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Welcome to NPTEL MOOCs course on machine learning and deep learning fundamentals 

and applications. In my first class, I discussed the fundamental concept of pattern 

classification. One important step of a typical pattern classification system is feature 

selection. So, I have to select the most discriminative features. And if I want to improve 

the performance of a classifier, I have to consider more number of features.  But there is a 

problem. 

 

Suppose I have limited number of training samples, then what will happen if I increase the 

dimension of the feature vector that means I am considering more number of features, then 

the performance or the accuracy of the classifier may not improve. And this is called the 

curse of dimensionality. And the problem is because of the limited number of training 

samples. 

 And another problem is if I increase the dimension of the feature vector, computational 

complexity  increases. 

 

So, if I consider more and more features, then the computational complexity increases. So, 

to consider this issue, one important point is I have to reduce the dimension of  the feature 

vector. So, I will be discussing two popular approaches. One is PCA the principal 

component analysis and another one is MDA the multiple discriminate  analysis. In the 

PCA, we have to project the high dimensional data into a low dimensional space. 

 

So, suppose I have a feature vector the D dimensional feature vector and that can be  

projected into a low dimensional space. And after the projection data will be uncorrelated 

that is the transform data will be uncorrelated. So, I have to find the best projection 

direction and that is the main objective of the PCA principal component analysis. In case 

of the MDA, the objective or the goal is to find a set of vectors which maximizes  between 

class scatter and minimizes within class scatter.  



 

 

Today I am going to discuss the problem of dimensionality and the next is the concept of 

PCA to reduce the dimensionality of the feature vector. 

 

So, let us start this class problem of dimensionality. So, suppose I am considering a D 

dimensional feature vector. So, 𝑥1, 𝑥2 these are the components of the feature vector. So, 

these are the features and you can see each and every feature convey some information  

characteristics of the pattern and each feature has different discriminatory power. So, now 

we have to consider the problem of considering more number of features that means we 

are considering high dimensional feature vector. 

 

So, what is the problem? So, one problem I told you that is the curse of dimensionality that 

suppose I have limited  number of training samples and if I increase the dimension of the 

feature vector, the performance of the classifier may not improve and that is the curse of 

dimensionality. Now in my discussion of the minimum error rate classification, I have 

shown the concept of the probability of error. So, let us discuss about the probability of 

error. So, suppose I am considering two classes, the classes 𝜔1 and 𝜔2 and corresponding 

to this I am showing the probability density functions. So, what is the probability density 

function? This is the probability density function corresponding to a class the class is 𝜔1 

and suppose corresponding to this class the mean is 𝜇1 and corresponding to the  second 

class I have this distribution that is the class conditional density I am plotting. 

 

So, corresponding to this and this is for the class 𝜔2 and suppose this is mean 𝜇2 and what 

I am plotting here, I am plotting this probability density function 𝑥|𝜔 versus x. So, that is 

nothing but the class conditional density versus x.  So, we are considering two classes and 

we are assuming that this 𝑃(𝜔1) = 𝑃(𝜔2) that is the a priori probabilities are same. So, a 

priori probability for the class 𝜔1 is the probability of 𝜔1 and another probability the 

probability of 𝜔2 that is for the class 𝜔2. So, they are equal and corresponding to this how 

to take a classification decision for taking a classification decision suppose here actually if 

I consider this region and this green colored region that region is nothing but the area 

corresponding to the probability of error. 

 

So, this is the area corresponding to the probability of error. So, for taking a classification 

decision what we can consider suppose we are considering a threshold here threshold is T 

and in this case what another condition I am considering that the variances of two classes 

are same. So, another condition here I am considering that 𝜎1
2 = 𝜎2

2. So, variances of two 

classes are same that means these two distribution have same size and same shape and in 

this case the means are different that the two these two means are different 𝜇1 ≠ 𝜇2. So, 

here you can see that area corresponding to the green colored that is the area corresponding 

to the error and how to take a classification decision. 



 

 

 

So, we have considered a threshold if  𝑃(𝑥|𝑤) > 𝑇 then we have to consider the class 𝜔2 

and if this density 𝑃(𝑥|𝑤) < 𝑇 then I have to consider the class 𝜔1. So, based on this 

threshold I can take a classification decision, but while taking this decision I am 

encountering some errors. So, here you can see this errors this error already I have shown 

that is the green colored region that is the area corresponding to the error.  So, based on 

this threshold I can take a classification decision if this density is greater than the  threshold 

I have to consider a particular class. And if it is less than that particular threshold then I 

have to consider the another class. 

 

Now, how to reduce this error?  So, one possibility is that if I increase the separation 

between these two means then I can reduce the probability of error I can reduce the error.  

So, how to do this I can show it pictorially.  So, let us draw the same thing here. So, what 

I need to do I have to increase the separation between the means of the two classes. So, this 

is one distribution corresponding to the class 𝜔1 and this is the mean the mean is 𝜇1. 

 

So, let us consider the second class second class is this corresponding to the class 𝜔2 and 

suppose the mean 𝜇2. So, here you can see I am increasing the separation between these 

two means and because of this you can see here this area that this green color area is 

reduced that means the error is reduced. So, that means I can say that discriminatory power 

of the features increase if the means are widely apart.  

So, this is the important sentence I can repeat this. So, that is the discriminatory power of 

the feature increases if the means are widely apart. 

 

Now to improve the performance of a classifier we may consider more and more features 

if the classifier accuracy is not good we may increase the dimension of the feature vector. 

But if I increase the dimension of the feature vector the problem already I told you the 

major problem is the increase in the computational complexity. So, that point I am going 

to discuss because the computational complexity depends on the dimension of the feature 

vector. So, let us move to the next slide. So, in my earlier class I have derived the expression 

for the discriminate function the discriminate function is 𝑔𝑖(𝑥¯) = −
1

2
(𝑥¯ − 𝜇¯𝑖) −

𝑑

2
𝑙𝑛(2𝜋) −

1

2
𝑙𝑛(|𝛴𝑖|) + 𝑙𝑛(𝑃(𝜔𝑖)). 

So, this is the expression for the discriminate function. So, based on the discriminate 

function I can take a classification decision. Now I have to determine the amount of 

computation in calculating the value of the discriminate function 𝑔𝑖(𝑥¯). So, in this 

expression here you can see this ln probability of omega i. 

 

So, this actually it depends on it depends on n, n means the number of samples. So, it 



 

 

depends on number of samples. So, that I am not considering and if I consider this term 

this is class independent.  

So, that means it has no discriminatory power. So, I am not considering that one. 

 

So, now there are two major computations one is the mean another one is the computation  

of the covariance matrix. So, here n the small n represents the number of samples. Now 

how to compute the mean. So, for computation of the mean you can see you can determine 

the mean. So, this is the mean vector is nothing but 𝜇¯𝑖
=

1

𝑛
∑𝑘=1

𝑛𝑋¯𝑘. 

 

So, that is the Feature vector of dimension d, 𝑋¯𝑘 is a Feature vectorof dimension d. So, in 

this case in computation of the mean how many multiplications or how many additions or 

how many divisions I have to determine. So, total number of summations you can see.  So, 

n number of summations followed by one division and if I consider this division it takes 

constant time. So, in the calculation of the mean what is the computation. 

 

So, n number of summations followed by one division and this division takes constant time 

and we are considering the Feature vector of dimension d. So, that means while computing 

this mean total number of summations will be 𝑛𝑥𝑑.  So, that means for this the total number 

of summations will be 𝑛𝑥𝑑. So, this is the amount of computation for calculating the mean.  

Next I will consider the covariance matrix. 

 

So, this is the expression for the covariance matrix 𝛴𝑖 =
1

𝑛
∑𝑘=1

𝑛(𝑋¯𝑘 − 𝜇¯𝑖)(𝑋¯𝑘 − 𝜇¯𝑖)
𝑇.  

So, here you can see this is here you can see this is nothing but the a vector of dimension 

𝑑𝑥1 and this is a vector of dimension 1𝑥𝑑 because we are considering transpose. So, 

ultimately I am getting a matrix the matrix is 𝑑𝑥𝑑 matrix. So, for calculating or for the 

computation of the covariance matrix. So, approximately we need nd square number of 

computations. 

 

So, that means I can say the order of the computation is 𝑛𝑑2 and suppose if I consider c 

number of classes.  So, for c number of classes c classes the order of the computations the 

order of the computation is 𝑐𝑛𝑑2.  So, we are only considering the computation required 

for computing the covariance matrix because it is 𝑛𝑑2 the mean is only 𝑛𝑑 that is not so 

significant, but we  have to consider the computation required for computing the value of 

the covariance matrix that is in the order of 𝑛𝑑2.  

So, for c number of classes it is 𝑐𝑛𝑑2.  So, in this case you can see here c and n this is 

linear c is the number of classes and n is the number of samples. 

 



 

 

So, it is linear and this 𝑑2 and this 𝑑2 that is the quadratic term. So, that is the most 

important computation. So, that is the quadratic term we have to consider 𝑑2. So, d is the 

dimension of the feature vector.  So, if I increase the dimension of the feature vector by a 

factor of 2 the computational complexity increases by a factor of 4. 

 

And also if I increase the dimension of the feature vector by a factor of 3, the computational  

complexity increases by a factor of 9. So, you can see the effect of the dimension of the 

feature vectors. So, if I increase the dimension of the feature vector the computational 

complexity increases. So, here you can see that the major computation is the computation 

of the covariance matrix. So, that means, if I incorporate more and more features, it may 

increases the performance  of the classifier, however, increases the complexity. 

 

So, that is the summary of this discussion. So, if I consider more and more features, it 

increases the computational complexity,  but the performance may improve. So, how to 

reduce the computational complexity that means how to reduce the dimension of  the 

feature vector.  

So, one thing we can consider the projection of high dimensional data to a low dimensional 

space. 

 

So, let us move to the next slide. So, how to reduce the dimension of the feature vector, we 

can consider the projection of high dimensional data to a low dimensional space. So, we 

may consider that point, we may consider this technique that is we can project the high 

dimensional data to a low dimensional space. And after the projection, the feature will be 

orthogonal that means, the feature should be uncorrelated and they should not affect each 

other. So, we are projecting high dimensional feature vector into a low dimensional space.  

And because of this projection, the transform data will be uncorrelated. 

 

So, that means the feature should be orthogonal and feature should be uncorrelated, they 

should not affect each other. So, I can say that feature should be orthogonal feature should 

be orthogonal. Now, how to reduce the dimension of the feature vector. So, let us discuss 

this concept reduction of dimensionality. So, my original dimension is d, d dimensional 

feature vector and I want to reduce it to 𝑑′. 

 

So, in this case, 𝑑′ ≤ 𝑑. So, already I told you, I will be considering two popular 

techniques, one is the PCA another one is the MDA. So, the first technique is the principal 

component analysis. So, that is PCA. So, the fundamental concept of the PCA is the 

projection of high dimensional feature vector to a low dimensional space. 

 

The second point is MDA that is the multiple discriminate analysis. So, in case of the 

multiple discriminate analysis, what we can consider? We can consider these two cases, 



 

 

we can increase the separation between the means of the classes  that already I have 

discussed.  So, how to increase the separation between the means. So, if I increase the 

separation between the means, the classification error will be reduced. So, that means, I 

can say increase the separation between means of the classes. 

 

So, we can consider this one, the second one is we can consider the compact clusters. So 

that means, what is the compact clusters? That means, we can reduce the variance of the 

samples.  So, we can reduce the variance of the samples. So, that means, I can consider one 

term and that is called within class scatter. 

 

This is nothing but within class scatter. That means, I can reduce the variance of the 

samples belonging to a particular class and that is nothing but I can say it is intra class 

scatter. So, within class scatter or the intra class scatter and this increase the separation 

between the means of the classes that is nothing but the within class scatter and increase 

the  separation between the means of the classes. That means, it is the inter class separation 

that is nothing but it is between class scatter. I can say it is the inter class scatter. So, I can 

increase the separation between the means of the classes and that is nothing but between 

class scatter or I can say inter class scatter and also I can consider the compact  clusters 

that is nothing but we can reduce the variance of the samples of the classes and that is 

nothing but within class scatter or I can say it is the intra class scatter. 

 

So, this concept the increase the separation between the means of the classes that already I 

have discussed in my previous slide. The second point is how to consider the compact 

clusters. That means how to reduce the variance of the samples. So, if I reduce the variance 

of the samples then also we can reduce the classification error that I can show you 

pictorially. Suppose I am showing the probability density function for 2 classes. 

 

So, this is the probability density function. So, again we are considering 2 classes. This is 

1 class and suppose this is the mean 𝜇1 and second class is this. So, it has a mean suppose 

𝜇2.  

 Now, I want to reduce the variance of the samples that means I am considering the compact  

clusters. 

 

So, now I am not changing the means. So, mean will be same I am not changing the means 

of the clusters. So, this will be 𝜇1 and 𝜇2 it will remain same, but I am reducing the variance 

of the  samples. So, you can see I am reducing the variance and this is product class 𝜔1, 

this is  product class 𝜔2.  So, this is 𝜔1 and this is 𝜔2. So, we had this area corresponding 

to the classification error, but in the second case you can see this error is significantly 

reduced because we are reducing the variance of the samples that will be taken care by 



 

 

within class scatter. 

 

So, this is the concept. So, you can see by increasing the separation between the means we 

can reduce the classification error and by considering the compact clusters we can reduce 

the classification error. So, move to the next slide and the principal component analysis. 

So, we are considering n number of feature vectors n number of d dimensional feature 

vector  feature vectors of dimension d. So, that means we are considering the feature vector 

𝑥¯1, 𝑥¯2, . . . , 𝑥¯𝑛. So, we are considering n number of feature vector of dimension d and 

from this feature  vector we can determine the mean of this feature vector. 

 

So, what is the mean of the feature vector?  The mean of the feature vector is nothing but 

𝑚¯ =
1

𝑛
∑𝑘=1

𝑛𝑥¯𝑘. So, you can see the n vectors are represented by mean and that is 

nothing but single representation and that is not a good representation because we are not 

considering variance. The mean we are considering that is actually 0 variability and this is 

nothing but 0 dimensional representation 0 dimensional representation. Because n vectors 

are represented by mean and it is a single representation and we are not considering 

variance that means 0 variability we are considering. I am considering another 

representation in that case I will be considering all the n vectors together and we want to 

find the best representation of all these n vectors. 

 

The mean is not a best representation because it is a 0 dimensional representation and we  

are not considering the variance. Now how to represent n vectors that means I will be 

considering all the n vectors together and we are also considering the variability that means 

the variability will be preserved and that is nothing but the representation of d dimensional 

feature vector into 1 dimensional line. So, let us consider that a concept. So, how to 

represent d dimensional feature vector into 1 dimensional line and this line is represented 

by the unit vector the unit vector is e passing through the mean. 

 

So, the pictorially how can I show you. So suppose these are some samples. So, n number 

of samples are available. So, n points n number of points we are considering and I want to 

find the best representation. So that means the representation of the d dimensional feature 

vector into 1 dimensional line. 

 

So that means I am considering a line. So line is suppose is a line and this line is represented 

by the unit vector the unit  vector is e and it is passing through the mean and it is passing 

through the mean. So suppose this is the mean. So the mean is m. So that means what we 

have to consider the mapping of all the points into this line. 

 

So how to do the mapping. So just I have to do the mapping I have to do the mapping of 

all the points into this  line. So mapping of all the points into this line and this line is 



 

 

represented by the unit vector  the unit vector is e and this line is passing through the mean.  

So what is the equation of this line the equation of this line is 𝑥¯ = 𝑚¯ + 𝑎𝑒¯. So this is the 

equation of the line. So for different values of a we are moving along the line and what is 

a, a is the position of different points on the line. 

 

So suppose considering this point suppose that this point is 𝑥¯𝑘 this point is 𝑥¯𝑘 that  is 

mapped onto this line the line is represented by e. So the point 𝑥¯𝑘 can be represented like 

this 𝑥¯𝑘 ≈ 𝑚¯ + 𝑎𝑘𝑒¯.  So what is 𝑎𝑘 here 𝑎𝑘 is here this is 𝑎𝑘 corresponding to this it is 

𝑎𝑘. So the point 𝑥¯𝑘 is mapped onto this line. So a k is the position of the point on the line 

the line is represented by the unit vector e and here you can see 𝑥¯𝑘 is of dimension d and 

it is represented as a line. 

 

So there will be some error so that is why I am considering the approximate representation.  

I am repeating this the 𝑥¯𝑘 is of dimension d and it is represented as a line. So we are 

encountering some errors. So that is why 𝑥¯𝑘 is approximately represented as m, m is the 

mean 𝑎𝑘 is the position of 𝑥¯𝑘 on the line the line is represented by the unit vector e. 

 

So 𝑥¯𝑘 = 𝑚¯ + 𝑎𝑘𝑒¯.  So it is the approximate representation. So based on this we are 

considering one error function. So what is the error? Error is nothing but the difference 

between the actual value and the approximated value. So what is the approximated value?   

Approximated value is 𝑚¯ + 𝑎𝑘𝑒¯ and what is the actual value? Actual value is 𝑥¯𝑘. So we 

are considering the error function error function the error function is 𝐽(𝑎1, 𝑎2, . . . , 𝑎𝑛, 𝑒) 

these  are the positions of different points and is nothing but the unit vector showing the 

direction of the line and 𝑘 = 1: 𝑛, n number of samples we are considering. 

 

This is the approximate representation 𝑚¯ + 𝑎𝑘𝑒¯ approximate representation of the point  

and what is the actual value? Actual value is 𝑥¯𝑘 and we are considering the sum squared 

error. So we are considering the sum squared error and you can see for different points I 

have different 𝑎𝑘 's. So just I can write for different points I have different 𝑎𝑘 's.  So we 

have defined the error function. 

 

Now I have to minimize this sum squared error in terms of a. So move to the next slide. So 

we have to minimize the sum squared error in terms of a that means I want to find the value 

of 𝑎𝑘. So for the time being I am considering e is fixed. So considering that e is fixed 

suppose. 

 

So for the time being I am considering the direction is fixed. So we can find an optimal set 



 

 

of coefficients 𝑎𝑘 by minimizing the sum squared error. So this J is nothing but 𝑎1, 𝑎2, 𝑎𝑛 

and this is the unit vector. So we have this expression ∑𝑛
𝑘=1 ||𝑎𝑘𝑒¯ − (𝑥¯𝑘 −𝑚¯)||

2. So 

this expression I can write like this ∑𝑛
𝑘=1 ||𝑎𝑘𝑒¯ − (𝑥¯𝑘 −𝑚¯)||

2 so we can expand like 

this. So in this case e is the unit vector so this will be 1 actually and if I see this term it is 

independent of a. 

 

So that means we need not consider that term. So now because I have to minimize the sum 

squared error so I have to differentiate J with respect to 𝑎𝑘 and it should be equal to 0 and 

that is the partial derivative with respect to 𝑎𝑘 and it is equating to 0. So if I consider this 

expression then it is equating to 0 so I will be getting from this 2∑𝑎𝑘 − 2∑𝑒¯
𝑇(𝑥¯𝑘 −

𝑚¯) = 0.  So I am taking the partial derivative and it is equating to 0. 

 

The partial derivative of J with respect to 𝑎𝑘 and it is equating to 0. So from this expression 

you can see I can determine 𝑎𝑘, 𝑎𝑘 = 𝑒¯
𝑇(𝑥¯𝑘 −𝑚¯).  So I am getting the value of 𝑎𝑘. So 

what is the interpretation of this equation? So what is the interpretation of this equation? 

This is an important equation. The interpretation is this. It is the orthogonal projection of 

𝑥¯𝑘 onto a line passing through the mean that I can say it is orthogonal projection of 𝑥¯𝑘 

onto a line passing through the mean and this is  the best representation in 1D. 

 

So I can write this is nothing but the orthogonal projection  of 𝑥¯𝑘 onto a line passing 

through the mean. The mean is m, the mean of all the samples. So what is the best 

representation in 1D? So that means we have to project d-dimensional feature vector along 

a line passing through the mean and this is the orthogonal projection. So I am repeating 

this. The best 1D representation is I have to project d-dimensional feature vector along a 

line passing  through the mean. 

 

Now after this we have to determine which is the best projection direction. So which is the 

best e. So next what we have to see which is the best e. That means which is the best 

projection direction that we want to determine. 

 

So move to the next slide.  So we have expressed 𝐽(𝑒¯) like this. This is the criterion 

function 𝐽(𝑒¯) = ∑𝑎𝑘
2 − 2∑𝑎𝑘𝑒¯

𝑇(𝑥¯𝑘 −𝑚¯) + ∑||𝑥¯𝑘 −𝑚¯||
2. So we have this 

expression. So now we have to find the best projection direction. That means we have to 

find the best e and this I can represent like this ∑𝑒¯
𝑇(𝑥¯𝑘 −𝑚¯) because already we have 

determined the value of 𝑎𝑘.  So from that I am just putting this value, putting the value of 

𝑎𝑘, −∑[𝑒¯
𝑇(𝑥¯𝑘 −𝑚¯)(𝑥¯𝑘 −𝑚¯)

𝑇𝑒¯] + ∑||𝑥¯𝑘 −𝑚¯||
2. 

 

So which can be written like this −𝑒¯
𝑇[∑(𝑥¯𝑘 −𝑚¯)(𝑥¯𝑘 −𝑚¯)

𝑇]𝑒¯ + ∑||𝑥¯𝑘 −𝑚¯||
2 



 

 

because e is independent of k.  So that is why I am taking it out −𝑒¯
𝑇[∑(𝑥¯𝑘 −𝑚¯)(𝑥¯𝑘 −

𝑚¯)
𝑇]𝑒¯ + ∑||𝑥¯𝑘 −𝑚¯||

2. So I can get this one.  So if you see this expression so this part 

I can consider as the scatter matrix that actually corresponds to the spread of data. 

 

The scatter matrix is nothing but the spread of data. And if I consider the scale version of 

this that is nothing but the covariance matrix. What is the covariance matrix? The 

covariance matrix is nothing but the scale version of the scatter matrix. The covariance 

matrix is 𝛴 =
1

𝑛
∑(𝑥¯𝑘 −𝑚¯)(𝑥¯𝑘 −𝑚¯)

𝑇
. So that is the covariance matrix.  So this 𝐽(𝑒¯) I 

can represent like this 𝐽(𝑒¯) = −𝑒¯
𝑇𝑆𝑒¯ + ∑||𝑥¯𝑘 −𝑚¯||

2. 

 

So the second term I need not consider because it is independent of e. So that means this 

term it is independent of e. So I am not considering that part. So it is independent of e. So 

this term also we did not consider because it is independent of e. 

 

So we have not considered that term. So we have to minimize this error. So we have to 

minimize the error. So we have to minimize this. That means if I want to minimize this 

𝐽(𝑒¯) I have to maximize this term. So I have to maximize this because it is a negative term. 

 

So if I want to minimize 𝐽(𝑒¯) I have to maximize the term 𝑒¯
𝑇𝑆𝑒¯. So maximize 𝑒¯

𝑇𝑆𝑒¯. 

So here S is the scatter matrix.  How to find the maximum value? So for this we have to 

consider the solution and it can be considered by Lagrangian. 

 

So move to the next slide. So we are considering the solution by Lagrangian. So 𝑢 =

𝑒¯
𝑇𝑆𝑒¯ − 𝜆(𝑒¯

𝑇𝑒¯ − 1) and subject to the condition ||𝑒¯|| = 1. So e is the unit vector. So it 

will be equal to 1. To find the maximum value we have to differentiate u with respect to e. 

 

So it is 2𝑆𝑒¯ − 2𝜆𝑒¯ = 0. So here lambda is nothing but the Lagrangian multiplier.  So it 

will be equal to 0. So from this what we can obtain 𝑆𝑒¯ = 𝜆𝑒¯. 

 

So this is nothing but the Eigen value expression. So this is the Eigen value expression. So 

in this case e is nothing but the vector earlier we considered as the unit vector and it shows 

the direction of the line passing through the mean and this e is nothing but the Eigen vector 

of the scatter matrix. So Eigen vector of S, S is the scatter matrix and lambda is the 

corresponding Eigen value. So since we have to maximize we have to maximize 𝑒¯
𝑇𝑆𝑒¯ 

that means we have to maximize 𝑒¯
𝑇𝜆𝑒¯. So that means we have to take the maximum value 

of lambda. So if I want to maximize 𝑒¯
𝑇𝑆𝑒¯ that means it is equivalent to we have to 

maximize  𝑒¯
𝑇𝜆𝑒¯ that means we have to take the maximum value of lambda. 

 



 

 

So which Eigen vectors we need to consider. The Eigen vectors corresponding to maximum 

Eigen values. So we can determine the Eigen vectors e corresponding to the maximum 

Eigen values and after this I have to find 𝑎𝑘 and these are called the principal components 

and if I only consider only one Eigen vector then the dimension is reduced to 1 okay.  So 

that means I can say if only one Eigen vector is considered then the dimension is reduced 

to 1. So from this expression you can see here already I have explained so I have to select 

the Eigen  vectors corresponding to the largest Eigen values. So move to the next slide. 

 

Suppose I want to reduce the dimension of the Feature vector to d’ from d so 𝑑′ < 𝑑.  So 

that means I have to consider d’ number of Eigen vectors. The original dimension is d and 

I am reducing it to d’. So d’ is less than d so that means I have to consider d’ number of 

Eigen vectors.  So if I consider this dimension is reduced to d’ then this 𝑥¯ the point 𝑥¯ can 

be represented like this 𝑚¯ + ∑𝑖=1
𝑑′𝑎𝑖𝑒¯𝑖 because I am reducing the dimension to d’ so 

𝑎𝑖𝑒¯𝑖. So the point 𝑥¯ can be represented like this and this criterion function the criterion 

function 𝐽𝑑′ can be represented like this corresponding to this d’ dimension. 

 

So 𝐽𝑑′ = ∑𝑘=1
𝑛||(𝑚¯ + ∑𝑖=1

𝑑′𝑎𝑘𝑖𝑒¯𝑖) − 𝑥¯𝑘||
2 so this is the criterion function and you 

know the scatter matrix is a real and a symmetric matrix the scatter matrix is real and the 

symmetric.  In this case what I have shown that dimension is reduced to d’ and the point 

𝑥¯ can be  represented like this and corresponding to this I am considering the criterion 

function that is nothing but 𝐽𝑑′. So we can obtain like this. So this criterion function is 

minimized when the vectors 𝑒¯1, 𝑒¯2, 𝑒¯𝑑′ are the Eigen vectors of the scatter matrix having 

largest Eigen values and the coefficients 𝑎𝑖 are the  principal components. So I am 

repeating this because I am defining the criterion function corresponding to the dimension 

d’ and the point 𝑥¯ can be represented like this 𝑥¯ = 𝑚¯ + ∑𝑖=1
𝑑′𝑎𝑖𝑒¯𝑖. 

 

So this is the expression for the 𝑥¯ the point 𝑥¯ and corresponding to this criterion function 

is 𝐽𝑑′. So we have this expression and this criterion function is minimized when the vectors 

𝑒¯1, 𝑒¯2, 𝑒¯𝑑′  these are the Eigen vectors of the scatter matrix corresponding to the largest  

Eigen values. So we have to consider the largest Eigen values and the corresponding Eigen 

vectors and the coefficients the coefficients are coefficients 𝑎𝑖 are nothing but the principal 

components. So these are the principal components. So you can see I am reducing the 

dimension of the Feature vector from d to d’. So that means we are considering d’ number 

of Eigen vectors and we are considering the orthogonal projection the corresponding 

principal component give d’ dimensional vectors. 

 

So here you can see we are considering the d dimensional Feature vector and it is reduced  

to d’ dimensional Feature vector. So that means we are considering d’ number of Eigen 



 

 

vectors and we are considering the orthogonal projection. So the corresponding principal 

components give d’ dimensional vectors. So I am repeating this the original dimension is 

d and it is reduced to d’ and corresponding to this the point 𝑥¯ is represented like this the 

point 𝑥¯ is represented like this and corresponding to this we are considering the criterion 

function the criterion function is 𝐽𝑑′ and this  riterion function can be minimized when the 

vectors the Eigen vectors 𝑒¯1, 𝑒¯2, 𝑒¯𝑑′  are the Eigen vectors corresponding to the largest 

Eigen values. So these are the Eigen vectors of the scatter matrix and we have to consider 

the Eigen vectors  of the scatter matrix having largest Eigen values and the coefficients 𝑎𝑖 

are called  the principal components. 

 

So here you can see how we can determine the base projection direction the base projection  

direction is nothing but the direction of the Eigen vectors corresponding to the largest  

Eigen values and also how we can determine the coefficients that is the principal 

component  𝑎𝑖 's. In this class I discussed the concept of problem of dimensionality and also 

I have introduced the concept of PCA the principal component analysis. So if I increase 

the dimension of the feature vector the computational complexity increases. I have also 

explained the concept how to reduce the probability of error. So if I increase the separation 

between the means of the classes the probability of error the error reduces and also if I 

reduce the variance of the samples of the classes then the error can be reduced. 

 

One is how to increase the between class scatter and how to reduce the within class scatter.  

So these two concepts I have explained that is by increasing the separation between the  

means and by considering the compact clusters I can reduce the classification error. After 

this I discussed the concept of the PCA the principal component analysis and I have shown 

how to do the orthogonal projections and how to determine the best projection direction.  

So the best projection direction is given by the Eigen vectors corresponding to the largest 

Eigen values. 

 

So this is the fundamental concept of the PCA. So in my next class also I will be explaining 

the concept of the PCA.  So let me stop here today. Thank you. 


