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  Welcome to NPTEL MOOCs course on machine learning and deep learning fundamentals 

and applications.  I have been discussing the concept of generative classifiers. In case of 

the generative models,  it is assumed that the samples of training data of a class come from 

a probability density  function that is the class conditional density. So, if I have the 

information of class conditional  density, I can easily determine the discriminate function.  

And with the help of this discriminate function, I can determine the decision boundary 

between  the classes. So, this is about the generative classifiers.  

 

 In case of the discriminative  classifiers, I do not need the information of class conditional 

density. So, arbitrarily  I can fix a decision boundary between the classes and this decision 

boundary is characterized  by the weight vector. After this, I have to update the weight 

vectors by some optimization  techniques to get the best decision boundary between the 

classes.  So, this is the fundamental concept of the discriminative classifiers. 

 

 So, some of the  examples like MLP, multi layer perceptrons, support vector machine. So, 

these are some  examples of discriminative classifiers. So, today I am going to discuss 

about the concept  of the discriminative classifiers and also the concept of support vector 

machine. So,  let us start this class.  So, the classifier taxonomy. 

 

 So, if you remember in my first classes, I discuss these two types  of classifiers. One is the 

generative classifiers  and another one is the discriminative classifiers. So, already I told 

you in case of the generative  classifier, the samples of training data of a class assumed to 

come from a probability  density function that is the class conditional PDF. So, in my 

discussion I showed for normal  density or for the Gaussian density, I can determine the 

discriminative function and  after this I can determine the decision boundary between the 

classes.  So, the types of generative classifiers already I have discussed about this. 



 

 One is the parametric  approach. So, parametric another one is the non-parametric. So, in 

case of the parametric  classifier, I know the class conditional density that is the density 

from is known, but I do  not know about the values of the parameters. So, for example, I 

considered the Gaussian  density. 

 So, I have that information,  

but I do not know the values of the parameters  for the Gaussian density. 

 

 So, that is the mean vector and the covariance matrix. So,  that I can determine from the 

algorithms like the maximum likelihood estimation or the Bayesian  estimation. In case of 

the non-parametric, I can directly  estimate the density and I have explained two important 

concepts. One is the Parzen  window technique and another one is the k nearest neighbor 

technique. So, this in case  of the generative classifiers, you can see I can determine the 

discriminative function  and I can find the decision boundary between the classes. 

 

  Suppose these are my samples belonging to a class omega 1 and I have some samples 

belonging  to another class omega 2 and I can determine the decision boundary between 

the classes.  So, this is the decision boundary between the classes. So, it is a two 

dimensional feature  space. So, I will be getting a line between these two classes. So, these 

are two dimensional  feature space x 1 and x 2 these two features. 

 

 So, I will be getting a line. If I consider  a three dimensional space, I will be getting a plane 

and if I consider high dimensional  case, then I will be getting a hyper plane. So, this is the 

decision boundary between  the classes in case of the generative classifiers. So, in case of 

the discriminative classifiers,  we do not need the information of the class conditional 

density. So, what we can consider,  we can start with initial weight that define the decision 

boundary. 

 

  So, I can write here. So, what I need to do start with initial weights  that define the decision 

surface. So, after this I have to update the weights based on  the norm optimization 

criterion. So, I have to apply some iterative algorithms and finally,  I will be getting the 

best decision boundary between the classes. So, in this case, I can  give some examples 

like MLP. 

 

 MLP is the multi layer perceptron or maybe we can consider  the single layer perceptron. 

Another example is the support vector machine. So, these are  some examples of the 

discriminative classifiers. So, the concept is start with initial weights  that define the 

decision boundary between the classes. After this I have to update the  weights based on 

some optimization criterion and I have to apply some iterative algorithms. 



 

  So, finally, I will be getting the best decision boundary between the classes. So, pictorially  

this can be shown what is the concept of the discriminative classifier. So, let us  move to 

the next slide.  So, first I have discriminative classifier. Suppose I have some samples and 

suppose the  level is suppose 1 and similarly I am considering another class. 

 

 So, suppose the level is 0.  So now suppose I am fixing a decision boundary something 

like this. So, if I consider this  decision boundary, you can see here, this is the position 1 

and this is the position  in the decision boundary. So, initially we are considering this is the 

decision boundary  So, here you can see this sample that is misclassified and also this 

sample and this  sample they will be misclassified. So, after this what I have to do I have 

to update the  weights and I have to find the next position of the decision boundary. 

 

 So, suppose after  some iteration, I am getting the decision boundary between the classes. 

So, suppose  it is in the position number 2. So, if I consider this decision boundary that is 

the number  2, you can see this decision boundary can perfectly classify the samples 

belonging to  two classes.  So, like this I have to apply some optimization technique to get 

the best decision boundary  between the classes and I can show some of the examples of 

linearly separable data. So,  suppose if I consider some samples like this, you can see this 

is a linearly separable case  and similarly if I consider these are the samples for a particular 

class and if I draw  the decision boundary. 

 

 So, this is one example of the linearly separable data and what about  the non-linearly 

separable data.  So, pictorially I can show you suppose I have some samples like this that 

is for the  class omega 1 and suppose I have some samples belonging to another class. So, 

for this it  is not possible to draw a single decision boundary. So, maybe we can consider 

the decision  boundary like this. So, one decision boundary is not possible in this case. 

 

 So, I can consider  like this the two decision boundaries between the samples of two 

classes. So, this is one  example of non-linearly separable data.  So, move to the next slide. 

So, suppose I have a two dimensional feature space. So,  features are x 1 and x 2 and I have 

some samples belonging to a class omega 1 and omega  2. 

 

 So, these are the samples belonging to the class omega 1 and I have some samples  

belonging to another class omega 2. So, these are the samples for the class omega 2 and  I 

can draw a decision boundary between the classes. So, this is the decision boundary  

between the classes. So, in this case I will be getting a separating line because we are  

considering a two dimensional feature space.  So, I will be getting a separating line. 

 

 So, what is the equation of this line? The  equation of this line is 



 𝑤 1 𝑥 1 +  𝑤 2 𝑥 2 +  𝑏 =  0.  

This is the equation  of the separating line between the classes and corresponding to the 

class omega 1. So,  what is my decision rule? It is w 1 x 1 plus w 2 x 2 plus the bias is b is 

greater than  0. Then I have to consider the class omega 1 and corresponding to the class 

omega 2 the  condition is w 1 x 1 plus w 2 x 2 plus b less than 0. So, you can see based on 

these conditions  I can take a classification decision. 

 

 So, you can see we are showing the separating  line between the classes. So, this is 

separating line in two dimensional feature space. So,  now let us discuss about the concept 

of the discriminate function. So, already I discussed  about the concept of the discriminate 

function and based on the discriminate function I can  take a classification decision.  So, 

let us move to the next slide. 

 

 So, suppose I have a Feature vector. Feature vector is x.  x can be assigned to the class 

omega 1 that is x can be assigned to the class I can say  suppose omega i if the condition is 

g i x that is the discriminate function for the  class omega i is greater than g j x for all i 

which are not equal to j. So, if I consider  for two category case and this I can write like 

this g x is nothing, but the difference  between g 1 x and g 2 x g 1 x minus g 2 x. So, I have 

to decide the class omega 1 if  g x is greater than 0 otherwise I have to decide the class 

omega 2 and based on this  discriminate function we have designed the minimum error rate 

classifier. 

 

 So, based on  this discriminate function I have discussed the concept of the minimum error 

rate classifier.  So, for minimum error rate classifier we determine g x like this probability 

of omega 1 given  x minus probability of omega 2 given x. So, this we have determined if 

you remember in my first  some classes I discussed the concept of the discriminate function 

and also I discussed the  concept of the minimum error rate classifier. So, this is a 

fundamental concept of the discriminate  function. So, based on this discriminate function 

you can see I am showing some of the decision  boundaries for different different classifiers 

the first one is the nearest neighbor classifier. 

 

 So,  you can see a first case you have seen the decision boundary between the classes and 

it  is a non-linear decision boundary between the classes that is corresponding to the nearest  

neighbor classifier. The concept of decision tree I will be explaining later on, but in case 

of the  decision tree you can see how I am getting the linear decision boundary between 

the classes.  And in case of the linear discriminate function you can see I am getting the 

linear decision  boundary between the classes. So, g x is equal to W transpose x plus b. So, 

W is the weight vector,  x is the input feature vector and b is the bias. 

 

 And if I consider non-linear function you can see  I am getting the non-linear decision 



boundary between the classes. So, here I am showing the  decision boundary for different 

different cases one is for the nearest neighbor one is for the  decision tree one is for the 

linear discriminate function and I am considering also the non-linear  functions. So, now 

let us consider g x is a linear function and expression for the linear  discriminate function 

is W transpose x plus b. So, you can see I am showing one decision boundary  between the 

classes. So, here you can see this is the decision boundary. 

 

 So, it is a two dimensional  feature space. So, I will be getting a line. So, if I consider the 

high dimensional feature space.  So, I will be getting a hyper plane in the feature space. 

 So, here you can see I am considering one  unit vector that is n  

that is a normal vector of the hyper plane. 

 

 So, this unit length unit  length normal vector of the hyper plane. So, we are just 

considering this decision boundary  as a hyper plane of the hyper plane. So, the unit linked 

normal vector n is equal to the weight  vector W divided by W norm. So, you can find a 

normal vector of the hyper plane and you can see  the equation of the hyper plane is W 

transpose x plus b is equal to 0 and I can decide two classes  based on these two inequality 

conditions. So, corresponding to the first class the condition  is  

𝑊𝑇𝑥 + 𝑏 > 0 and corresponding to the second class the condition  is 𝑊𝑇𝑥 + 𝑏 < 0. 

 

 So, my case is how to find the base decision boundary between  the classes because for 

perfect classification I have to determine the best decision boundary  between the classes 

because we have to minimize the error rate. Move to the next slide you can  see I am 

considering number of decision boundaries number 1 number 2 number 3 number 4.  So, 

like this I can consider infinite number of decision boundaries and out of this which  one 

is the base decision boundary. So, that my error rate is minimum. So, in this example I 

have  shown the number of decision boundaries between these two classes 1 2 3 4 like this 

I may have  infinite number of decision boundaries and  

out of which one is the best decision boundary that  I have to determine. 

 

 So, that means the question is how would you classify the sample points  using a linear 

discriminate function in order to minimize  the error rate and corresponding to this question 

the answer is infinite number of  decision boundaries infinite number of answers. So, you 

can see I have infinite number of answers.  So, which one is the best decision boundary in 

order to minimize the error rate that I have to  define. So, move to the next slide. So, in this 

figure also I have shown the same classification  problem two classes we are considering 

and  



we have shown the decision boundary. 

 

 So, this is  the decision boundary. Now, I am defining one term the term is the margin. So, 

the margin is  defined as the width that the boundary could be increased before hitting the 

data point.  So, the concept is like this. So, you can see this is the decision boundary I am 

increasing  the width of the decision boundary and like this I am increasing and I am 

stopping just  before hitting the data point.  

So, here you can see this point these are very critical points. 

 

 So,  just I am expanding or I am increasing the width of the decision boundary and I am 

stopping just  before hitting these data points. So, based on this I can define the margin.  

Could be increased by before hitting a data point. So, you can see I am expanding the 

decision  boundary and just this decision boundary is touching the data point that is shown 

by this  arrow. So, here in this case I have three sample points near the boundary and I am 

expanding my  decision boundary up to that points. 

 

 So, which one is the best decision boundary? So, the linear  discriminate function with the 

maximum margin is the best. So, the margin should be so the linear  discriminate function 

with maximum margin is the best  so now I have to show some mathematical techniques 

how to find the best margin or how to find the  best decision boundary between the classes. 

So, for this we are considering given a set of data  points. So, suppose I have some data 

points x i that is a data point corresponding to the class  y i. 

 

 So, all these are level points 1, 2 up to n. So, what is the output? Output is for y i is equal  

to plus 1 that means I am considering the level for the class 1 is plus 1 the condition should 

be  W transpose x i plus b should be greater than 0 and the second condition is 

corresponding to the  second class it is y i should be equal to minus 1 and the condition is 

W transpose x i plus b  less than 0. So, these two conditions I am obtaining. So, I have the 

samples the samples  are x i is i is equal to 1, 2 up to n and I have considered two classes. 

So, for the first class  y i is equal to plus 1 and for the second class y i is equal to minus 1. 

So, for y i is equal to  plus 1 the condition is W transpose x i plus b greater than 0 and for 

the second class the  output is y i is equal to minus 1. 

 

 So, the condition is W transpose x i plus b less than  0. So, with a scale transformation on 

both W and b these two equations I can write like this for  y i is equal to plus 1 the condition 

is W transpose x i plus b. So, earlier it was 0 now I am putting  is 1. So, greater than equal 

to 1 and y i is equal to minus 1 the condition is W transpose x i plus  b less than minus 1. 

 

 So, this condition I am getting. So, it is obtained from this one I am  doing a scale 

transformation on both W and b. So, that means the second set of equations they are  



equivalent to the first set of equations. So, now I have to define the margin because the  

width of the margin is quite important. So, move to the next slide. So, here we are 

considering  these data points if you see these data points these are called the support 

vectors the arrow  points these are the support vectors I am increasing my decision 

boundary and I am stopping  just before hitting these data points. 

 

 So, these data points are the support vectors.  So, beyond this I cannot increase my decision 

boundary. So, my decision boundary is just  passing the support vectors. So, here support 

vectors I have shown like x plus and x minus.  So, in one side it is x plus another side is x 

minus. 

 

 So, one is x plus another one is x minus.  So, corresponding to the support vectors how to 

write this equation. So, corresponding to  the support vectors W transpose x plus b is equal 

to 1 and similarly W transpose x minus plus b is  equal to minus 1. So, I can write these 

two equations corresponding to the support vector  x plus and x minus.  

So, I think you understand the concept of the support vectors the concept  I am explaining 

it again I am increasing the decision boundary. 

 

 So, that it just passes the  support vectors. So, beyond that I cannot increase my decision 

boundary. So, based on these two  equations I can define the margin. The margin with m 

the difference between x plus and x minus  and we have to consider the direction that is 

given by the unit vector n. So, unit vector n  already I have shown in my figure also in this 

figure also you can see the unit vector n. So,  this n now can be determined like this x plus 

minus x minus this x plus and x minus they are  support vectors this unit vector is 

 
𝑊

|𝑊|
=

2

|𝑊|
.  

 So, that is the width of the margin how to get this margin width I can give one example.  

Suppose if I consider two parallel lines.  So, equation is suppose ax plus by plus c1 is equal 

to 0 and another equation is ax plus by  plus c2 is equal to 0. So, two parallel lines we are 

considering what is the distance between  two parallel lines the distance between these two 

parallel lines from the coordinate geometry  c2 minus c1 divided by root over a square plus 

b square. So, similarly here if I consider  the equations of this hyperplane 

 𝑊1 𝑥1 +  𝑊2 𝑥2 +  𝑏 −  1. 

 So, we obtain this equation  I have shown this equation in my previous slide. So, W1 x1 

plus W2 x2 plus b plus 1 is equal to 0.  So, corresponding to two lines the distance again I 

can determine distance will be  b minus 1 minus b minus 1 and this is W1 square plus W2 

square. So, I will be getting 2 by W norm.  So, here you can see this is very similar to this  

and actually we have obtained this one from this. 

 



  So, you can see the width of the margin is 2 divided by W norm and in this figure already  

I have shown the support vectors. So, that means the points which lie on the canonical 

hyperplane  are called the support vectors. So, what is the support vector the points  which 

lie on the canonical  hyperplane are called support vectors. Now the condition of this linear 

classifier I  have to maximize the width of the margin because a linear discriminate function 

or a linear  classifier with the maximum margin is the best. So, that is why I have to 

maximize the  quantity 2 divided by W norm that is the margin width. 

 

 So, what is the formulation for this?  So, move to the next slide the formulation is  so, I 

have to maximize 2 divided by W norm that is the margin width such that  yi should be 

equal to 1 that is the output corresponding to the class omega 1. The condition  is W 

transpose xi plus b greater than equal to 1 and for a second class yi is equal to minus 1  and 

the condition is W transpose xi plus b less than equal to minus 1. So, whenever W transpose  

xi plus b is equal to 1 that is actually the equation of the decision boundary. So, I have  to 

maximize 2 divided by W norm this condition is equivalent to minimize 1 by 2 W norm 

whole  square. So, instead of this previous condition maximize 2 divided by W norm we 

can consider  minimize 1 by 2 W norm square. 

 

 So, the condition will be same. So, I can say such that  yi is equal to plus 1 and same 

condition we are considering W transpose xi plus b  greater than equal to 1 and yi is equal 

to minus 1 corresponding to W transpose xi  plus b less than equal to minus 1. So, from 

maximization condition to minimization condition  I am obtaining like this. So, instead of 

maximizing I am considering minimizing this one.  So, the final formulation is minimize  

1 by 2 W norm square such that  the condition is y W transpose xi plus b greater than equal 

to 1. 

 

 So, this condition we are  considering. So, for solution of this I have to consider the 

optimization techniques. So,  maybe we can consider the Lagrangian function. So, let us 

move to the next slide.  So, solving the optimization problem  the optimization problem is 

minimize 1 by 2 W norm square subject to the condition  yi. So, corresponding to this we 

are considering this Lagrangian function technique  minimize the Lagrangian function 

minimize Lp is a it is a function of W, W is the weight  vector b is the bias and alpha i is 

the Lagrangian multiplier. 

𝐿𝑃(𝑤, 𝑏, 𝛼𝑖) =
1

2
||𝑤||2 − ∑

𝑛

𝑖=1

𝛼𝑖(𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑏) − 1) 

 So, it is 1 by 2  W norm square that is summation from i is equal to n we considered n 

number of samples  alpha i is the Lagrangian multiplier. So, you have to see the 

mathematics book what is the  technique for solution of the optimization problem because 

we are considering linear constraints.  So, we can consider the Lagrangian function for 



solution of this problem  W transpose xi plus b minus 1 subject to the condition alpha i 

greater than equal to 0.  So, here alpha i, i is equal to 1, 2 up to n this is Lagrangian 

multiplier  function. So, we are solving this optimization problem by considering this 

Lagrangian function  because we have the linear constraints. 

 

 So, we have to minimize Lp that is the Lagrangian  function. So, move to the next slide. 

So, again I am writing minimize  this Lagrangian function Lp W b and alpha i 1 by 2 W 

norm square minus summation from i is equal to  1 to n alpha i yi W transpose xi plus b 

minus 1 subject to the condition this Lagrangian multiplier  should be greater than equal to 

0. So, for this what we are considering we are doing the  differentiation of Lp with respect 

to the weight vector W and equating it to 0.  So, corresponding to this if I do the 

differentiation I will be getting the  weight vector W is equal to summation from i is equal 

to 1 to n alpha i yi xi.   

And similarly if I differentiate this Lp with respect to the bias b equating it to 0. 

 

 So,  I will be getting summation i is equal to 1 to n alpha i yi is equal to 0. So, that means 

I am  getting the solution for the weight vector W. So, this is the solution for the weight 

vector W.  So, now I am considering this Lagrangian dual problem better to move to the 

next slide.  So, what we have considered minimize I am writing it again the Lagrangian 

function is Lp W b  equal to 1 by 2 W norm square minus summation over i is equal to 1 

to n alpha i yi W transpose  xi plus b minus 1. This condition we have considered subject 

to the condition  alpha i greater than equal to 0. 

 

 So, the Lagrangian dual problem I can obtain like this.  So, maximize this Lagrangian dual 

problem maximize the minimization problem is converted into  maximization problem 

maximize alpha i i is equal to 1 to n minus 1 by 2 summation i is equal to 1  to n summation 

j is equal to 1 to n alpha i alpha j yi yj xi transpose xi. And subject to the  condition alpha 

i greater than equal to 0 and another condition is summation i is equal to 1 to  n alpha i yi 

is equal to 0. So, we obtain this condition. So, how to get this condition  mathematically I 

can show you. So, Lp was 1 by 2  W norm square minus summation alpha i yi W transpose  

xi plus b minus 1 we have this condition and also we have derived W is equal to weight 

vector is equal to  alpha i yi xi. 

 

 So, i is equal to 1 to n and also we have another condition  i is equal to 1 to n alpha i yi is 

equal to 0 we have this two conditions.  So, putting the value of this W I will be getting 1 

by 2 summation alpha i yi xi dot is a dot product  alpha j yj xj minus summation alpha i yi 

xi dot alpha j yj xj plus  alpha i. So, you can see alpha i yi is equal to 0 you have this 

condition.  So, if I consider this condition then you will be getting  summation alpha i 

summation alpha i alpha j yi yj and we have the dot product xi dot xj. 

 



  So, which can be written like this xi transpose xj also. So, I will be getting this expression  

from this expression actually I am getting this one because corresponding to this Lp  if I 

want to maximize Lp I have to maximize summation alpha i.  What is the advantage of this 

dual form? So, the advantage is it expresses the optimization criterion  as a inner product 

of the patterns xi. So, it is a inner product between xi and xj.  So, that means xi dot xj so 

that I can write like this xi transpose xj. So, that is the importance  of the dual form this 

optimization criterion can be expressed as inner products of the patterns xi. 

 

  So, that is the advantage of the dual form of this Lagrangian formulation. Now 

considering  the solution of the optimization problem. So, I have to maximize summation 

alpha i,  i is equal to 1 to n. So, what is the solution for this? So, we are considering one 

condition that is  called Karush Kuhn Tucker that is called the KKT criteria. That is actually 

the first derivative  test for solution for the non-linear optimization. So, this KKT condition 

we are considering and  based on this KKT condition I can write alpha i from the previous 

slide yi w transposed xi plus b  minus 1 should be equal to 0. 

 

 So, this is the condition and for support vectors that is only  the support vectors have alpha 

i not equal to 0. So, this point is very important that means for  the support vectors alpha i 

is not equal to 0 that means the Lagrangian multiplier is not equal to 0  for the support 

vectors. So, the solution as the form  because earlier we obtained the solution for the w.  

So, w is nothing but summation from i is equal to n alpha i yi xi.  

So, that is the solution for the  weight vector and that is equal to alpha i yi xi and in this 

case i only we are considering  only the support vectors. 

 

 The support vectors are more important the rest of the points are  not important suppose if 

I consider other points these are the other points if I move the other  points anywhere then 

it will not affect the solution. So, one important point is the support  vectors are more 

important. So, for a support vector alpha i is not equal to 0. So, the solution  depends on 

the support vectors. So, if any other patterns with alpha i equal to 0 are moved around  they 

do not affect the solution of the separating hyper plane. 

 

 So, that is the concept.  So, the data points with non-zero Lagrangian multiplier lie on the 

hyper plane and they are  the support vectors and they are the most informative points in 

the data set. So, you can  see I have shown the support vectors here. So, this x these are the 

support vectors I have shown  by arrows. So, x plus and nx minus. So, they lie on the hyper 

plane and corresponding to the support  vector the Lagrangian multiplier alpha i they are 

not equal to 0. 

 

 So, the data points with non-zero  Lagrangian multiplier lie on the hyper plane and they 

are the support vectors and I can say they  are the most informative points in the data set. 



So, if any other points or if any other patterns  with alpha i equal to 0 are moved around 

they do not affect the solution of the separating hyper  plane. So, corresponding to this you 

can see I am obtaining the expression for the W and also we can  get the bias B from yi W 

transpose xi plus B minus 1 is equal to 0 where xi is the support vector.  So, this KKT 

complementary condition we are considering and actually this product of Lagrange  

multiplier and the inequality constraints that is actually the KKT complementary condition.  

So, in the KKT condition you can see it is nothing but the product of the Lagrange 

multiplier alpha  i and the inequality constraints I can write this is very important for active 

constraints  the solution satisfies yi W transposed xi plus B minus 1 is equal to 0 then alpha 

i will be  greater than equal to 0 that is for the active constraints otherwise in active 

constraints  alpha i is equal to 0. 

 

 So, this point is important for active constraints the solution satisfied yi  into W transpose 

xi plus B minus 1 is equal to 0 then alpha i should be greater than equal to 0  otherwise the 

inactive constraints will be alpha i is equal to 0.  So, you can see here the importance of 

the support vectors the support vectors are x plus and x minus  they lie in the hyper plane 

and corresponding to these support vectors the Lagrange multipliers  will be not equal to 

0. So, based on this weight vector because we have derived the expression for  the weight 

vector I can determine the linear discriminant function.  So, move to the next slide. 

 

 So, the linear discriminant function  that is the Z x is nothing but W transpose x plus B. 

So, W already we have determined  this alpha i xi transposed x plus B. So, i belongs to all 

the support vectors  Sb means support vectors. So, here you can see in this expression for 

the Z x.  So, I am writing here Z x also. So, in the expression of the Z x you can see it 

depends on  the dot product between the test point X and the support vector xi. 

 

 So, xi is the support vector  here we are considering this 1 this is nothing but the dot 

product  between the test point x and a support vector xi. So, that is nothing but the dot 

product  dot product between the test point  x and the support vector  support vector xi. So, 

gx we can compute like this. So, one important point is whenever  we solve this 

optimization problem what we need to compute we need to compute the dot  product 

between xi and xj. So, what point is important here during the solution of the  optimization 

problem we considered the dot product between xi and xj between all pairs  of training 

points. 

 

 That means we considered the dot product between the dot product is  xi transpose and xj 

between all pairs of training points.  So, you can see this optimization problem is nothing 

but we are computing the dot product  between xi and xj between all pairs of training points. 

So, for classification what we have  to consider I have to consider the discriminate function 

and mainly I have to consider the  dot product between the test point x and the support 



vector xi. So, based on this I can  take a classification decision. So, in this class I introduced 

the concept of the discriminative  classifier and after this I explained the concept of the 

support vector machine. 

 

 In  the support vector machine one important point is the concept of the Lagrange's 

multipliers.  For the support vectors the Lagrange's multipliers will be not equal to 0 and 

these are the most  informative points in the data set. And after this I have shown how to 

determine the weight  vector and based on this weight vector I can determine the 

discriminate function. So,  based on this discriminate function I can take a classification 

decision. So, this is  the fundamental concept of the support vector machine. 

 

 In my next class I will be explaining  the concept of non-linear support vector machine. 

So, let me stop here today. Thank you. 


