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 Welcome to NPTEL MOOCs course on machine learning and deep learning fundamentals 

and applications.  In my last class, I discussed the concept of perceptron criterion. And I 

have explained  how to determine the best weight vector based on the information of the 

samples. So I have  the samples for all the classes. And based on these training samples, I 

have to determine  the weight vector. If I can determine the weight vector, I can determine 

the decision  boundary between the classes 

 because the weight vector is orthogonal to the decision boundary. 

 

  After this, I discuss the concept of gradient descent algorithm. Today I am going to 

continue  the same discussion that is the perceptron criterion and how to find the best 

weight  vector from the training samples.  

That concept I am going to explain again.So let us start  this class. 

 

  So in my last class, I discussed the concept of designing of the weight vector W. So design  

of weight vector W. So what is the discriminant function?  

𝑔(𝑋) = 𝑤𝑇𝑥 + 𝑤0 

 

W is the weight vector, x is the input feature  vector and W naught is the bias.  

And this can be converted into the homogeneous form. 

 

  The homogeneous form is A transposed y. So this is the homogeneous form. So y is the  

augmented feature vector. So what is the y? y is the augmented feature vector.  



So  it is x1, x2 up to xd. 

 

 So d dimensional pressure vector and I am appending 1. So it is d plus  1 dimensional. So 

this is the augmented feature vector. And also we are considering the modified  weight 

vector A. So we are considering all the components of the weight vector W. 

 

 That  means it is W1, W2 up to Wd and also we are considering the bias W naught. So this 

is  the modified weight vector.  After this I discussed the concept of Perceptron criterion. 

So what is the Perceptron criterion?   

So in the Perceptron criterion, we considered y. y is the augmented feature vector. 

 

 So  that is already I have shown that is nothing but x1, x2, xd, 1. This is the augmented 

feature  vector. So this actually what we are doing. This y is obtained from x. x is d 

dimensional. 

 

  We are getting y by appending 1 because I have to determine the homogeneous form. The  

homogeneous form is gx is equal to A transpose y.  So how to take a classification decision? 

Suppose if A transpose y is greater than 0,  the classification decision is y should be 

assigned to the class omega 1. And if A transpose  y less than 0, so what is my decision 

rule? The y should be assigned to the class omega  2. This is my decision rule. 

 

 So in this case, these two conditions we are considering. So  that means it is a two criteria 

we are considering for decision making, but how to make it one  criterion.  So for making 

one criterion, what we are considering all the training samples of omega 2, because  we are 

considering two classes omega 1 and omega 2. So all the training samples of omega  2 are 

negated. So I can write all the training samples of omega 2 are negated. 

 

 So that A  transpose y is greater than 0. So one condition I am getting is only one condition 

or one  criterion and based on this condition, I can do the classification. And after this, I 

discussed  how to determine the best weight vector.  So what you have to consider? You 

have to consider A0 that is the initial weight vector.  So arbitrarily we can select this one. 

 

𝑎(𝐾 + 1) = 𝑎(𝐾) − 𝜂𝛻𝐽(𝑎(𝐾)) 

 

 In the k plus 1 iteration, Ak plus 1, my updation  rule is like this Ak and eta is the learning 

rate and we are considering the gradient of  the criterion function. That is the perceptron 

criterion function Ja. So what is the perceptron  criterion? What we have considered? So 

move to the next slide.  So I am repeating it again. The initial weight vector I have to select 



arbitrarily A0 and  after this at the k plus 1 iteration, I can determine like this, the weight 

vector at  the kth iteration Ak minus eta that is the learning rate and we are taking the 

gradient  with respect to A and we are considering the criterion function Ja. 

 

 So what is the perceptron  criterion? The criterion function is JpA and we have considered 

like this in the last  class it is minus A transpose y and we are only considering the 

misclassified samples  because the problem is because of the misclassified samples.  So we 

are considering only the misclassified samples for all y which are misclassified.  Based on 

this perceptron criterion how to do the iteration? So A0 we have to select  arbitrarily weight 

vector and at k plus 1 iteration, so I can write like this Ak that  is the weight vector at kth 

iteration plus eta summation y and for all the y's which  are misclassified for all y's which 

are misclassified.  So we discussed in this technique there is a problem. If you see here we 

are considering  the summation of all the misclassified samples. 

 

 So that means all the samples are considered  together all the samples we are considering. 

The problem is the memory requirement we have  1000 samples and we have 1000s of 

misclassified samples. So that is why we need large amount  of memory. So that is the 

problem the problem is due to the memory requirement.  So how to minimize the memory 

requirement? So for this we are considering the sequential  version of this algorithm. 

 

 So the sequential version of the algorithm because we have to  minimize the memory 

requirement. So what is this sequential version of the algorithm?  Suppose we are 

considering the samples y1 like this suppose y2, y3, yk minus 1, yk and  yn. So we are 

considering these samples. So we have to see my condition is satisfied  or not 

corresponding to the samples. So what is the condition?  

The condition is A transpose  y should be greater than 0. 

 

 Suppose this condition is satisfied for the first sample y1 then  we need not consider y1 

and we have to go to the next sample and we have to see corresponding  to y2 whether this 

particular condition is satisfied or not. And in this case what we  are considering all the 

samples belonging to the class omega 2 are negated already in  the sequential version of 

this algorithm. First I have to consider y1 and we have to  see whether this condition the 

condition is A transpose y greater than 0 that condition  is satisfied or not that we have to 

see. If it is satisfied then we need not consider  y1 then we have to go to the next sample 

like this we have to go suppose up to yk minus  1 and this condition is satisfied what is the 

condition A transpose y greater than 0.  So this condition is satisfied. 

 

 So that means no need to consider all the samples and no  need to modify the weight vector 

because all the samples are correctly classified that  means no need to modify the weight 

vector. So this is up to the sample yk minus 1. So  move to the next slide suppose the next 



sample is yk that is after yk minus 1 and corresponding  to this the condition is not satisfied 

the condition is A transpose yk that is not satisfied.  So not satisfied means the 

misclassification then we have to consider only yk and we have  to modify the weight 

vector. So how to modify the weight vector the formula already you  know A0 we have to 

select arbitrarily and Ak plus 1 we can determine that is Ak plus  eta yk we are updating 

the width now because corresponding to the sample yk and 

 the condition  is not satisfied the misclassification is taking place. 

 

  So I have to get the new weight vector. So now by considering this I am getting the 

modified  weight vector and it should classify all the samples correctly the new weight 

vector should  classify all the samples correctly. So that means I have to consider all the 

previous  samples again because I am modifying the weight vector then I am getting the 

new weight vector  is Ak plus 1 suppose because I have the misclassification corresponding 

to the sample yk.  So that means I have to modify the weight vector as per this formula. So 

Ak plus 1 is  equal to Ak plus eta yk and after modifying the weight vector I am getting a 

new weight  vector and it should classify all the samples correctly. 

 

 That means again I have to check  all the previous samples and also we need to shake 

whether it is converging or not converging  because the weight vector should move to the 

solution region.  So in my last class I have explained what is the solution region. So I should 

get the  best weight vector and the weight vector should lie in the solution region. So that 

we have  to see whether the convergence is taking place or not.  

So in my last class I have shown  what is the solution region. 

 

 So I am showing it again suppose if I consider a two dimensional  feature space. So it is 

suppose x1 and this is x2 suppose I have the samples.  So these are the samples belonging 

to the class Omega 1 and I have also samples belonging  to the class Omega 2. So suppose 

these are the samples belonging to the class Omega 2.  So this is Omega 2 after is what we 

have to consider the samples of class Omega 2 should  be negated. 

 

 So if I do the negation of these samples I will be getting the negated samples  like this. 

Now I have to draw the decision boundary. So which one is the best decision  boundary 

you can see. So corresponding to the class Omega 1 this is my limiting case.   

So if I move the decision boundary suppose in the anti-clockwise direction 

 beyond this  point the misclassification will take place. 

 

 And similarly if I rotate this decision boundary  in the clockwise direction this is the 

limiting case. So beyond this I cannot move the decision  boundary because the 



misclassification will take place. So corresponding to these two  limiting cases what will 

be my weight vector. The weight vector is perpendicular or weight  vector is orthogonal to 

the decision boundary. So that means corresponding to the number  one decision boundary 

my weight vector is orthogonal weight vector and corresponding  to the second decision 

boundary that is number two my weight vector will be like this maybe  something like this. 

 

  So I have the conical region this is the conical region or I can say it is the solution region  

so it is a conical region solution region and within this region my weight vector should  lie. 

So this is the concept that I have explained. So my weight vector should lie within this  

solution region. So this concept already I have explained in my last class. Now 

corresponding  to this sequential algorithm let us see how we can determine the best weight 

vector. 

 

 So  move to the next slide.  So corresponding to this sequential algorithm let us again 

consider a two dimensional feature  space  and we are considering some samples belonging 

to the class omega 1 and omega 2 two classes  we are considering. So suppose the samples 

are like this. So these are the samples corresponding  to the class omega 1 and I have some 

samples corresponding to the class omega 2. So these  are the samples corresponding to 

the class omega 2.  

So first in the sequential algorithm  we have to select the initial weight vector arbitrarily. 

 

 So suppose I am selecting my  weight vector suppose here this is the initial weight vector 

and suppose it is A0. So I have  the samples suppose I am just labeling the samples the 

sample number is suppose 1 2 3  4 5 these are the sample number I am putting 1 2 3 4 5 

corresponding to this initial weight  vector.  So this is nothing but the initial weight vector 

this is the initial weight vector corresponding  to this initial weight vector my decision 

boundary is something like this suppose it  is orthogonal to the weight vector. So you can 

see if I consider the weight vector A0  so you can see the misclassification the three samples 

are misclassified number three it  is misclassified four is misclassified and five is also 

misclassified. So that means  the three samples are misclassified and already I told you the 

weight vector is orthogonal  to the hyper plane and 

 in this case we are considering only the two dimensional Feature  vector. 

 

  So that means we have the 2D Feature space that means the decision boundary is a straight  

line. So after this we have to apply this updation rule updation rule is Ak is equal  to Ak 

minus 1 plus eta y so that already I have explained so that means the y is scale  and it is 

added with the previous value of the weight vector. So you can see the vector  y is scale by 

eta and it is added with the previous value of Ak that is the weight vector.  In the next 

iteration what will be the updated weight vector because it is the addition of  the previous 



weight vector with the eta y that means I will be getting my next weight  vector maybe 

something like this that is A1 this weight vector I am getting corresponding  to the second 

iteration in this case also if I draw the decision boundary it will be  something like this.  So 

in this case also the two samples are misclassified so that means again I have to go for this  

iteration Ak is equal to Ak minus 1 plus eta y so that means with each and every iteration  

pushing the weight vector towards the misclassified samples. 

 

 So I am pushing the weight vector  like this the misclassified samples. So the sample 

initially the 3, 4, 5 they were misclassified  and after the updation of the weight the sample 

4 and 5 they are misclassified and what actually  we are doing with each and every iteration 

pushing the weight vector towards the misclassified  sample.  And suppose in the next 

iteration my weight vector is A2 so corresponding to this A2 my  decision boundary will 

be something like this. So you can see all the samples are classified  correctly the 1, 2, 3, 

4, 5 and obviously the samples belonging to the second class  they are also correctly 

classified corresponding to A naught you can see the decision boundary  corresponding to 

A1 you have seen the decision boundary and corresponding to A2 you can see  the decision 

boundary.  So that means what we are doing with each and every iteration pushing the 

weight vector  towards the misclassified sample and we have a solution region. 

 

 So already I have explained  what is the solution region. So we have a solution region 

suppose this is my solution  region this is the solution region and you can see now A2 is 

within the solution region  this is my solution region. So I am pushing the weight vector 

into the solution region  because of this iteration.  In the feature space actually I should 

write here this X1 and X2 the two dimensional feature  space suppose the learning rate is 

very high after the first iteration this A1 may be here  A1 may be here if the eta is very high 

if the learning rate is very high the A1 may  not be in the initial position. So it may jump 

to or it may lean to that position the  green colored one so A1. 

 

 So that means all the samples will be misclassified that is  why the learning rate is 

important. So it should not be very very high and if I consider  the small value of the 

learning rate the convergence will take time. So this is the concept of  getting the best 

weight vector by considering this iterative equation.  So in this case there is a problem the 

problem I will mention here so better to draw one  new figure. So suppose showing the 

same thing here what is the problem in this case. 

 

 So  we are again considering the two dimensional feature space X1 and X2 and we have 

the samples  already I have shown the samples for two classes. So the samples are so these 

are the samples  for one class and similarly I have the samples for the second class. So for 

two classes these  are the samples suppose I am getting the decision boundary the decision 

boundary is suppose  somewhere like this or maybe the decision boundary maybe 



somewhere like this and corresponding  to a decision boundary 1 corresponding to the 

decision boundary 2.  So I think better to so the second decision boundary by different 

color.  

So the second  decision boundary suppose the second decision boundary we are considering 

that is number  2. 

 

 So corresponding to the number 1 and decision boundary I can draw the weight vector the  

weight vector is orthogonal to the decision boundary. So this is the weight vector and  

corresponding to the number 2 and decision boundary I have the weight vector like this.  

This is my conical region that is the solution region. So what is the problem in this case  

suppose in this case only we are showing 5 samples for class omega 1 and 5 samples or  

samples for the class omega 2. So there may be many samples and if it is the position  of 

the decision boundary what will happen there may be some misclassification suppose  some 

of the samples may be here some of the samples may be here. 

 

  So these samples will be misclassified there are thousands of thousand samples and 

similarly  if I consider some of the samples here these samples will be misclassified. So 

that is  why better to consider one offset some tolerance we can consider maybe this 

decision boundary  we can consider here by considering the offset and this decision 

boundary the second decision  boundary maybe we can consider here by considering the 

offset some tolerance then the misclassification  will be less. Otherwise if I consider this 

limiting cases there will be misclassification.  So that is why we are considering some 

margin and based on this I am modifying the equation  for the decision making. 

 

 So what is my modification A transpose Y greater than B. So earlier it  was 0 now I am 

considering the margin and that is the positive constant. So this B is  the margin and that is 

the positive constant we are considering this margin so that all  the samples will be correctly 

classified that is actually the safety margin.  So that means I am restricting the solution 

region within the main sub regions I can show  the solution region now considering this 

my solution region maybe here now. So this  is my new solution region that is within the 

main solution region. So that means I am restricting  the solution region within the main 

solution region that means I am getting a new sub region. 

 

  So this is actually new solution region solution region I am getting. So this margin we are  

considering so my criteria is now A transpose Y greater than B. So we are considering the  

margin B and B is the positive constant. So up till now I discussed the concept of Perceptron  

criterion and this Perceptron criterion function is not only the single criteria for designing  

of a linear classifier.  

So there are different algorithms  



so I will be discussing some of  these algorithms how to design the weight vector. 

 

  So move to the next slide so another criterion function is relaxation criterion. So this  

criterion function is defined like this J r that is the relaxation criterion for the  weight vector  

𝐽𝑟(𝑎) =
1

2
∑

⋁𝑦

𝑎𝑇𝑦 − 𝑏2

||𝑦||2
 

So this is  whole square and this summation that is for all Y which are misclassified. So 

this is  the criterion function and that is for the relaxation criterion. 

 

 So I have to do the  minimization of this function. So maybe we can apply the gradient 

descent algorithm.  So what is the gradient of this so gradient with respect to the vector A. 

So if I take  the gradient of this the gradient with respect to the vector A the summation 

that is for  all Y which are misclassified. This is A transpose Y minus B mod of Y square 

and Y. 

 

 So we are  taking the gradient with respect to the vector A. So this is the gradient of the 

relaxation  criterion function. Now how to implement this so I can consider the iterative 

algorithm  like we considered in case of the perceptron criterion.  So what is this algorithm 

we can consider A naught that is arbitrarily we can select.  So in the k plus 1 iteration Ak 

plus 1 it can be represented like this Ak plus eta eta  is the learning rate and summation and 

again we are considering for all Y which are misclassified. 

 

  So this is the B minus A transpose Y Y square Y. So at k plus 1 iteration this is the 

expression  Ak plus 1 is equal to Ak eta and summation for all Y which are misclassified 

and B minus  A transpose Y divided by mod Y square into Y. So with the help of this 

iterative algorithm  I can determine the weight vector Ak plus 1. So what is this 

misclassified samples the  samples which are misclassified by the weight vector Ak. So 

what is the Y actually the Y  is the misclassified sample and these are the misclassified 

sample by the weight vector  Ak.  So based on this I am getting updated with vector the 

updated with vector is Ak plus  1. 

 

 So now we are considering the sequential version of this algorithm. So move to the  next 

slide because the problem is the memory requirement. So as we did in case of the 

perceptron  criterion in this case also we can consider the sequential version of this 

algorithm.  So what is the sequential version of this algorithm? So again we have to select 

A0 arbitrarily  and what is the value of A in the k plus 1 iteration that is Ak that is the 

weight  vector at the kth iteration. This is the learning rate eta is the learning rate B minus 

A transpose  Yk. So this Yk is nothing but these are the samples which are misclassified 



by the weight  vector Ak. 

 

 So this is the sequential version of the previous algorithm and this is mainly  done to reduce 

the memory requirement. So this is called the sequential version of the  relaxation 

algorithm.  So I will be discussing another algorithm for determining the weight vector that 

is  the minimum squared error criterion. So what is the minimum squared error criterion? 

So  let us discuss about this minimum squared error that is called MSE a minimum squared  

error criterion. So in case of the perceptron criterion and also if I consider the relaxation  

criterion they can perfectly classify when the classes are linearly separable. 

 

 So in  case of the perceptron criterion what we considered that we considered that the 

classes are linearly  separable and similarly in case of the relaxation criterion also we 

considered that the classes  are linearly separable. But suppose if we do not know this 

classes  are linearly separable or not then the best designing technique is the mean squared 

error  criterion. So this minimum squared error criterion we have to consider if I do not 

have the knowledge  whether the classes are linearly separable or not and based on this 

MSE criterion I can  design a linear classifier. So this is the fundamental concept of the 

MSE criterion.  So I have to reduce the error I am repeating this so earlier we considered 

that the classes  are linearly separable. 

 

 But if the classes are not linearly separable or if I not sure  if the classes are linearly 

separable then I have to design a linear classifier based  on the minimum squared error 

criterion. That means I have to reduce the error and based  on this I can design a linear 

classifier. So now the decision rule that we obtained  previously so what is the decision 

rule? So decision rule already I have defined so A  transpose y should be greater than B so 

B is the margin. So if this condition is satisfied  then y will be properly classified. So this 

condition I have to consider for the classification  if this condition is satisfied then y will 

be properly classified. 

 

  And what is the decision boundary or decision surface I can represent like this A transpose  

y is equal to B. So this is the equation of the decision boundary. So B is the margin  vector 

the B is the margin we are considering the margin vector. So the equation of the  decision 

surface is A transpose y is equal to B. 

 

 So we are considering the margin the  margin is nothing but the B. So solution of this 

equation which is obtained by mean squared  error criterion. So I have to solve this equation 

and this solution can be obtained  by minimum squared error criterion. So suppose if I 

consider this expression A transpose  y i what is y i that is the i th sample we are considering 

and suppose B i. So different  margins for different y i we are considering. 

 



 So that means what is B i actually different  margins for different y i. So what is y i that is 

the i th sample. So we are considering  different margins for different y i. So in this case I 

will be getting n number of equations.  So if you see here I will be getting n number of 

equations. 

 

 So in the matrix form I can  write this equation also. So move to the next slide.  So from 

the previous slide what we have shown A transpose y i is equal to B i. So we have  n 

number of equations. So in the matrix equation I can write like this 

[𝑦10 𝑦11 … 𝑦1𝑑 𝑦20 𝑦21 … 𝑦2𝑑  ⋮  𝑦𝑛0 𝑦𝑛1 … 𝑦𝑛𝑑  ][𝑎0 𝑎1  ⋮  𝑎𝑑 ] = [𝑏1 𝑏2  ⋮  𝑏𝑛 ] 

 because we are considering different margins  for different y's. So the margins are like this 

B 1 B 2. So that means the B is a vector  and different margins we are considering B 1 B 2 

for different y i's. 

 

 So in a matrix  form I can write like this. So in this case n number of simultaneous equation 

here which  can be written like this y A is equal to B. So how to determine A because we 

have to determine  the weight vector A. So that is nothing but y inverse B this y is a 

rectangular matrix  if you see number of rows is less than the number of columns. So 

inverse we cannot determine.  So it is a rectangular matrix that means the number of rows 

is less than  the number of columns. 

 

 So I cannot get the exact solution of this. So that is why to  solve this equation we have to 

define one error term. So how to define the error. So  move to the next slide.  So to solve 

this equation so we define the error y A minus B and based on this error  we are considering 

the sum squared error criterion. So this criterion function I can  write like this J S A is equal 

to mod y A minus B squared. 

 

 So which can be written like  this summation from I is equal to 1 to n A transpose y I 

minus B I. So we can write  in this form. So from I is equal to 1 to n. So if I solve this 

equation then I will be  getting the weight vector. So that means I have to minimize the 

error and for this I  can apply the gradient descent algorithm. 

 

 So we have defined the sum squared error criterion  and if I solve this one I can get the 

weight vector. That means I have to minimize the  error and we can apply the gradient 

descent algorithm.  So now I have to determine the gradient. So gradient of this error 

function. So if I take  the gradient of J S A the gradient will be summation from I is equal 

to 1 to n to A transpose  y I minus B I into y I. 

 

 So in the matrix from I can write like this twice the y transpose  y A minus B in the matrix 

form I can write like this. So with this gradient I can apply  the gradient descent algorithm. 



So we have determined the gradient and now we can get  the close from of the solution the 

close from of the solution I can write like this.  The close from solution that is nothing but 

this gradient of J S A I am equating it to  0. 

 

 So that is the close from of the solution. So we can move to the next slide. So what  is the 

close from of the solution from the previous slide close from solution. So this  gradient of 

J S A equating it to 0 and if I equate to 0 so it is nothing but 2 y transpose  y A minus B B 

is the margin vector is equal to 0. So that is equal to y transpose y A  is equal to y transpose 

B. So now how to determine this weight vector A the weight vector A is  nothing but y 

transpose y inverse y transpose B. 

 

 So if you see the y is a rectangular matrix  of dimension n cross D. So I can say y is a 

rectangular matrix. The dimension is n cross  D. So what is the dimension of y transpose 

the dimension of y transpose is D cross n.  So that means the dimension of y transpose y 

that will be D cross D and it is a non-singular  matrix. 

 

 So if it is a non-singular matrix then y transpose y inverse I can determine.  Because you 

can see y is originally the rectangular matrix of dimension n cross D and y transpose  the 

dimension is D cross n and what is the dimension of y transpose y dimension is D  cross 

D. So that means I am getting the squared matrix if I consider y transpose y I am getting  

the square matrix and if I consider this one y transpose y inverse into y transpose. So  if I 

see this term from this to this and this is nothing but y plus that is actually  the pseudo 

inverse it is called a pseudo inverse. This y transpose y is a square matrix of dimension  D 

cross D and you can see this term y transpose y inverse into y transpose that is nothing  but 

a pseudo inverse. So that means what I am getting the final expression the expression  is a 

is equal to this y plus that is the pseudo inverse b. 

 

  So y plus is the pseudo inverse of y. So this pseudo inverse is same as that of the regular  

inverse for square and non-singular matrix. So that concept already you know that means  

I am repeating this a pseudo inverse is same as that of the regular inverse for a square  and 

non-singular matrix. So in this case you can see y transpose y is a square matrix and  it is 

a non-singular matrix. So that means we can determine the inverse and we can see  the final 

expression that is a weight vector a I can determine like this a is nothing but  y pseudo 

inverse b that is the expression for the a that is the weight vector. 

 

  So this also we can apply the iterative algorithm. So like in the previous cases we applied 

the  iterative algorithms in case of the perceptron criterion also in case of the relaxation 

criterion  also we applied the iterative algorithms in this case also we can apply the iterative  

algorithm. So let us move to the next slide. So this iterative algorithm is called the  

withdraw hop or the LMS learning rule. So what is this iterative algorithm withdraw  hop 



or I can say LMS learning rule. So like in the previous case is a naught we have to  select 

arbitrarily after this a k plus 1 we can consider like this a k plus 1 is equal  to a k plus eta 

eta is the learning rate y transpose b minus y a k. 

 

 So in this case  y is actually we are considering all the samples together that means we 

need the large amount  of memory. So why we are considering all the samples together. So 

that is why the sequential  version we can consider to reduce the amount of memory.  So 

what is the sequential version sequential version of this algorithm is again we have  to 

select a naught arbitrarily and we can determine a k plus 1 that is equal  to a k plus eta b k 

minus a transpose k y k into  y k. 

 

 So y k means the samples which are misclassified by the weight vector a k. So that samples  

we are considering. So this is the sequential version of the above algorithm because we  

have to reduce the memory requirement and you can see this is the LMS learning rule  or 

it is called a withdraw hop learning rule LMS means the least mean squared learning  rule. 

So this is about the minimum squared error criterion. So you can see if the classes  are not 

linearly separable then we can go for mean squared error criterion. In this  case we are not 

considering whether the classes are linearly separable or not but we are trying  to reduce 

the error and based on this we can design the weight vector. 

 

  In this class I have discussed the concept of designing the best weight vector and for  this 

first I discussed the concept of the perceptron criterion. After this I discussed  the concept 

of the relaxation criterion and also I discussed the sequential version of  these algorithms 

because the sequential version of this algorithm is quite important to reduce  the memory 

requirement. After this I discussed the concept of MSC criterion if I do not have  the 

information whether the classes are linearly separable or not then better to apply the  MSC 

criterion. So after applying the MSC criterion I will be getting a linear classifier.  So all 

these criterion functions are quite important to design the discriminant function  because 

for the discriminant function I need the information of the weight vector.   So let me stop 

here today. Thank you. 


