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Welcome to NPTEL MOOCs course on machine learning and deep learning fundamentals 

and applications.  In my last class, I discussed the concept of linear support vector machine, 

we considered that the training samples are linearly separable. For designing of the support 

vector machine,  we considered a parameter the parameter is margin width, the width of 

the margin. And  based on this parameter, I have designed the support vector machine. So, 

I have to solve one optimization problem and while solving this optimization problem, I 

define  the support vectors. Support vectors are most informative points of the training data 

set. 

 

And based on this support vector, I can determine the weight vector. So, after getting the 

weight vector I can determine the discriminate function. And with the help of the 

discriminate function,  I can take a classification decision. In the expression of the 

discriminate function,  

you can see I have considered the dot product between the support vectors and the test 

sample. 

 

So, it is mainly the dot product between the support vectors and the test samples. And based 

on this we can determine the discriminate function. And after determining the discriminate 

function like I have explained previously, so we can take a classification decision.  Today 

I am going to discuss about the non-linear support vector machines.  

That means the training  samples are not linearly separable. 

 

So, for this I have to design the support vector machine.  So, let us discuss about the concept 

of the support vector machine and how it can be extended for non-linear training samples. 



 

 

That is the training samples are not linearly separable and how to design the support vector 

machine. So, let us start this class.   

So, in my last class I have shown the concept of the large margin linear classifier. 

 

Large margin linear classifier. That is actually the linear support vector machine. So, in my 

last class I discussed about this. So, we have determined the width of the margin like this 

the width of the margin that is 𝑚 =
2

||𝑤¯||
. So, that already I have explained. 

 

And based on this margin width I have defined the optimization problem. The problem is 

minimize 
1

2
||𝑤¯||

2 subject to the condition 𝑦𝑖(𝑤
𝑇𝑥𝑖 + 𝑏) ≥ 1 . So, we have defined this 

condition and based on this we have formulated the Lagrangian function. So, the function 

is: minimize the Lagrangian function 𝐿𝑝(𝑤¯, 𝑏, 𝛼𝑖) that is equal to 
1

2
||𝑤¯||

2 −

∑𝑖=1
𝑛𝛼𝑖(𝑦𝑖(𝑤

𝑇𝑥𝑖 + 𝑏) − 1) subject to the condition 𝛼𝑖 ≥ 0.  

So, this 𝛼𝑖 is nothing but the Lagrange's multiplier. 

 

After this what we have considered for solution of this we have determined that is we are  

differentiating 𝐿𝑝 that is the Lagrange's function with respect to the weight vector  and 

equating it to 0 and corresponding to this I have obtained the weight vector like  this weight 

vector is nothing but ∑𝑖=1
𝑛𝛼𝑖𝑦𝑖𝑥¯𝑖. So, we obtain W like this and another condition also 

we obtain by differentiating  L p with respect to the bias b and equating it to 0. So, we 

obtain another condition the  condition is ∑𝑖=1
𝑛𝛼𝑖𝑦𝑖 = 0. So, these  two conditions I am 

getting conditions means w I can determine and another condition is ∑𝑖=1
𝑛𝛼𝑖𝑦𝑖 = 0.  And 

for this Lagrangian optimization problem we considered this Lagrangian dual problem. 

 

So, from this actually we have obtained the criteria maximize ∑𝑖=1
𝑛𝛼𝑖 −

1

2
∑𝑖=1

𝑛∑𝑗=1
𝑛𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑥¯𝑖

𝑇𝑥¯𝑗 and it is a dot product between 𝑥𝑖  and 𝑥𝑗. So, that means 

𝑥𝑖  transpose and 𝑥𝑗.  So, these are dot product between 𝑥𝑖  and 𝑥𝑗. So, subject to the 

condition 𝛼𝑖 ≥ 0 and another condition is ∑𝑖=1
𝑛𝛼𝑖𝑦𝑖 = 0, it is the Lagrangian dual 

problem. So, this actually we obtain like  this. 

 

So, if I put the values of this w here and considering this condition ∑𝑖=1
𝑛𝛼𝑖𝑦𝑖 = 0 then I 

will be getting this form that is the Lagrangian dual problem  I am getting. So, just putting 

the value of w and this condition in this equation.  So, I will be getting this expression. So, 

in this case I have to maximize this quantity.  So, I have to maximize this one 𝛼𝑖. 

 

So, 𝛼𝑖 is nothing but the Lagrange's multiplier  and already I told you for the support vectors 



 

 

𝛼𝑖 is not equal to 0. So, that means 𝛼𝑖 ≥ 0 that is for the support vectors and what is the 

advantage  of the dual problem because the dual form we are considering because this 

optimization  criterion can be expressed as linear products of pattern 𝑥𝑖 .  So, what is the 

importance of the dual form the importance is that this optimization criterion  can be 

expressed as inner products of the patterns 𝑥𝑖 . So, that is the importance of  the dual form, 

after determining this we obtain the discriminate function 𝑔(𝑥). So, moving  to the next 

slide because already we have determined the weight vector and from this  we can 

determine the discriminate function that is the linear discriminate function 𝑤¯
𝑇𝑥¯ + 𝑏. 

 

So, ∑𝑖∈𝑆𝑉𝛼𝑖𝑥¯𝑖
𝑇𝑥¯ + 𝑏. So, we obtain the expression for the discriminate function 𝑔(𝑥) 

like this. So, here you can see what is  actually the meaning of this expression. So, you can 

see how actually we do the classification you can see the discriminate function is nothing 

but the dot product between the test point  x and the support vector 𝑥𝑖 . So, you can see this 

is nothing but the dot product between  the test point x and the support vector 𝑥𝑖  and already 

I told you the support vectors  are the most informative points of the training data set and 

corresponding to these support  vectors this Lagrangian multiplier is not equal to 0. 

 

That means for the support vectors the Lagrangian multiplier lie on the hyper planes. So, 

this  is the final expression for the 𝑔(𝑥). So, this classification, the classification relies on  

on a dot product between the test point, test point is x and  the support vector, the support 

vectors 𝑥𝑖 . So, also one important point is for solving this optimization problem  what 

actually we need to compute.  

We need to compute the dot products 𝑥𝑖  and 𝑥𝑗 between  all pairs of training points. 

 

So, that is also one important point. So, whenever I want  to solve the optimization problem 

I have to compute the dot product between 𝑥𝑖  and 𝑥𝑗  between all pairs of training points. 

So, for support vectors this 𝛼𝑖 ≠ 0 that is the Lagrangian multiplier is not equal to 0 and 

these support vectors lie  on the hyper plane and they are the most informative points in 

the data set.  And if I consider other patterns suppose if I consider for other patterns 𝛼𝑖 will  

be equal to 0 and if I moved around they do not affect the solution of the separating hyper 

planes. So, that means only we can see the support vectors because  

they are the most informative points in the data set. 

 

So, if any other points with 𝛼𝑖 is equal to  0 are moved around they do not affect the solution 

for the separating hyper plane. So,  that is the fundamental concept of the support vectors.  

So, let us consider now what will happen suppose if I consider this data is not linearly 

separable and suppose I have noisy data or maybe the outliers so whether this model can 

be modified  or what is the modification I need to do that point we need to consider. So, let 



 

 

us move to the next slide. So, now what we are considered suppose this data is not linearly  

separable. 

 

So, that point also I will be explaining later on for non-linearly separable data I  have to 

consider non-linear support vector machine or maybe something like if I consider  noisy 

data outliers etcetera. So, for this what modifications I need to  do. So, already I have 

defined the support vector machine now I have to consider this point the data is not linearly 

separable and maybe we can consider the noisy data or  the outliers. So, before going to 

that point that is a non-linearly separable data first I am considering the noisy data or the 

outliers after this I will be explaining the concept  of the support vector machine for the 

non-linearly separable training data.  So, for this case that is case is the noisy data and 

outliers what we are considering  we are considering slack variable,  

we are considering slack variables  that is 𝑥𝑖 . 

 

 So, slack variable 𝑥𝑖  is considered to allow misclassification of the difficult  or the noisy 

data points. So, in the figure you can see I can show the difficult points.  So, this is a 

difficult point one difficult point and similarly I can show another difficult  point and that 

is the noisy data or noisy sample points or maybe the outliers.  So, corresponding to these 

two points there will be misclassification. So, to consider  this misclassification we are 

considering one slack variable and that slack variable  is the 𝑥𝑖  that is we are considering 

to consider the difficult or the noisy data points because   

the misclassification take place because of these data points. 

 

So, I have in the figure  I have shown these two data points you can see number 1 I can 

show or number 2. So, these  data points are not correctly classified by earlier design 

support vector machine.  So, corresponding to this case my formulation will be, my 

formulation will be minimize 
1

2
||𝑤¯||

2 + 𝐶∑𝑖=1
𝑛𝜉𝑖  such that we are considering 

𝑦𝑖(𝑤¯
𝑇𝑥¯𝑖 + 𝑏) ≥ 1 − 𝜉𝑖 and 𝜉𝑖 ≥ 0. So, this parameter C can be considered as a way to 

control overfitting. So, I am writing here the parameter C can be viewed as a way to control 

overfitting. 

 

So, you can see after considering the slack variable 𝜉 we have  considered the optimization 

problem that is the formulation I have shown minimize 
1

2
||𝑤¯||

2 plus another term we are 

considering because of this noisy points. So, this term  we are considering in addition to 

the earlier term the 
1

2
||𝑤¯||

2 and that is  actually this 𝜉1 or 𝜉2 this is actually some offset 

we are considering. So, I can consider as offset. So, 𝜉1 or 𝜉2. So, in the formulation I have 

included that one  and based on this formulation we can also consider the Lagrangian dual 



 

 

problem. 

 

 So, move to the next slide. So, considering this the formulation will be, formulation is  

Lagrangian dual problem. So, maximize ∑𝑖=1
𝑛𝛼𝑖 −

1

2
∑𝑖=1

𝑛∑𝑗=1
𝑛𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑥¯𝑖

𝑇𝑥¯𝑗 . So, 

you can see it is a dot product between  𝑥𝑖  and 𝑥𝑗. So, this is the formulation that is the 

Lagrangian dual problem corresponding to this formulation considering the slack variables.  

And the condition is such that 0 ≤ 𝛼𝑖 ≤ 𝐶 and also another condition ∑𝑖=1
𝑛𝛼𝑖𝑦𝑖 = 0. 

 

So, that is the only modification we have to do if I consider the slack variable 𝑥𝑖  and this I 

have done only for the noisy data or the outliers. But for the non-linearly separable data we 

have to consider the non-linear support vector machine. So, let us discuss about the non-

linear support vector machine. So, this problem or this solution I am considering only for 

the noisy data or maybe the outliers. So, for non-linearly separable data I have to consider 

the non-linear support vector machine. 

 

So, move to the next slide.  So, now the concept of non-linear support vector machines. So, 

let us consider the figure number 1 that is the first figure, figure number 1. So, in this case 

what we are considering in figure number 1, dataset that are linearly separable with noise. 

So, in a figure number  1 we have considered that one. And in this case we can employ the 

support vector machine that we have explained earlier. 

 

But if I consider the figure number 2, you can see here in the figure number 2 these samples 

are not linearly separable. So, it is very difficult to find a decision boundary between the 

samples of the two classes and these samples are not linearly separable. So, that means 

figure number 2 I can consider non-linearly separable data that is the figure number 2. So, 

corresponding to this what is the solution for this? If you see the figure number 3 in figure 

number 3 what we are considering mapping of data to a high dimensional space. So, just I 

am doing the mapping of data to the high dimensional space. 

 

So, in the low dimensional space this data is not linearly  separable. But after the projection 

into the high dimensional space these samples will  be linearly separable. That means what 

we are doing this mapping of data to a high dimensional  space. So, from the low 

dimensional space I am mapping into the high dimensional space  and that is the 

fundamental concept of the non-linear support vector machine.  So, in my next slide I can 

show that concept. 

 

So, what is the non-linear support vector  machine in the feature space? So, in the figure 

you can see in this slide just I am doing  the mapping the mapping from the low dimensional 

space into the high dimensional space. So,  these are non-linear support vector machine 

SVM and we are considering  the feature space. So, the idea is you can see the original 



 

 

input space can be mapped  to some high dimensional feature space where the training 

samples is separable. So, in  the figure you can see this is the low dimensional space  and 

I am doing the mapping by considering some mapping functions. The mapping of the  low 

dimensional data into the high dimensional space. 

 

 So, it is the higher dimensional higher higher dimensional feature space. So, that means I 

can write the concept here.  The concept is the original, the original input space can be 

mapped to some higher dimensional  feature space where the training set is separable.  The 

original input space can be mapped to some high dimensional Feature space where the  

training set is separable. So, in the figure you can see I am showing the mapping function   

and with the help of this mapping function I am projecting the low dimensional data into  

higher dimensional Feature space. 

 

 So, this is the concept of the non-linear support vector  machine. So, whenever I do the 

projection into the higher dimensional Feature space the  samples will be linearly separable. 

So, you can see in the figure the original data is  not linearly separable but after the 

projection the projected data will be linearly separable  that is the fundamental concept of 

the non-linear support vector machine.  So, mathematically how to consider this case. 

 

So, let us move to the next slide. So, what  is the discriminate function now? So, the 

discriminate function by considering the mapping 𝑔(𝑥) = 𝑤¯
𝑇𝜙(𝑥¯) + 𝑏 that is equal to 

the ∑𝑖∈𝑆𝑉𝛼𝑖𝜙(𝑥¯𝑖)
𝑇𝜙(𝑥¯) + 𝑏. So, you can see the modification in the discriminate  

function. So, what modification you can observe here only this term we are considering the  

mapping. So, earlier it was a dot product between 𝑥𝑖  and 𝑥 now we are considering the 

mapping function  𝜙(𝑥𝑖) transpose 𝜙(𝑥). Now, in this case no need to know the mapping 

explicitly  because we are only considering the dot product of the feature vectors in both 

the training  and the test. 

 

I repeat this no need to know this mapping explicitly because we only use  the dot product 

of the feature vectors in both the training and the test.  So, corresponding to this what we 

can consider? So, we can consider a kernel function. So,  now a kernel function can be 

defined as a function that corresponds to this dot product  of the two feature vectors. So, I 

can write a kernel function, a kernel function  can be defined now defined as a function 

that corresponds to  the dot product of two feature vectors  in some expanded Feature space 

in some expanded Feature space means some high dimensional space  in some expanded 

that is the higher dimensional Feature space. So, that means to consider this  one to consider 

this one we are defining a kernel function what is the kernel function?  The kernel function 

is 𝐾(𝑥¯𝑖 , 𝑥¯𝑗) = 𝜙(𝑥¯𝑖)
𝑇𝜙(𝑥¯𝑗). 

 

So, to consider  this one that dot product we are considering a kernel function the kernel 



 

 

function is something  like this. So, I can give some of the examples of the kernel functions. 

So, commonly used  kernel functions I can give some examples. So, maybe in the next 

slide I can give some  examples. So, some of the commonly used kernel functions  maybe 

we can consider the linear kernels. 

 

 So, one example is the linear kernel 𝐾(𝑥¯𝑖 , 𝑥¯𝑗) = 𝑥¯𝑖
𝑇𝑥¯𝑗, this is the example of the linear 

kernel maybe we  can consider the polynomial. So, in the polynomial kernel we can 

consider 𝐾(𝑥¯𝑖 , 𝑥¯𝑗) = (1 + 𝑥¯𝑖
𝑇𝑥¯𝑗)

𝑝. So, this is the expression for the polynomial  kernel 

and one popular kernel is the Gaussian kernel Gaussian or it is also called the radial  basis 

radial basis function this is called RBF radial basis function kernel this is a  very popular 

kernel. So, the concept of RBF I will be explaining  later on whenever I will discuss the 

concept of the artificial neural network that time  I will explain the concept of radial basis 

function.  So, the expression for this 𝐾(𝑥¯𝑖 , 𝑥¯𝑗) = 𝑒𝑥𝑝(
||𝑥¯𝑖−𝑥¯𝑗||

2

2𝜎2
). 

 

So, this is the popular one that the Gaussian kernel and maybe also we can  consider the 

sigmoid kernel sigmoid function also we can consider. So, these are some examples  of 

kernel functions. So, based on this we have to formulate the Lagrangian dual problem  

because we are considering the non-linear support vector machine and we have to solve  

the optimization problem. So, for solution of this optimization problem  the formulation is 

important that already I have discussed in case of the linear support  vector machine we 

have to consider the Lagrangian dual problem. So, move to the next slide that  is the non-

linear support vector machine support vector machine and we have to consider 

optimization  so, like in case of the linear support vector machine we have the formulation. 

 

This formulation is that is a Lagrangian dual problem  the formulation is maximize 

∑𝑖=1
𝑛𝛼𝑖 −

1

2
∑𝑖=1

𝑛∑𝑗=1
𝑛𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝐾(𝑥¯𝑖 , 𝑥¯𝑗). So, this is the kernel function we are 

considering  the conditions already I have explained the important condition is such that 

𝛼𝑖 ≥ 0 and another condition ∑𝑖=1
𝑛𝛼𝑖𝑦𝑖 = 0. 

 

So, from this I can determine the discriminate  function. So, discriminate function is 

𝑔(𝑥) = ∑𝑖∈𝑆𝑉𝛼𝑖𝐾(𝑥¯𝑖 , 𝑥¯) + 𝑏, we are  only considering the support vectors because 

support vectors are the most informative points of the training data set. So, 𝛼𝑖 is nothing 

but the Lagrangian multiplier and we are considering  the kernel function k is the kernel 

function. So, you can see we have to consider 𝑥𝑖 , 𝑥𝑖  is nothing but the support vector and 

x is nothing but the test sample plus b. So,  we are obtaining the discriminate function. So, 

this optimization technique is the same  technique already we have discussed in case of the 

linear support vector machine. 

 



 

 

So, we can obtain the expression for 𝑔(𝑥). So, this is the expression for the 𝑔(𝑥) in  case 

of the non-linear support vector machine. So, only we are considering the kernel function  

k that is between the support vector 𝑥𝑖  and the test sample x. So, for this algorithm  the 

non-linear support vector machine. So, what are the steps I need to consider the  steps will 

be like this.  So, for this non-linear support vector machine what are the steps. 

 

So, non-linear support  vector machines. So, first I have to select the kernel function choose 

a kernel function.  So, generally we considered the radial basis function or that is the 

Gaussian kernel we  can consider number 2 we have to solve the quadratic programming 

problem  that is actually the optimization problem and number 3 because after solution of 

this  non-linear optimization problem we have to determine the weight vector and based on 

the  weight vector we can determine the discriminate function.  So, construct the 

discriminate function from the support vectors. So, these are the steps of the support vector 

machine and the kernel generally we considered the Gaussian kernel or the radial basis 

function we considered. So, in this case you can see in the expression for the non-linear 

support vector machine we obtain 𝑔(𝑥) that is the discriminate function that is something 

like this 𝑤¯
𝑇𝜙(𝑥) that is the mapping function plus b. 

 

So,  it is equal to ∑𝑖∈𝑆𝑉𝛼𝑖𝜙(𝑥¯𝑖)
𝑇𝜙(𝑥¯) + 𝑏.  So, in this expression here you can see we 

are considering this part that is the mapping  function we are considering. So, in the linear 

support vector machine if you see I considered  the dot product between the support vectors 

and the test sample. In this case we are considering  the mapping function the mapping 

functions are 𝜙(𝑥¯𝑖) and 𝜙(𝑥¯), but in this case since we are considering the dot product 

we do not need to represent the mapping explicitly.  So, that means the mapping is not so 

important because we only considered the dot product. 

 

So, we do not need to represent the mapping explicitly. So, that is the dot product between 

𝜙(𝑥¯𝑖) and 𝜙(𝑥¯). So, that is why with the help of this dot product we can determine  the 

discriminant function. So, we need not consider to represent the mapping explicitly.  So, 

this is the fundamental concept of the support vector machine. So, briefly I have introduced 

the concept of the non-linear support vector machine. 

 

In this class I have explained  the concept of the non-linear support vector machine I have 

explained what to do for the  non-linearly separable data. So, the concept is if the training 

samples are not linearly  separable in a low dimensional space I have to project them into 

a higher dimensional  feature space. In the low dimensional space the samples are not 

linearly separable, but  in the high dimensional space the samples will be linearly separable.  

So, I have to define the mapping function and based on this mapping function I have  

formulated the optimization problem. So, we have defined the Lagrangian dual problem 

and based on this solution of this we have obtained the weight vector w and after getting 



 

 

the  weight vector w we can determine the discriminant function 𝑔(𝑥) and with the help of 

the discriminant  function we can do the classification. 

 

So, this is a fundamental concept of the non-linear  support vector machine which is almost 

similar to the linear support vector machine except  the concept of mapping. And for multi-

class classification we may  extend these principles the principle of the support vector 

machines also we can consider  the principles like one versus one classification or one 

versus all classification techniques  for multi-class classification and that concept already 

I have explained the concept of one  versus one and one versus all classification techniques. 

So, this is about the support  vector machine. So, let me stop here today. Thank you. 


