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  Welcome to NPTEL MOOCs course on machine learning and deep learning fundamentals 

and applications.  In my last class, I discussed the concept of discriminate function and its 

geometrical  interpretation. gx is the discriminate function and we considered linear 

discriminate function.  It is nothing but the distance from the point x to the hyper plane and 

it is scaled by the  norm of the weight vector. So, that is the interpretation of the 

discriminate function  gx. So, I am repeating this it is a distance from the point x to the 

hyper plane and it  is scaled by the norm of the weight vector and that is the geometrical 

interpretation  of the gx the linear discriminate function. 

 

 After this I discussed two classification  techniques one is one versus all and another one 

is one versus one. Today I am going to  discuss how to determine the best discriminate 

function. So, that there should not be any  misclassification that means all the samples 

belonging to different classes should be correctly  classified. So, whenever I design the 

discriminate function gx I have to consider the weight  vector w is the weight vector. 

 

 Now how to design the weight vector which one is the  best weight vector I have to 

determine from the samples of the different classes. So,  if I consider two classes suppose 

omega 1 and omega 2. So, corresponding to omega 1  I have samples and corresponding 

to omega 2 I have also the training samples. So, with  the help of these training samples I 

have to determine the best weight vector and if  I can determine the best weight vector that 

is actually the best discriminate function.  So, that the misclassification will be 0 that means 

all the samples will be correctly classified. 

 

  So, my objective is to determine the best weight vector from the training samples of  the 

classes and that is called the perceptron criterion. So, today I am going to discuss  about 

this concept. So, how to determine the best weight vector from the training samples  of the 

classes. So, beginning I will be considering only two classes and that principle can be  

extended for multiple classes. So, let us begin this class that perceptron criterion. 



 

  So, in my last class I discussed the concept of the discriminate function  and we considered 

linearly separable classes. So, if I consider the linear discriminate  function the expression 

is  

𝑔(𝑋) = 𝑤𝑇𝑥 + 𝑤0 

So, W is the weight vector  and W naught is the bias or the threshold weight and x is the d 

dimensional Feature vector.  And based on this discriminate function I can take 

classification decisions. So, if  gx is greater than 0 then I have to assign the Feature vector 

to the class omega 1 and  gx less than 0 that means the x should be assigned to the class 

omega 2 and gx is equal  to 0 actually this is the equation of the decision boundary and 

corresponding to this  I cannot take any decision. 

 

 So, we have to find the nature of the weight vector and in  the last class also I have shown 

what is the physical interpretation of this discriminate  function.  So, we have derived like 

this gx is equal to R W norm. So, this is the interpretation  that means it is the distance of 

the point x from the hyper plane and it is scaled by  the norm of the weight vector that is 

the interpretation of the discriminate function.  So, that is gx is the algebraic measure of x 

from the decision surface H and also we  have determined distance of the hyper plane from 

the origin. So, the distance of the origin  from the hyper plane is H. 

 

 So, that expression also we have determined and that is nothing  but W naught divided by 

W norm this W naught that is the bias it is positive when the origin  lies on the positive 

side of the hyper plane and vice versa.  And if W naught is equal to 0 suppose if I consider 

if W naught that is a bias is equal  to 0 then what is the meaning of this the hyper plane 

passes through the origin and  corresponding to this the discriminate function will be gx 

will be W transpose x because the  bias is 0 and this form is called the homogeneous form. 

From the computational point of view  we have to consider the homogeneous form. Now, 

what we have to consider now how to design  the weight vector which one is the best 

weight vector for the best discriminate function  because the discriminate function depends 

on the weight vector.  So, I have to design the best weight vector. 

 

 So, this weight vector I can design based  on the training samples of the classes. So, I have 

the training samples for different  different classes and based on these training samples I 

have to design the weight vector  the weight vector is W. So, let us move to the next slide.  

So, design of weight vector W. So, how to design the weight vector?  

So, for this let  us consider the two class problem that is a two category problem  

and we are considering  linearly separable case. 

 



 So, this concept can be extended for multiple classes. So,  you know that 𝑔(𝑋) = 𝑤𝑇𝑥 +

𝑤0 

. So, we have to convert it to  homogeneous form to convert into homogeneous form.  So, 

gx can be written like this A transpose y.  

So, this expression I am writing in this  form and that is the homogeneous form. 

 

 So, in this case y is the augmented Feature vector  is y is the augmented Feature vector 

that means this y is nothing but we have the d  dimensional Feature vector. So, x1 x2 up to 

xd and 1 is appended here. So, this is the  augmented Feature vector and the vector is the 

modified weight vector. So, this vector  A this is the modified weight vector. So, in this 

weight vector all the components of  W and also the bias W naught is considered. 

 

  So, now how to write gx is equal to A transpose y and we have the modified weight vector.  

So, in the modified weight vector we are considering all the components of W. So, this is 

W1 W2  up to Wd and also the bias weight we are considering this is the modified weight 

vector and after  this we are considering augmented Feature vector. So, augmented Feature 

vector is x1  x2 xd 1. So, this we have considered that is equal to the summation from i is 

equal  to 1 to d Wi xi plus W naught. 

 

 So, that is actually equal to W transpose x plus W naught.  So, here we are converting the 

previous equation gx is equal to W transpose x plus W naught  into homogeneous from and 

for this what we are considering the augmented Feature vector  we are considering and we 

are considering the modified weight vector. Now, let us consider  about the decision rules. 

So, move to the next slide.  So, what is the decision rules? So, the decision rules will be 

the A transpose yi is greater  than 0 then yi is the modified Feature vector and what is the 

corresponding original Feature  vector the corresponding original Feature vector is xi. 

 

 So, xi belongs to the class omega 1.  So, I am repeating this if the condition the A transpose 

yi is greater than 0 then  this yi is nothing but the modified Feature vector and what is xi 

that is the original  corresponding Feature vector. So, xi belongs to omega 1 and if it is less 

than 0 this A  transpose yi is less than 0 that means what I have to consider this is the 

modified Feature  vector modified Feature vector is yi xi is the original corresponding 

Feature vector xi  will be assigned to the class omega 2.  So, now how to design the weight 

vector A by considering or by using the knowledge of  the samples corresponding to omega 

1 and omega 2.  

So, I have the samples for class  omega 1 I have also the samples for the class omega 2. 

 

 So, with the help of the knowledge  of the samples corresponding to omega 1 and omega 



2 I have to design the weight vector.  So, that is the problem. So, we consider augmented 

samples. So, we are considering suppose n  number of samples and these are actually the 

training samples. So, with the help of  these training samples I have to design the weight 

vector and corresponding to this suppose  I have the augmented Feature vector. 

 

  So, these are the augmented Feature vectors. Some of the Feature vectors are labeled as  

omega 1 and some of the Feature vectors are labeled as omega 2. So, that means what is  

the decision rule now the decision rule is if A transpose yi is greater than 0 that means  yi 

will be assigned to the class omega 1 and if it is less than 0 yi will be assigned to  the class 

omega 2. So, these are two conditions and we have to determine the weight vector  A to 

satisfy these two conditions. Now in this case we are considering two decision  criteria. 

 

 So, instead of considering two decision criteria whether it is possible to determine  only 

single criterion that is only the single condition we will be considering and if a  condition 

is satisfied then the samples are classified correctly and if it is not satisfied  samples are 

not correctly classified. So, that means instead of considering these two  conditions I want 

to determine only one condition and based on this I have to do the classification.  So, if a 

particular condition is satisfied the samples will be classified correctly and  if the condition 

is not satisfied the samples are not correctly classified. So, that means  what we can 

consider A transpose yi here in this case we are considering two conditions  for 

classification I want to make only one condition. So, A transpose yi is greater than  0 that 

means we will be considering this condition A transpose yi greater than 0 and  

we do not  see the label of yi. 

 

 So, only we will be considering this condition and that is the single condition  and this 

condition the A transpose yi is equal to 0 that means we cannot decide.  So, corresponding 

to this condition we cannot decide that means the samples may belong to  the class omega 

1 or they may belong to class omega 2 that we cannot decide. So, we are  considering this 

single condition with the help of the single condition let us determine  the classification 

conditions. So, how to do the classification with this single condition. 

 

  So, move to the next slide. So, what I am doing for this single condition samples belonging  

to the class omega 1 is augmented and take as it is. So, this is for the samples belonging  to 

the class omega 1 and the samples belonging to the class omega 2 is augmented  and 

negated. So, this is for the samples belonging to the class omega 2. So, they are augmented  

and negated also. So, my samples will be correctly classified irrespective of samples  

belonging to the class omega 1 or omega 2. 

 

 So, now I have to design a criterion function  and with the help of this criterion function I 

have to decide or I have to determine the  best weight vector. So, you can see how we are 



considering now that for a single criterion  what we are considering the samples belonging 

to the class omega 1 is augmented and take  as it is and samples belonging to the class 

omega 2 is augmented and negated.  So, now we are considering one criterion function to 

design the classifier. So, the criterion  function we are considering. So, what is this criterion 

function? J A is the criterion  function we are considering. 

 

 So, it has to be minimized for which A is the correct weight.  So, I can write here has to 

be minimized for which A is the best weight vector. That  means the weight vector which 

can classify all the samples correctly and A is the best  weight vector which minimize the 

criterion function. So, I am repeating this that means  we are determining the best weight 

vector. The weight vector which can classify all the  samples correctly is the best weight 

vector which minimize the criterion function J A. 

 

  So, to determine the best weight vector I have to consider this criterion function because  

I have to consider the minimization of the criterion function. So, for this we are considering  

one algorithm and that algorithm is the gradient descent approach. So, with this approach 

I  want to find the best weight vector and for this I have to minimize this criterion function.  

So, I have to minimize this criterion function for which A is the best weight vector. That  

means I want to classify all the samples correctly and corresponding to this A is the best 

weight  vector which can classify all the samples correctly and for this we have to minimize  

this criterion function. 

 

 So, what is the gradient descent approach. So, suppose A k  we are considering the value 

of A in the kth iteration. So, this is the value of A in the  kth iteration. This is an iterative 

algorithm and after the first iteration A is equal to  k plus 1 my updation rule is like this A 

k that is the value of A in the kth iterations  A k minus eta and we are taking the gradient 

of the criterion function. So, this is the  equation corresponding to this gradient descent 

algorithm. 

𝑎(𝐾 + 1) = 𝑎(𝐾) − 𝜂𝛻𝐽(𝑎(𝐾)) 

 So, in this case this eta is the  learning rate. So, let us see what is the physical interpretation 

of this equation.  So, move to the next slide what is the physical interpretation of this and 

let us explain  this condition. So, what we have obtained at k plus 1 iteration A k plus 1 is 

equal  to A k minus eta is the learning rate and we are taking the gradient of A k this is  the 

equation of the gradient descent algorithm.  

Suppose I am plotting J A that is the criterion  function with respect to A. 

 

 So, this criterion function is suppose it is like this it is  a minima. So, it is like this and 

suppose corresponding to the iteration A k. So, this  is my value corresponding to A k in 

the kth iteration that is the value of the criterion  function. Now I have to determine the 



gradient of this at this point.  So, if I determine the gradient of this you can see I will be 

getting the gradient along  this direction. 

 

 So, gradient will increase in that direction, but because of this minus  sign in this equation 

if you see the minus sign in this equation here I have to move  in the opposite direction. 

The opposite direction is like this I have to move in the opposite  direction because of the 

negative sign. So, the gradient will increase in the upward direction  because I am taking 

the gradient, but I have to move in the opposite direction.  And after this suppose if I 

consider F k plus 1. So, suppose we are considering this is  the value F A k plus 1 iteration 

that means in the next iteration if I consider eta is  very high very large that means the 

overshooting of the value that means if I consider A k  plus 1 is like this. 

 

 So, this gradient so it may go to this point if the eta is very  large the eta is very large. And 

after this it may move to this point and again it may  move to this point that means 

overshooting the value and that means the oscillation is  taking place if eta is very high. 

So, if I consider eta is small. So, if I consider  eta is very small. 

 So, that means it will go to this point again it will go to this  point it will go to this point 

and finally it will get the minimum point. 

 

 So, minimum  point I will be getting. So, if the eta is very very small then the convergence 

will  take time. So, you can see we are moving in the opposite direction of the gradient and  

if I select the large value of eta then you can see the overshooting is taking place and  that 

is nothing but the oscillation. And if I consider eta is very very small then the  convergence 

will take time.  So, this is the convergence for eta which is small and this is the convergence  

for eta is very high. So, you can see I am showing the conditions for the convergence  one 

is eta is very very small another one is eta is very high and you can see this is  the minimum 

point. 

 

 So, we have to find this point the minimum point. So, what we can consider  this is actually 

the steepest descent algorithm or the steepest descent procedure that means  we have to 

follow negative of gradient and the initial arbitrary weight vector we can  select.  So, 

initially what we can consider any arbitrary weight vector we can consider for this gradient  

descent algorithm that is the steepest descent algorithm. So, it is also called the steepest  

descent procedure that means we have to follow the negative of the gradient. Now let us 

consider  what type of perceptron criterion we can consider for classification of the 

samples.  Now let us consider how to define some criterion function. 

 

 So, with the help of this criterion  function we can determine the best weight vector. So, 

one such criterion function is  the perceptron criterion. So, that I will be explaining in my 

next slide. So, move to  the next slide. 



 So, we are considering one criterion function and that is the perceptron  criterion. 

 

  This perceptron criterion it is actually based on the samples which are not correctly 

classified.  I have to design the classifier which is based on the samples which are not 

correctly classified.  So, this is the perceptron criterion because the samples which are 

correctly classified  we do not have any problem, but the samples which are not correctly 

classified we have  to take care. So, that is why this perceptron criterion it depends on the 

samples which  are not correctly classified.  So, what is this perceptron criterion? So, let 

us consider k as instant and corresponding  to this suppose the weight vector is ak. 

 

 So, actually k represents the iteration number.  So, a is the weight vector and k is the 

iteration number. So, this ak should correctly classify  all the samples. So, ak is the weight 

vector and ak should correctly classify all the samples  so, that means, a transpose k already 

I told you k is the iteration number that means,  if a transpose k y is greater than 0 that 

means, correctly classified a transpose k  y less than 0 or I can say another condition a 

transpose k y is equal to 0.  So, for these two conditions, the samples are not correctly 

classified. 

 In fact, the  third condition a transpose k y is equal to 0, we cannot take a classification 

decision. 

 

  So, samples may belong to any one of the classes. So, we cannot take any classification 

decision  corresponding to the condition a transpose k y is equal to 0. So, what is my 

objective?  Objective is to find a transpose k y should be greater than 0 for all the samples. 

That  means all the samples belonging to all the classes should be correctly classified. So,  

we have to find the weight vector ak so that all the samples are correctly classified and  we 

will consider all the samples which are not correctly classified by the weight vector  ak 

because this perceptron criterion it is based on the samples which are not correctly  

classified.  So, I have to give the importance to that samples, the samples which are 

correctly classified  I do not have any problem. 

 

 So, the samples which are not correctly classified we are  considering that one. So, that 

means we will consider all the samples which are not correctly  classified by the weight 

vector ak. So, this perceptron criterion function j p a. So, j  p means the criterion function 

and p means the perceptron criterion I can define like  this summation minus a transpose y 

and for all y which are misclassified.  So, what we are considering if a particular sample is 

misclassified so that means I have  to modify the weight vector a and if a sample is 

misclassified a transpose y is negative  and minus a transpose y will be always positive or 

it may be also 0. 

 

 So, I am repeating this  if a sample is misclassified a transpose y is negative and minus a 



transpose y will be  always positive or maybe 0 this is the condition. Now I have to take 

the gradient of this.  So, gradient with respect to a j p a. 

 So, it is equal to summation minus y and for all  y which are misclassified. 

 

 So, we are taking the gradient with respect to a. So, what is  the updation rule for the 

weight vector because we are designing the best weight vector. So,  what is the weight 

updation rule for the weight vector.  So, move to the next slide with updation rule. So, the 

initial weight vector  a 0.  

So, we are selecting arbitrarily and at the k plus 1 iteration a k plus 1. 

 

 So,  a k that is the weight updation rule it at the learning rate and if you see the previously  

we considered minus. So, minus minus it will be plus now. So, summation y because this  

minus minus will be plus in the gradient descent algorithm it was minus. So, in the 

perceptron  criterion it is minus summation for all minus that is the misclassified samples.  

So, this minus minus it will be plus and for all y which are misclassified. 

 

 So, this  is the weight updation rule. So, we have to consider this rule the weight updation  

rule. So, if I apply this algorithm we can finally find the weight vector which can classify  

all the samples correctly. So, we can find the best weight vector which can classify  all the 

samples correctly.  So, here this summation for all y which are misclassified this is actually 

the sum of  samples misclassified in the previous iteration. 

 

 So, this is the  weight updation rule. So, what is the geometrical interpretation of this 

algorithm? So, what  is the geometrical interpretation of this algorithm that is the weight 

updation rule  and the perceptron criterion. So, we are classifying the samples belonging 

to different classes  and we are finding the best weight vectors.  So, the illustration I can 

show in the next slide corresponding to this discussion. So,  to the next slide suppose I have 

a 2 dimensional spatial space. So, these are 2 dimensional  feature space x1 and x2 and I 

have the samples belonging to the class omega 1  

and I have  some samples belonging to the class omega 2. 

 

 So, suppose these are my samples belonging  to class omega 1 these are the samples 

belonging to the class omega 1 and I have some samples  belonging to the class omega 2. 

So, suppose these are my samples  belonging to the class omega 2. So, as per this perceptron 

criterion what we have considered  the samples belonging to the class omega 1 is 

augmented and take as it is and samples  belonging to the class omega 2 is augmented and 

negated.  So, these samples belonging to the class omega 2 they are augmented and negated. 

 

 So, that  means I have to do the negation. So, if I do the negation you can see it will be 



something  like this. So, samples are negated. So, negated samples corresponding to the 

class omega 2.  So, now this will be the class omega 2 after the negation. 

 

 Now I have to find the best  decision boundary between these classes. Suppose if I consider 

this decision boundary. So,  corresponding to this decision boundary you can see there is 

no misclassification. So,  all the samples belonging to the class omega 1 are correctly 

classified and all the samples  belonging to the class omega 2 they are also classified.  So, 

suppose if I move this decision boundary to the limiting condition. 

 

 So, limiting case  will be like this. This is the limiting case. So, beyond this I cannot move 

because I am  moving in this direction in the counterclockwise direction beyond this if I 

move then there  will be misclassification of the nearby samples. So, I cannot move the 

decision boundary beyond  this limiting point or I can say that limiting position beyond 

this limiting position I cannot  move the decision boundary. And corresponding to this what 

is the weight vector? The weight  vector is always perpendicular to the decision boundary. 

So, this is my weight vector corresponding  to this decision boundary. 

 

 This is the perpendicular to the decision boundary.  Similarly, if I move this boundary in 

the clockwise direction what is the limiting case?  So, which one is the limiting case? I 

want to show here. The limiting case. So, I can  move up to this point and beyond this I 

cannot move because if I move then what will happen?  The misclassification will take 

place. And corresponding to this what is my weight vector?  This is my weight vector that 

is perpendicular to the decision boundary. 

 

 This is perpendicular  to this decision boundary. So, my solution region is this. So, within 

this region I have  to find my weight vector. So, this is the weight vector W this is the 

weight vector  and between this I have to find my weight vector and this is the solution 

region.  So, this is the interpretation of the discussion what I have discussed about the 

steepest descent  algorithm and also the concept of the perceptron criterion. So, this is the 

geometrical interpretation  of this. So, I have to find the best weight vector and you can see 

I have shown the solution  region. 

 

 So, within this region my weight vector will be available. So, that is the interpretation  of 

the previous discussion about the perceptron criterion and also the steepest descent 

algorithm.  In this class I discussed the concept of determining the best weight vector for a 

classifier. So,  how to determine the best weight vector that means I have to classify all the 

samples belonging  to different classes correctly. The samples belonging to the class omega 

1 and the samples  belonging to the class omega 2 should be correctly classified. 

 

 And for this I am determining  the best weight vector. So, I am applying the techniques 



like the steepest descent algorithm  or the gradient descent algorithm to determine the best 

weight vector.  In the steepest descent algorithm I have to move in the opposite direction 

of the gradient.  After this I discussed the concept of perceptron criterion and with the help 

of this   you can see how we can determine the best weight vector for a particular classifier.   

So, if I can determine the best weight vector and that corresponding discriminate function   

I can determine. 

 

 So, in my next class also I will be continuing the same concept.  So, let me stop here today. 

Thank you. 


