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Welcome to NPTEL MOOCs course on machine learning and deep learning fundamentals 

and applications. In my last class I discussed the concept of principal component analysis.  

Today I am going to discuss the same concept the principal component analysis, but from  

different perspectives. That is from the transformation point of view, I will be explaining 

the concept of principal component analysis and that transformation is called the KL 

transformation. So in the KL transformation, the original data that is highly correlated and 

after the transformation the transform data will be uncorrelated. And during the 

transformation, I will be getting a new coordinate axis and the transformed data will be 

aligned along the direction of this new coordinate axis. 

 

And after the transformation the transform data will be uncorrelated. We know different 

types of transformation like DCT, the discrete cosine transformation, DFT, discrete Fourier 

transformation, Hadamard transformation, discrete sine transformation. So for all these 

transformation, the transformation kernels are fixed.  

But in the KL transformation, the transformation kernel is not fixed. 

 

It depends on the statistics of the input data. So now let us discuss about the KL 

transformation. And after the discussion, I will be explaining the concept of the PCA, the 

principal component analysis. So let us first discuss the concept of the KL transformation.  

So as I explained what is the difference between the KL transformation and other 

transformation like DFT, DCT or  

maybe the discrete sine transformation or the Hadamard transformation or maybe a Haar 

transformation. 

 

In this transformation, the transformation kernels are fixed. So now let us discuss about the 

KL transformation. That is the KL transformation. So from KL transformation, I will be 

explaining the concept of that is the principal component  analysis.  



 

 

What is KL?  KL means Karhunen-Loe transformation. 

 

So what is the basic difference between the KL transformation and other transformation 

the DFT, discrete Fourier transformation, DCT-the discrete cosine transformation, DST-

discrete  sine transformation. Like this, we have a number of transformations in all these 

transformations, the transformation  kernel is fixed. So for DFT, the transformation kernel 

is fixed. For DCT, the transformation kernel is fixed like this transformation all these 

transformation  the transformation kernels are fixed.  

So that means the kernel is independent of data. 

 

But in the KL transformation, the transformation kernel is derived from data. The 

transformation kernel depends on the statistical properties of the input data. So that is the 

difference between the KL transformation and other transformation like DFT, DCT, DST. 

So in case of the KL transformation, I am repeating this, that transformation kernel is 

derived from the statistics of the input data.  

So now I am going to explain the concept of the KL transformation. 

 

So let us consider a population vector. The population vector is suppose 𝑋¯. So it is n 

dimensional vector 𝑥1, 𝑥2. These are the components of this vector. So this is n dimensional 

vector. 

 

So this is a population vector n dimensional vector. From this population vector, what I 

can determine, I can determine the mean, mean of 𝑋¯ I can determine. So it is nothing but 

𝜇𝑥¯ = 𝐸{𝑥¯}. So from this I can determine the mean, mean of the vector 𝑋¯.  And also I can 

determine the covariance matrix of the population vector. 

 

So that size of this covariance matrix is 𝑛𝑥𝑛. This is the size of the covariance matrix. That 

is nothing but 𝐶𝑥¯ = 𝐸{(𝑥¯ − 𝜇𝑥¯)(𝑥¯ − 𝜇𝑥¯)
𝑇}.  So we can determine the covariance 

matrix like this.  So it is a n by n matrix. 

 

So in the covariance matrix in 𝐶𝑥¯ , the elements like this, suppose if I consider 𝐶𝑖𝑖 , that  is 

the element is 𝑥𝑖  and 𝐶𝑖𝑗, that is the covariance between 𝑥𝑖  and 𝑥𝑗. So the elements of the 

covariance matrix 𝐶𝑖𝑖  is 𝑥𝑖  and 𝐶𝑖𝑗 is mainly the covariance between 𝑥𝑖  and 𝑥𝑗. So this 

covariance matrix that is real and the symmetric, it is a real matrix and symmetric matrix.  

So from this matrix, we can get a set of n orthonormal vectors. So we can get from this 

covariance matrix what I can get? 

 I can get a set of n orthonormal vectors and these are called eigen vectors. 

 



 

 

So these are eigen vectors. So these eigen vectors are represented like this 𝑒𝑖. So these 

eigenvectors. So you can see from the covariance matrix, we can determine the eigen 

vectors. So after this, let us move to the next slide. 

 

So what we have determined from the covariance matrix, we have the covariance matrix 

𝐶𝑥¯  and from this what we have determined? We have determined eigen vectors. That 

means we can get a set of n orthonormal vectors, n number of orthonormal vectors and that 

is nothing but the eigen vectors. And corresponding to this 𝑒𝑖, corresponding to this 𝑒𝑖, I 

have 𝜆𝑖 and that is nothing but the eigen values. This is nothing but the eigen values. So 

you can see what is the step?  

The step is from the covariance matrix, we can determine n number of orthonormal vectors. 

 

These are the eigen vectors and corresponding to these eigen vectors, I have the eigen 

values. So these eigen values are arranged in the descending order of the magnitude. So I 

can write these eigen values are arranged in the descending order of magnitude.  

So all these eigen values are arranged in the descending order of magnitude like this. 𝜆𝑗 ≥

𝜆𝑗+1, like this I am arranging. 

 

So 𝑗 = 0,1,2, . . . , 𝑛 − 1. So you can see we are arranging the eigen values in the 

descending order of magnitude. Now we have to construct the transformation matrix. So 

from the set of eigen vectors, we can from A matrix, the matrix is the A, A is the 

transformation matrix.  Transformation matrix A I can form with the help of the eigen 

vectors. 

 

So how to form this?  The first row of A matrix is the eigenvector corresponding to the 

largest eigenvalue. Like this we have to consider. So A is a transformation matrix. So you 

can see I am making the transformation matrix. So first row is the eigen vector. 

 

So suppose eigen vector is 𝑒1 and this corresponds to the largest eigen value. And similarly 

𝑒2 is the second eigen vector corresponding to the second largest eigen value. And what is 

𝑒2 last row of the transformation matrix? It is the eigen vector corresponding to the smallest 

eigen value. So the last row I will be getting, last row of the matrix A is the eigen vector 

corresponding  to the smallest eigenvalue. So like this we can construct the transformation 

matrix. 

 

After this I will go for the transformation and that is nothing but the KL transformation.  

What is the KL transformation? The transformation I can write like this. And this 

transformation is actually the KL transformation.  



 

 

KL transformation is 𝑌 = 𝐴(𝑋¯ − 𝜇𝑋¯). A is the transformation matrix. 

 

𝑋¯ is the population vector and the mean, mean of this vector 𝑋¯. So here you can see what 

is 𝑋¯? 𝑋¯ is nothing but the data vector. And this 𝜇𝑋¯ is the mean vector.  

This is the mean. So I am getting the transformation. 

 

The transformation is 𝑌 = 𝐴(𝑋¯ − 𝜇𝑋¯). So the transformed data is nothing but the 𝑌 . 𝑌  is 

the transformed data. The original data is the 𝑋¯. So what is the properties of 𝑌?  

The properties of 𝑌 . 

 

So what are the properties of 𝑌? That is the transformed data. So one property is very 

important. The mean of the transformed data is zero. 

 

So 𝑌  is equal to zero.  It is zero.  And 𝐶𝑌  that is the covariance matrix of 𝑌 . 𝐶𝑌  is the 

covariance matrix of 𝑌  which is generated from the covariance matrix of 𝑋¯ and the 

transformation matrix and the transformation matrix is A. So that means the 𝐶𝑌  is nothing  

but 𝐴𝐶𝑋¯𝐴
𝑇.  So this is the covariance matrix of the transformed data. Co-variance matrix 

of the transformed data is this is the expression. 

 

So how to get this expression if you see 𝐶𝑌 = 𝐸[𝑌𝑌𝑇] because the mean of 𝑌  is equal to 

zero. So, 𝐶𝑌 = 𝐸[𝑌𝑌𝑇]. So there is a covariance matrix. So this can be written like this 

𝐴(𝑋¯ − 𝜇𝑋¯).  And after this I have to write Y transpose. 

 

So that is nothing but (𝐴(𝑋¯ − 𝜇𝑋¯))
𝑇. So which is equal to 𝐴𝐸{(𝑋¯ − 𝜇𝑋¯)(𝑋¯ −

𝜇𝑋¯)
𝑇}𝐴𝑇.  So if you see this is nothing but A and this 𝐸{(𝑋¯ − 𝜇𝑋¯)(𝑋¯ − 𝜇𝑋¯)

𝑇}that is 

nothing but the covariance matrix of 𝑋¯ 𝐶𝑋¯ and A transpose. So from this actually we obtain 

this. So this is the expression for the covariance matrix of the transformed data. 

 

So let us move to the next slide. So what will be the nature of the covariance matrix of 𝐶𝑌?  

The nature of the covariance matrix of 𝐶𝑌  will be like this. So this is a matrix. So diagonal 

elements are like this 𝜆1, 𝜆2 like this up to 𝜆𝑛. And if you see this row these are all zeros. 

So you can see the diagonal elements are 𝜆1, 𝜆2, 𝜆3 like this up to 𝜆𝑛 and off diagonal 

elements are zero. 

 

So you can see this off diagonal elements are zero. So that means it perfectly de-correlates 

data. So that means perfectly de-correlates the input data. So elements of the vector 𝑌  is 



 

 

uncorrelated.  That means the transformed data is uncorrelated. 

 

So I can write the elements of the vector 𝑌  are uncorrelated. So that is the meaning of this 

covariance matrix. And one thing is that Eigen values of 𝐶𝑌  is same as that of 𝐶𝑋¯. So that 

I can write the Eigen value, value of the covariance matrix 𝐶𝑌  is same as that of 𝐶𝑋¯. 

 

So that is also one property. And similarly another is the Eigen vectors of 𝐶𝑌  is same as 

that of 𝐶𝑋¯.  So these are properties. So you can see that the KL transformation is 𝑌 =

𝐴(𝑋¯ − 𝜇𝑋¯).  We consider this one. So you can see the original data, they are highly 

correlated. 

 

But after the transformation, I am getting 𝑌  that is the transformed data are uncorrelated.  

Because I have the diagonal covariance matrix. Since I have the diagonal covariance 

matrix, off diagonal elements are all zero.  

So that means I can say the transformed data are highly uncorrelated, totally uncorrelated. 

 

The transformed data are totally uncorrelated. So this is the observation after the KL 

transformation. So let us discuss one example how to determine this transformation matrix 

from the input data. So let us consider one example.  

So how to determine the transformation matrix. 

 

So a binary image is considered. So let us consider this binary image. And suppose these 

are the pixel positions. So let us consider this image. So at a particular point suppose (3, 4) 

x is 3 and y is 4. So suppose this x and this y corresponding to this position the pixel is 

present. 

 

So that means when the pixel is present, I am considering it as 1. If the pixel is not present, 

when the object is not present, then it is the element is zero.  So it is a binary image. And 

similarly I can consider another (4, 3). 

 

And suppose (4, 4). So a particular object is considered and that is represented by a binary 

image (4, 4), (4, 5), (5, 4). So this object is considered. Suppose I am considering this object 

and I have the coordinates x and y. So what is the population vector in this case? The 

population vector I can consider is 𝑋¯. 

 

So (3, 4) in the (3, 4) position the pixel is present. (3, 4). If you see x is 3, y is 4 the pixel 

is present. Another one is at the point (4, 3) the pixel is present 4 and 3. Another point is 

(4, 4) the pixel is present. (4, 5) the pixel is present. 



 

 

 

And another one is (5, 4) the pixel is present. (5, 5) the pixel is present. (5, 6) the pixel is 

present. And (6, 5) the pixel is present. So I am considering these cases and based on this 

I can determine the population vector. So that means what I want to determine? 

 I want to determine the KL transformation. 

 

KL transformation I am determining of the pixels where the object is present. So you can 

see the object I am considering and these pixels at the position (3, 4), (4,  3), (4, 4), (4, 5), 

(5, 4), (5, 5), (5, 6), (6, 5) the object is present corresponding to these positions. So 8 

numbers of 2D vectors that is nothing but the 8 numbers of 2 dimensional vectors. And 

from this population vector I can easily determine the mean. 

 

So there is a mean vector I can determine. So the mean vector will be something like 4.5 

and 4.5 you can determine. And also you can determine the covariance matrix. The 

covariance matrix is the 𝐶𝑋¯ = 𝐸{(𝑥¯ − 𝜇𝑥¯)(𝑥¯ − 𝜇𝑥¯)
𝑇}. 

 

So this covariance matrix you can determine. So for determining this covariance matrix 

what you can do? You can just determine 𝑥1 − 𝜇𝑥 and after this 𝑥2 − 𝜇𝑥, 𝑥3 − 𝜇𝑥.  So you 

have to determine like this and from 𝑥1 − 𝜇𝑥  also you can determine (𝑥1 − 𝜇𝑥)
𝑇 you can 

determine.  So from this you can determine the covariance matrix. The covariance matrix 

is nothing but this is 𝑥1 − 𝜇𝑥 you can determine and (𝑥1 − 𝜇𝑥)
𝑇 you can determine. So 

like this you can determine like this you can determine all these values you can determine. 

 

After this you have to take the average of all these to get the covariance matrix. The 

covariance matrix is the 𝐶𝑋¯ you can determine the covariance matrix. So after determining 

the covariance matrix you have to determine the Eigen values and the corresponding Eigen 

vectors. What you need to determine? You have to determine the Eigen values and the 

corresponding Eigen vectors that you can determine from the covariance matrix. 

 

So after this you can apply the transformation. The transformation is already I have defined 

𝑌 = 𝐴(𝑋¯ − 𝜇𝑋¯) you can determine this transformation. So you will be getting the 

transform data. So after the transformation what you can see the origin of the object is 

located at the  centroid of the object. 

 So that means I will be getting the origin of the new coordinate system. 

 

So origin is suppose this is the origin. So origin is located at the centroid of the object and 

the axis will be parallel to the  direction of the Eigen vectors. So corresponding to this 

problem I have two Eigen vectors. So Eigen vectors I have two Eigen vectors one is 𝑒1 and 



 

 

another one is 𝑒2. So that means the origin of the new coordinate system I am getting a 

new coordinate system and origin is located at the centroid of the object and the axis will 

be parallel to the direction of the Eigen vectors. So you can see I am getting a new 

coordinate system and this new coordinate these are the this is the axis. 

 

So one is 𝑒1 and another one is 𝑒2. So 𝑒1 is the Eigen vector and 𝑒2 is the Eigen vector. So 

that means after the transformation I am getting a new coordinate system and the transform  

data will be aligned in the direction of the new coordinate axis that is in the direction of the 

Eigen vectors. So that is why this KL transformation is also called the rotation 

transformation because I am getting a new coordinate system because I am getting a new 

coordinate system and the new axis are the Eigen vectors of  the covariance matrix. So that 

means data will be aligned to the direction of the Eigen vectors and because of these 

alignments different elements of 𝑌  will be uncorrelated. So I am repeating this because of 

this alignment, alignment means I am aligning the transform data along the direction of the 

Eigen vectors and because of these alignments different  elements of 𝑌  will be 

uncorrelated. 

 

That is the interpretation of this KL transformation 𝑌 = 𝐴(𝑋¯ − 𝜇𝑋¯). So I am repeating it 

again because it is very important. So after the transformation I will be getting a new 

coordinate system. The axis of the new coordinate system will be parallel to the direction 

of the Eigen vectors. 

 

And because of these alignments different elements of 𝑌  will be uncorrelated. So that is 

the interpretation of the KL transformation. Now let us consider the reconstruction of the 

original data from 𝑌  that is how to reconstruct 𝑋¯ from 𝑌 . So that is the reconstruction 

problem. So let us move to the next slide reconstruction. 

 

So how to reconstruct 𝑋¯ from 𝑌  that is to reconstruct 𝑋¯ from 𝑌 . Already we have done 

the transformation. So we know that 𝑌 = 𝐴(𝑋¯ − 𝜇𝑋¯). So this is the transformation. So 

this 𝑌  is what? 𝑌  is nothing but it is n dimensional. 

 

So this transformation matrix it is orthogonal transformation matrix. So 𝐴−1 = 𝐴𝑇 that is 

the orthogonal matrix. So what is the inverse KL transformation? Inverse KL 

transformation I can write like this inverse KL transformation is nothing but 𝑋¯
̂ = 𝐴𝐾

𝑇𝑌 +

𝜇𝑋¯.  This 𝐴−1 = 𝐴𝑇 that is nothing but the orthogonal transformation. So you can see I 

can reconstruct the original data. So you can see this transformation matrix A that is formed 

by all the eigenvectors of the covariance matrix 𝐶𝑋¯. 

 

That means I am repeating this the transformation matrix A is constructed by considering 



 

 

all the eigenvectors of the covariance matrix 𝐶𝑋¯. But if I only consider k number of eigen 

vectors then I will be getting the transformation matrix 𝐴𝐾. In the 𝐴𝐾 that means what we 

are considering? We are only considering the K number of eigen vectors that is we are only 

considering K number of  eigen vectors. In the case of A we have been considering all the 

eigen vectors but now we are considering K number of eigen vectors. So that means 𝐴𝐾 

we are considering that is the transformation matrix K number of eigen vectors of the 

covariance matrix 𝐶𝑋¯. 

 

What we are considering the K largest eigen vectors we are considering. So what will be 

the dimension of 𝐴𝐾? The dimension of 𝐴𝐾 is K x n because we are considering only K 

number of eigen vectors. So dimension will be K x n. So corresponding to this my 

transformation will be 𝑌  is equal to 𝐴𝐾. So in place of A I am considering the 𝐴𝐾 and this 

𝐴𝐾 I can consider as a truncated transformation matrix because I am not considering all the 

eigen vectors for constructing the  transformation matrix. 

 

𝐴𝐾 I can consider as the truncated transformation matrix. So I can write truncated 

transformation matrix because we are only considering the K number of eigen vectors for 

constructing the transformation matrix. So 𝐴𝐾(𝑋¯ − 𝜇𝑋¯). So what is the dimension of 𝑌? 

The dimension of 𝑌  will be K. What is the dimension of 𝐴𝐾? The dimension of 𝐴𝐾 is K x 

n. 

 

And what is the dimension of 𝑋¯? The dimension of 𝑋¯ is n x 1, n dimensional. So we are 

getting this. So in this case for that transformation we are considering only the K number 

of eigen vectors. So that means these are I can consider as the principal components. So 

these are actually I can consider the principal components. That is the largest eigen values 

we are considering and corresponding eigen vectors and these are called the principal 

components. 

 

So in the principal component analysis this is the case. That means we are considering the 

largest eigen values and corresponding eigen vectors. So this should be K largest eigen 

values. So now how to do the reconstruction? So move to the next slide. So how to do the 

reconstruction? So if I want to reconstruct 𝑋¯ from 𝑌 , reconstruction of 𝑋¯ from 𝑌 . So in 

this case if I want to reconstruct 𝑋¯ from 𝑌 , we will not be able to get the perfect  

reconstruction because we are not considering all the eigen vectors for constructing the  

transformation matrix. 

 

So perfect reconstruction is not possible. So we are getting the approximate reconstruction.  

So this is the approximate reconstruction of 𝑋¯, 𝐴𝐾
𝑇𝑌 + 𝜇𝑋¯.  So here you can see the 

dimension of 𝑋¯ will be n, dimension of 𝐴𝐾
𝑇  that will  be K x n, dimension of 𝑌  will be K. 



 

 

So this the dimension of 𝑋¯ that will be the same dimension of 𝑋¯ but approximate value of 

𝑋¯. So we are getting the approximate value of 𝑋¯ because we are not considering all the 

eigen vectors  for constructing the transformation matrix. 

 

So this ak you can see the 𝐴𝐾 is dimension is what is the dimension of 𝐴𝐾? It is K x n. 

What is the dimension of 𝑌? The dimension of 𝑌  is K and the approximate 𝑋¯ not the 

perfect reconstruction is possible. So dimension of 𝑋¯ will be n. So this is the reconstruction 

of 𝑋¯ from 𝑋¯ and we are only considering K number of eigen vectors corresponding to K 

number of largest eigen values. Now in this case what is the mean square error? The mean 

square error is defined like this 𝑒𝑚𝑠 = ∑𝑗=1
𝑛𝜆𝑗 − ∑𝑖=1

𝐾𝜆𝑖. 

 

So in the first case you can see what is 𝜆𝑗 that is the eigen values. So in the eigen value we 

are considering 𝑖 = 1: 𝑛. So in the eigen value you can see 𝑗 = 1: 𝑛 we are considering 

that means we are considering all the eigen values minus 𝜆𝑖 that is also the eigen value 

from i is equal to K that means we are considering only K number of largest eigen values.  

So that is equal to ∑𝑛
𝑗=𝐾+1 𝜆𝑗 . 

 

So that is nothing but the sum of the neglected eigen values. So sum of the neglected eigen 

values. This KL transformation is called optimum transformation because it minimizes the 

mean square error of reconstruction error between 𝑋¯ and 𝑋¯
̂. So that means I can say it is 

optimum transformation. Why it is called the optimum transformation? Because we have 

to minimize the MSE the mean square error of reconstruction error reconstruction error 

between 𝑋¯ and 𝑋¯
̂. So the KL transformation is called the optimum transformation. So if I 

consider all the eigen vectors for the construction of the transformation matrix then the 

reconstruction error will be 0. 

 

I can do perfect reconstruction. But if I consider only the K number of eigen vectors then 

it is not possible to perfectly reconstruct the original data that original data is 𝑋¯
̂. So this is 

about the reconstruction of the vector 𝑋¯
̂ from 𝑌 .  So now let us consider how actually you 

can apply this transformation for the image the  two dimensional image and how it can be 

used for data compression. So let us move to the next slide. 

 

So how to apply KL transformation that is the PCA the principal component analysis.  How 

to apply KL transformation in an image. So image is a 2D array of numbers. So let us 

consider one N x N image and suppose 𝑋0, 𝑋1, 𝑋2 suppose this is one is suppose 𝑋𝑖  like 

this. 

 

So we can consider every column as a vector. So you can see we have N number of vectors.  

So image is nothing but the 2D array of numbers. So image I can write it is a 2D array of 



 

 

quantized intensity values. So you can see what we are considering the data is represented 

as a vector. So you can see I have N number of vectors 𝑋0 𝑋1 𝑋2 like this I have N number 

of  vectors. So from N number of vectors I can determine the mean 𝜇𝑋¯ =
1

𝑁
∑
𝑖=0

𝑁−1𝑋¯𝑖 

and also I can determine the covariance matrix 𝐶𝑋¯ =
1

𝑁
∑𝑖=0

𝑁−1(𝑋¯𝑖 − 𝜇𝑋¯)(𝑋¯𝑖 − 𝜇𝑋¯)
𝑇. 

 

So we can determine the covariance matrix Cx and the mean mu x we can determine.  So 

dimension of mu x is n dimensional.  So you can see the dimension n and what is the 

dimension of 𝐶𝑋¯ the dimension is N x N dimension of 𝐶𝑋¯ is N x N. So from 𝐶𝑋¯ I can 

determine the eigenvalues and the corresponding eigenvectors. So I can determine 

eigenvalues and eigenvectors. So after determining the eigenvalues and eigenvectors that 

means we are determining 𝜆𝑖 that is the eigenvalues and corresponding to 𝑖 = 0,1, . . . , 𝑁 −

1. 

 

So N number of eigenvalues we can determine and corresponding eigenvectors so 𝑖 =

0,1, . . . , 𝑁 − 1 we can determine. So N number of eigenvalues and N number of 

eigenvectors. So after determining that this eigenvalues and eigenvectors we can determine 

the transformation  matrix. So let us move to the next slide how to determine the 

transformation matrix. 

 

The transformation matrix is the A transformation matrix transformation matrix is A. So 

that is determined from the eigenvectors. So first row is the eigenvector 𝑒0
𝑇 that corresponds 

to the largest eigenvalue. Next one is 𝑒1
𝑇 like this 𝑒𝑁−1

𝑇  transpose. So because we are 

considering this transpose because the vector is normally represented as column vector.  

And in this case what we are considering 𝜆0 ≥ 𝜆1 ≥ 𝜆2. . . ≥ 𝜆𝑁−1. 

 

So corresponding to 𝜆0 what is my eigenvector eigenvector is 𝑒0 corresponding to 𝜆1 my 

eigenvector is 𝑒1. So you can see I am constructing the transformation matrix with the help 

of the eigenvectors.  So the first row is the eigenvector corresponding to the largest 

eigenvalue. Second row is the eigenvector corresponding to the second largest eigenvalue. 

 

So like this I am constructing the transformation matrix. So after this suppose we are 

considering the truncated transformation matrix because in the truncated transformation 

matrix we have to consider K number of largest eigenvectors. So what is the truncated 

transformation matrix? So we are considering only the K number of eigenvectors.  So the 

truncated transformation matrix is 𝐴𝐾 𝑒0
𝑇 𝑒1

𝑇 like this only we are considering the K number 

so it is 𝑒𝐾−1
𝑇  transpose and this is the truncated transformation matrix. So first K number 

of eigenvectors we are considering corresponding to K number of largest eigenvalues. 

 

So now we have to apply the transformation, transformation of every column vector of the  



 

 

image. I have to apply the transformation for all the columns of the image. So for every 𝑥𝑖  

of the image we are getting 𝑦𝑖. So we are applying the transformation column wise.  So 

suppose I am getting the transformation 𝑦𝑖 and 𝐴𝐾 is the truncated transformation  matrix 

𝑥𝑖  is a particular column of the image we are considering like this. 

 

So for all the columns I have to apply this transformation this is the kl transformation.  So 

𝑖 = 0,1, . . . , 𝑁 − 1. So for every column that means for every 𝑥𝑖  I have to determine 𝑦𝑖 

that is the transform vector I have to determine. So 𝑦𝑖 what is the dimension of 𝑦𝑖?  

Dimension of 𝑌  is K x 1 and this is the modified transformation matrix the dimension is K 

x N and this is the input vector it is the dimension is N x 1 this is the mean vector so it is 

N x 1. So that means I will be getting n number of 𝑌 's I will be getting and finally I will be  

getting N number of 𝑦𝑖 I will be getting. So if the transformation of all the column vectors 

of the 2D image is done then we will  be getting N transform vector 𝑦𝑖 with the dimension 

K. 

 

So what will be the transform image? So move to the next slide. So transform image will 

be transform image what is the dimension of this K x N and what is the original size?  

Original size of the image is N x N. So you can see the dimension is reduced by this 

transformation and you can see we are considering only the K number of eigenvectors 

corresponding to the K number of largest eigenvalues and that is why and this is called the 

PCA the principal component analysis because we are considering the K number of largest 

eigenvectors corresponding to the largest eigenvalues. So how to reconstruct the original 

image? So we have to do the reconstruction. So for reconstruction this approximate image 

I am getting this is the approximate image I am getting so that is nothing but 𝐴𝐾
𝑇𝑌𝑖 + 𝜇𝑋. 

 

So these are reconstruction formula. So in this case 𝐴𝐾 is not a square matrix so for this 

what we can consider maybe pseudo inverse we have to consider for determining the 

inverse the pseudo inverse by singular value decomposition to calculate the inverse of A 

non-square matrix that we can consider. So we are determining the 𝑥𝑖 . So collection of all 

𝑥𝑖  that means the collection of all the 𝑥𝑖  will give the dimension will give the image of the 

dimension N x N that is the reconstructed or the approximate image. So in this 𝑥𝑖  what is 

the dimension of this 𝑥𝑖? The dimension of 𝑥𝑖  was N this is the dimension of 𝑥𝑖 . 

 

So this collection of all the 𝑥𝑖  will give the image the reconstructed image of the size N x 

N. So you can see how to reconstruct the original image. So now let us see how to get 𝑥𝑖
̂ 

that is the reconstructed value of 𝑥𝑖 . So for reconstruction what information I need? The 

information I need 𝐴𝐾 that is we need to save 𝐴𝐾 and also what information I need  𝑦𝑖. So 

𝑖 = 0,1, . . . , 𝑁 − 1. So these two information these two information one is 𝐴𝐾 another one 

is 𝑦𝑖 I need to reconstruct 𝑥𝑖  these two information I need. 



 

 

 

Now if I want to do the compression data compression the compression depends on the 

value of K or the compression of the data. The compression depends on the value of K. So 

if I consider suppose 𝐾 = 1 that means we are considering only one eigen vector for the 

transformation matrix. If I consider 𝐾 = 2 that means we are considering two eigen vectors 

for the transformation matrix. So if I increased the value of K that means the quality of the 

image will be improved with the increase of the number of eigen vectors. 

 

So that means the quality of the image will be improved with the increase of number of  

eigen vectors. So if I consider all the eigen vectors of the covariance matrix for the 

construction of the transformation matrix then the reconstruction would be perfect. So that 

is the case. So this is about the KL transformation and you can see how actually the 

principal component concept is coming from the KL transformation. So in this class I 

discussed the concept of the KL transformation and finally I have explained  the concept 

of the principal component analysis. 

 

So what are the advantages of the KL transformation? The first advantage is that it can 

perfectly de-correlates the input data. The original data is highly correlated and after the 

transformation the transformed data will be uncorrelated and energy compaction is very 

high in case of the KL transformation. So what are the disadvantages of the KL 

transformation? In the KL transformation the transformation kernel is dependent on the 

statistics of the  input data. So from the input data we have to determine the mean vector, 

we have to determine the covariance matrix, from the covariance matrix I have to determine 

the eigen values and the eigen vectors and from this I can determine the transformation 

matrix.  For non-stationary data or for the non-stationary signal it is very difficult to 

compute the  transformation matrix for each and every instance. 

 

So that is why the computational complexity is more for the non-stationary data. So this 

KL transformation cannot be applied in the real time. So if I want to go for image 

compression or the video compression with the help of the KL transformation it is not 

possible because of this case. The case is if the data is non-stationary we have to determine 

the transformation matrix for different, different instance because the transformation kernel 

depends on the statistics of the input data. So that is why the real time implementation is 

not possible in the KL transformation. So that is the main disadvantage of the KL 

transformation. So let me stop here today. Thank you. 


