 

So, that means what we want to obtain to obtain to obtain a scalar scalar is 𝑌  by projecting 

the samples 𝑋¯ onto a line. So, that means I am doing the projections and suppose if I 

consider 𝐶 = 2 that means 𝐶 − 1 space corresponding to 𝐶 = 2. So, that means if I 

consider 2 number of classes. So, the space is 𝐶 − 1. So, that means because of this 

projection dimension is also reduced. 

 

So, what is this projection this is nothing, but 𝑌 = 𝑊¯
𝑇𝑋¯. So, where 𝑋¯ is the input vector 

and you can see these are the components of the vector 𝑥1 𝑥2 up to 𝑥𝑚. So, this is my input 

vector and what is the weight vector the weight vector is 𝑊¯ is the weight vector and these 

are the coefficients 𝑤1 𝑤2 up to 𝑤𝑚. So, 𝑊¯ is the weight vector. So, I have this 

transformation that means I am doing  the projection like this, that is nothing but the dot 

product. 

 

So, 𝑊¯ is the projection vector I can say this is the 𝑊¯ is the projection vector this is the 

projection vector or I can say the weight vector or the projection vector projection vector 

is 𝑊¯ and that is used to project 𝑋¯ to 𝑌 . So, in this figure you can see I am showing  two 

projection directions in the first figure if you see in the first figure the figure  number 1 I 

am showing the two dimensional feature space and you can see these are the samples 

suppose the samples belonging to the class 𝜔1 and the rate samples that is the samples 

belonging to class 𝜔2. If I consider this projection direction direction is suppose 1 you can 

see the samples are overlapping and if I consider the second figure I am I am considering 

the projection direction 2 corresponding to this projection direction 2 the samples of two 



 

 

classes are well separated. That means which one is the best projection direction the best 

projection direction is then direction 2 one is not a good projection direction because 

overlapping take place. So, we have to consider the projection direction 2. 

 

Now how to get the optimum projection direction which one is the best projection direction 

there may be many projection direction but out of which one is the best or which one is the 

optimum projection direction. That means we have to find the objective is to find the 

optimum direction given by actually the projection vector 𝑊¯. So, that is this optimum I 

can write this optimum value this  optimum 𝑊¯ I can write 𝑊¯
∗. So, I have to find the 

optimum direction of 𝑊¯ 𝑊¯
∗ we have to determine. 

 

So, that is the objective of the LDA. So, we have to find the best projection vector and for 

this we have to see the separation between the two classes that we have to observe the 

separation between the classes. So, already I told you we have to maximize between class 

scatter and we have to minimize within class scatter. So, how to define this scatter so move 

to the next slide. So, to get the best projection direction how to get the best projection 

direction to get the optimum 𝑊¯ that is the projection direction. So, the mean vector so 

what I have to do the  mean vector of each class 𝑋¯ and y feature space is we can obtain 

like this. 

 

So, suppose mean is defined like this 𝜇𝑖¯
=

1

𝑁𝑖
∑𝑋¯∈𝜔𝑖

𝑋¯. So, the mean vector of the all the 

input vectors belonging to the class 𝜔𝑖 we can determine and after the projection of this I 

can also determine the mean and after the projection I can also determine the mean. So, 

after the projection that this mean vector is nothing but 𝜇𝑖¯
˜ =

1

𝑁𝑖
∑𝑦∈𝜔𝑖

𝑦. Which can be 

represented like this 
1

𝑁𝑖
∑𝑋¯∈𝜔𝑖

𝑊¯
𝑇𝑋¯. So, that is equal to 𝑊¯

𝑇 1

𝑁𝑖
∑𝑋¯∈𝜔𝑖

𝑋¯. So, I  am getting 

this one. So, this 𝜇¯𝑖
 that is before the projection before projection and this 𝜇𝑖¯

˜ that is the 

after the projection. 

 

So, that means what is the interpretation of this projecting 𝑋¯ to y will lead to projecting 

the mean of 𝑋¯ to the mean of y. So, I am repeating this what is the interpretation of this 

projecting 𝑋¯ to y will lead to projecting the mean of 𝑋¯ to the mean of y that is the 

interpretation of this. So, we can determine the distance between the projected means and 

that I can consider as my objective function. So, what is the objective function I can 

consider suppose objective function function objective function is nothing but I can 

consider suppose 𝐽(𝑤¯) I can consider and that is nothing but the distance between the 

projected means. So,  distance between the projected means 𝜇¯1
˜ − 𝜇¯2

˜ and you remember 

we are considering only 2 classes in this example. 



 

 

 

So, that is |𝑤¯
𝑇𝜇¯1 − 𝑤¯

𝑇𝜇¯2|and that is equal to |𝑤¯
𝑇(𝜇¯1 − 𝜇¯2)|. So, this objective 

function 𝐽(𝑤¯) we can consider and you can see we are considering the measured the 

measure is the distance between the projected means. So, that should be maximize. So, 

after the projection of the samples belonging to 2 classes we are getting the means 

corresponding to the first class and corresponding to the second class we are getting 2 

means and these 2 means should be well separated and that is why we are considering this 

objective function 𝐽(𝑤¯) that we are considering. So, now the problem is we are 

considering this that distance between the projected means we are considering as an 

objective function, but it is not a very good measure because it does not take into 

consideration of the standard deviation within the class. 

 

So, that  we have to consider the standard deviation within the class we have to consider I 

am repeating this projected means we are considering as an objective function, but that is 

not a good measure because we are not considering the standard deviation within the class.  

So, that can be illustrated in the next slide. So, here I am showing and these 2 projection  

directions. So, in the first projection direction if you see in this direction direction suppose  

1 the 2 means are well separated you can see the separation between these 2 means are very 

good, but still the samples are overlapping, but if I consider the second projection direction 

that is number 2 here. So, in case of the projection direction 2 the distance between these 

2 mean is not significant it is not big, but still the separability is very good. 

 

So, that means, you can see I can say this axis has larger distance between means, but 

separability is not good because the samples will be overlapping. So, that means, the 

direction 1 is not good and the second direction this axis gives better class separability. So, 

that means, what is the interpretation of this that means, we considered the criteria function 

as 𝐽(𝑤¯) and that is the difference between the 2 projected means and that is not a very 

good measure because we are not considering the standard deviation within the class. So, 

this is the example in this case. So, to consider this issue what we have to consider the 

method proposed by Fisher and that we have to consider. 

 

So, to consider this issue you can see in my next slide to consider this issue. So, what I can 

consider maximize a function that represents the difference between and the means 

normalized by a measure of the within class variability. So, that is actually it is called a 

scatter and that is called a scatter. So, for each class we can define the scatter and that is  

equivalent of the variance. So, what is the scatter? So, scatter 𝑆𝑖
˜2

= ∑𝑦∈𝜔𝑖
(𝑦 − 𝜇˜

𝑖)2. 

 

So, for each and every class I have to consider this scatter and that is actually equivalent of 

the variance and that is nothing, but the sum of square difference between the projected 



 

 

samples and their class means. So, we can determine the scatter like this. So, what is 𝑆𝑖
˜2

? 

So, that is nothing, but the variability that is the measure what is 𝑆𝑖
˜2

 that is the variability 

within class 𝜔𝑖 after projecting it onto the y space after projecting it on the y space that is 

a scatter. So, we can consider 𝑆1
˜2

+ 𝑆2
˜2

. So, that is the measure of the variability within 

the two classes after the projection. 

 

So, that is I can say this is nothing, but the variability within two classes after projection 

and this is nothing, but within class scatter of the projected samples I can write of the 

projected samples. So, you can see that 𝑆1
˜2

+ 𝑆2
˜2

 and that is nothing, but the within class 

scatter of  the projected samples that we can determine. So, move to the next slide. So, the 

linear discriminant is defined as a linear function 𝑊¯
𝑇𝑋 that maximize the criterion 

function. What is the criterion function? The distance between the projected means 

normalized by the within class scatter of the projected  samples. 

 

So, that means we are considering this the criterion function. What is the criterion function? 

The criterion function is 𝐽(𝑤¯) that is nothing, but the difference between the projected 

means square and 
|𝜇˜

1−𝜇˜
2|2

𝑆1
˜2

+𝑆2
˜2 . So, that means what is the criterion function?  We are 

considering the distance between the projected means normalized by the within class  

scatter of the projected samples. So, what actually we are now looking for? We are looking  

for a projection where samples from the same class are projected very close to each other  

and at the same time, the projected means are as far as possible. So, that means what we 

are looking for? We are looking for a projection direction where samples of the same class 

are projected very close to each other and at the same time, the projected means should  be 

far away from each other. 

 

So, that is the objective. So, in this figure what we are considering, I am showing the 

projection direction 1 suppose this is a projection direction1. In this projection direction 

what actually we are looking for that means the first condition is the projected means 

should be far away from each other. So, that is one condition and also the samples from 

the same class are projected very close to each other. So, you can see this is the projection 

of the samples belonging to one class and this is the projection of the samples belonging to 

another class and you can see the separation between these two means the projected means 

𝜇1 and 𝜇2. So, I am repeating this, I am looking for a projection direction where the samples 

from the same class are projected very close to each other and at the same time, the 

projected means should be far away from each other. 

 

So, these are the conditions and based on these conditions, we are determining this  

criterion function that is 𝐽(𝑤¯). So, we have to find the optimum projection direction. So, 



 

 

we have to find the optimum projection is 𝑤¯
∗ that we have to determine. So, how to find 

this one? So, we have to find the optimum projection direction and how to find this 

optimum projection direction you can see. So, we will define a measure of the scatter in 

multivariate feature space 𝑋¯. 

 

So, we have to find the optimum projection direction that  is 𝑤¯
∗. So, for this what we can 

consider, we will define a measure of the scatter in multivariate feature space 𝑋¯ and which 

are denoted as scatter matrix. So, what is the scatter matrix? The scatter matrix I can 

consider 𝑆𝑖 = ∑𝑥¯∈𝜔𝑖
(𝑋¯ − 𝜇¯𝑖)(𝑋¯ − 𝜇¯𝑖)𝑇. So, that means, what we are considering.  So, 

we will define a measure of the scatter in multivariate feature space 𝑋¯ and which can be 

denoted by a scatter matrix. So, what is 𝑆𝑤 now? 𝑆𝑤 = 𝑆1 + 𝑆2 we have to determine. 

 

So, this 𝑆𝑖  is nothing but is a covariance matrix of class 𝜔𝑖 and we have obtained 𝑆𝑤. So, 

what is 𝑆𝑤? 𝑆𝑤 is nothing but 𝑆1 + 𝑆2 and that is actually 𝑆𝑤 is called the Within class 

scatter matrix. Within class scatter. So, we have defined the Within class scatter matrix. 

So, the scatter of the projection y can be expressed as a function of the scatter matrix in 

feature space 𝑋¯. 

 

So, how to do this? Move to the next slide. So, we are representing 𝑆𝑖
˜2

= ∑𝑦∈𝜔𝑖
(𝑦 −

𝜇𝑖
˜)2 = ∑𝑋¯∈𝜔𝑖

(𝑤¯
𝑇𝑥¯ − 𝑤¯𝜇𝑖)2 I can write like this. So, in this expression this y is nothing 

but this already we have defined that is the projection of 𝑋¯ onto y and this one is this the 

𝜇𝑖
˜ that is nothing but the projection of the mean. So, that means this 𝑆𝑖

˜2
=

∑𝑋¯∈𝜔𝑖
𝑤¯

𝑇(𝑥¯ − 𝜇𝑖)(𝑥¯ − 𝜇𝑖)𝑇𝑤¯ = 𝑤¯
𝑇(∑𝑋¯∈𝜔𝑖

(𝑥¯ − 𝜇𝑖)(𝑥¯ − 𝜇𝑖)𝑇)𝑤¯ = 𝑤¯
𝑇𝑆𝑖𝑤¯. 

So, what is the this value 𝑆1
˜2

+ 𝑆2
˜2

= 𝑤¯
𝑇𝑆1𝑤¯ + 𝑤¯

𝑇𝑆2𝑤¯ = 𝑤¯
𝑇(𝑆1 + 𝑆2)𝑤¯ =

𝑤¯
𝑇𝑆𝑤𝑤¯. This is 𝑤¯

𝑇𝑆𝑤𝑤¯ and this is nothing but 𝑆𝑤
˜
 within class scatter. So, here in this 

case if you see here this 𝑆1
˜2

= 𝑤¯
𝑇𝑆1𝑤¯ and what is 𝑆𝑤

˜2
 that is nothing but this. So, in 

this case we are getting 𝑆𝑤. So, what is actually this 𝑆𝑤? 𝑆𝑤 tilde we are getting and that 

is nothing but what is 𝑆𝑤
˜
 that is nothing but within class scatter matrix of the projected 

samples y. 

 

So, we are getting the within class scatter matrix of the projected samples y. Similarly, the 

difference between the projected means in y space can be expressed in terms of the means 

in the original feature space 𝑋¯ space that is the 𝑋¯ space. So, let us move to the next slide. 

So, we can determine (𝜇¯1
˜ − 𝜇¯2

˜)2 = (𝑤¯
𝑇𝜇¯1 − 𝑤¯

𝑇𝜇¯2)2 = 𝑤¯
𝑇(𝜇¯1 − 𝜇¯2)(𝜇¯1 −

𝜇¯2)𝑇𝑤¯. So, in this case you can see here this 𝜇¯1
˜that is nothing but this one and what is 

𝜇¯2
˜ what is 𝜇¯2

˜ = 𝑤¯
𝑇𝜇2. 



 

 

 

So, corresponding to this we will be getting 𝑤¯
𝑇𝑆𝐵𝑤¯ and that is called 𝑆𝐵

˜
 and this 𝑆𝐵

˜
 that 

is called between class scatter. So, in this expression you can see we are determining 𝜇¯1
˜ 

that is nothing but 𝑤¯
𝑇𝜇2. So, 𝜇1 is the original mean of the samples and 𝜇¯1

˜ that is the 

projected means and similarly 𝜇2 is nothing but the mean of the original samples and 𝜇¯2
˜ 

that is nothing but the mean of the projected samples. So, from this you can determine the 

between class scatter that is the 𝑆𝐵 you can determine. So, in this case you can see the 𝑆𝐵
˜
 

is the between class scatter of the projected samples samples y and what was 𝑆𝐵? 𝑆𝐵 is 

nothing but 𝑆𝐵
˜
 is nothing but the between class scatter of the projected samples y and what 

is 𝑆𝐵? 𝑆𝐵 is the between class scatter between class scatter of the original samples original 

samples means 𝑋¯. 

 

So, we can determine the within class scatter matrix and also the between class scatter 

matrix and based on this we can determine the criterion function that is the criteria function 

is 𝐽(𝑤¯) already we have defined. So, this 𝐽(𝑤¯) =
|𝜇¯1

˜−𝜇¯2
˜|2

𝑆1
˜2

+𝑆2
˜2 =

𝑤¯
𝑇𝑆𝐵𝑤¯

𝑤¯
𝑇𝑆𝑤𝑤¯

. So, what is this 

𝐽(𝑤¯)? It is a what is 𝐽(𝑤¯)? It is a measure of the difference between class means 

normalized by a measure of the within class scatter matrix that is 𝐽(𝑤¯). So, I am repeating 

this 𝐽(𝑤¯) that is the criterion function is a measure of the difference between class means 

normalized by a measure of the within class scatter matrix that is 𝐽(𝑤¯). 

 

Now we have to find a maximum 𝐽(𝑤¯). So, for this we have to differentiate and equate to 

0. So, our objective is to find the optimum value of 𝑤¯ that is a projection vector. So, that 

means, we have to maximize 𝐽(𝑤¯) and we have to equate it to 0 because we have to find 

the maximum value. So, how to get this one? So, move to the next slide. 

 

So, to find maximum of 𝐽(𝑤¯) this criterion function. So, we have to differentiate and 

equate to 0. So, that means, 
𝑑

𝑑𝑤¯
𝐽(𝑤¯) =

𝑑

𝑑𝑤¯

𝑤¯
𝑇𝑆𝐵𝑤¯

𝑤¯
𝑇𝑆𝑤𝑤¯

= 0. So, how to differentiate this one? 

So, this will be  equal to (𝑤¯
𝑇𝑆𝑤𝑤¯)2𝑆𝐵𝑤¯ − (𝑤¯

𝑇𝑆𝐵𝑤¯)2𝑆𝑤𝑤¯ = 0. So, that is equal to 

(𝑤¯
𝑇𝑆𝑤𝑤¯)2𝑆𝐵𝑤¯ − (𝑤¯

𝑇𝑆𝐵𝑤¯)2𝑆𝑤𝑤¯ = 0 and dividing by 2𝑤¯
𝑇𝑆𝑤𝑤¯. 

 

 So, dividing by this 2𝑤¯
𝑇𝑆𝑤𝑤¯. So, what we will  get? We will be getting 

𝑤¯
𝑇𝑆𝑤𝑤¯

𝑤¯
𝑇𝑆𝑤𝑤¯

𝑆𝐵𝑤¯. 

So, this is not a difficult mathematics only you have to do the differentiation and do some 

mathematics.  So, 
𝑤¯

𝑇𝑆𝑤𝑤¯

𝑤¯
𝑇𝑆𝑤𝑤¯

𝑆𝐵𝑤¯ −
𝑤¯

𝑇𝑆𝐵𝑤¯

𝑤¯
𝑇𝑆𝑤𝑤¯

𝑆𝐵𝑤¯𝑆𝑤𝑤¯ = 0 ⇒ 𝑆𝐵𝑤¯ − 𝐽(𝑤¯)𝑆𝑤𝑤¯ = 0 ⇒

𝑆𝑤
−1𝑆𝐵𝑤¯ − 𝐽(𝑤¯)𝑤¯ = 0. 

 



 

 

So, to solve this equation we are considering the generalized Eigen value problem. So, 

move to the next slide for solving we are considering the generalized Eigen value problem. 

So,  𝑆𝑤
−1𝑆𝐵𝑤¯ = 𝜆𝑤¯ where 𝜆 = 𝐽(𝑤¯) and 𝜆 is nothing but a scalar is a scalar 𝜆 is a scalar.  

So, corresponding to this Eigen value problem we can determine the optimum value of 𝑤¯ 

that is the projection vector 𝑤¯
∗ = 𝑎𝑟𝑔 𝑚𝑎𝑥𝑤¯

𝐽(𝑤¯) = 𝑎𝑟𝑔 𝑚𝑎𝑥𝑤¯

𝑤¯
𝑇𝑆𝐵𝑤¯

𝑤¯
𝑇𝑆𝑤𝑤¯

= 𝑆𝑤¯
−1(𝜇1¯ −

𝜇2¯). So, we  are getting the optimum projection direction that is 𝑤¯
∗ = 𝑆𝑤¯

−1(𝜇1¯ − 𝜇2¯). 

 

So, we are getting the best projection direction by using this equation. So, this is the 

equation. So, with the help of this equation you can determine the best projection direction. 

So, considering this case because we are determining the best projection direction with the 

help of this criterion function the criterion function is 𝐽(𝑤¯) you  can see we have 

determined the projection direction the best projection direction 𝑤¯
∗. So, in this class I 

discussed the concept of LDA linear discriminant analysis I considered only two classes 

and based on these two classes I have determined the best projection direction and the same 

concept can be extended for C number of classes that is called multiple discriminant 

analysis. One concept is pretty important that is the between class scatter and within class 

scatter and based on this we have determined the best projection direction. 

 

So, the goal of the LDA is to find a set of vectors that maximizes between class scatter and 

simultaneously it minimizes within class scatter that is the goal of the LDA the linear  

discriminant analysis. So, let me stop here today. Thank you. 


