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   Welcome to NPTEL MOOCs course on machine learning and deep learning 

fundamentals and applications.  In my last class, I discussed the fundamental concept of 

Parzen window. So in the Parzen  window, I considered the volume is fixed. And we have 

counted the number of samples  within this particular volume. And based on this we can 

determine the density. The density  is Pn x that is the nth estimate of the density. 

 

  There are two issues. The one issue is if the volume is very, very large, that is the  volume 

is Vn, if the volume is very, very large, then the estimate will suffer from  less resolution. 

That is the first issue. The second issue is if the volume is very,  very small, then the 

estimate will suffer from statistical variability. 

 

 So these two  issues are very important. Now suppose n is very, very high, that is the 

number of samples  are very, very high. Then in this case, the volume may be very, very 

small. That means  within this small volume, we can expect that some of the samples will 

fall in this volume.  So when n tends to infinity, the volume may be very, very small. 

 

 So that is another consideration.  Now I will discuss the concept of convergence. We have 

determined the nth density that is  the Pn x we have determined. Now what are the 

conditions for the convergence, that is  the convergence from Pn x to Px, that is the actual 

density.  

So there are two conditions. 

 

  One is the convergence of mean and another one is the convergence of variance. So these  

two conditions we have to consider for convergence of the nth estimate of the density to 

the  actual density, the actuall density is Px. So let us discuss about these convergence 

conditions.  One is the convergence of the mean and another one is the convergence of 

variance.  So in my last class, I discussed the concept of Parzen window. 



 

 So in the Parzen window,  we can determine the nth estimate of the density, that is the Pn 

x, that is actually the pdf,  the probability density function at the point, the point is x, that 

is  
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So in my last class, I discussed  about this. So we considered a delta function, that is this 

delta nx actually  the meaning is the delta nx is actually the impulse at the point, the point 

is x.  

So it  is the impulse. 

 

 So based on this condition, we can express the density, the density is  equal to 1 by n 

summation i is equal to 1 to n delta n x minus xi. So this is the formula  for the density, the 

estimated nth density. Now there are two conditions already I have  explained if the volume 

Vn is very, very small, the volume Vn tends to 0, what will happen  this estimated density, 

the nth density that is nothing but the summation of impulses at  every sample points.  So 

actually that corresponds to much statistical variability.  

So this is the first case if  Vn tends to 0, Vn is very, very small, then the estimated density 

that is the summation  of impulses at every sample point. 

 

 And the second case is if this volume Vn is very high,  it tends to infinity, very large. So 

this Pn x that is the estimated density, so it  will be a flat PDF. So already I told you it is 

nothing but the superposition of n number  of slowly varying functions. So that is why I 

am getting the flat PDF. So that corresponds  to less resolution. 

 

 So these are the two important cases that volume is very small and volume  is very high. 

So what we considered if n tends to infinity,  then volume may be very, very small that we 

can consider because since n is very, very  high the number of samples is very high, then 

we can expect that some of the samples will  fall in this small volume, the volume is Vn. 

Now let us discuss about the conditions for  the convergence.  Let us consider this nth 

estimate of the density has mean, it has a mean, the mean is represented  by Pn x bar and 

the variance sigma n square x. So we are considering the mean is Pn x  bar and variance is 

sigma n square x. 

 

 So now this estimate that is the nth estimate  converges to the actual density, actual density 

is Px. So what are the conditions? The conditions  converges if limit n tends to infinity Pn 



x that is the mean that will be equal to the  actual density Px. So that means what is the 

condition? The number of samples should be  very, very high. And if I consider n is very, 

very high, then  corresponding to this condition n is very, very high and tends to infinity 

and corresponding  to these conditions the variance will be also 0, the variance will be 0. 

And also the supremum  phi u, phi u is the window function that should be less than infinity, 

the supremum of phi  that should be less than infinity. 

 

 So what is actually the supremum? So do you  know what is the meaning of supremum? 

The supremum here I am writing, supremum is actually  it is a smallest number  that is 

greater than or equal to every number in a set. So this  is the definition of supremum. It is 

the smallest number that is greater than or equal  to every number in a set. So that is the 

definition of the supremum.  

So I repeat this, a supremum  is the smallest upper bound on a set. 

 

 And also another condition is this limit Vn, n  is very, very high and tends to infinity and 

corresponding to this, the volume may be very,  very small. And another condition is limit 

n Vn because n is very, very high and tends  to infinity. So this n Vn will be equal to 

infinity. So these are the conditions we are  considering so that this nth estimate of the 

density converges to actual density, the actual  density is Px. 

 So now let us discuss about these conditions. 

 

  So there are two conditions already I have explained. One is the convergence of the mean,  

another one is the convergence of the variance. So let us discuss about these conditions.  

So first is the convergence of mean. So this is the first condition, the convergence of  the 

mean. 

 

 So we can determine the average density of Pnx that is nothing but the expected  value of 

the estimated density. So if I take the average of this, I can determine the mean.  So it is 

equal to 1 by n summation i is equal to 1 to n expected value that is the average  value 1 

by Vn pi x minus xi divided by hn. So this is the mean. And in this case what  we have 

considered the delta function is this delta nx is nothing but 1 by Vn pi x  by hn. 

 

 So this is the delta function that is the impulse function. And this expression  I can write 

like  

𝜌𝑛(𝑥) = ∫ 𝛿𝑛(𝑋− 𝑉)𝜌(𝑉)𝑑𝑉 

So this expression I can write like this and in terms of this delta function, so in terms  of 

this delta function, I can write this delta nx minus V, V is the volume, the density  in terms 



of volume dV. So I can write like this. This is actually this rho V is nothing  but this density 

x. 

 

 So if you see this expression, the expression is very important that is the  mean we can 

determine like this. So mean of the estimated density x minus V rho V,  so dV. So this is 

the expression. So this is one important expression. So this expression  you need to 

understand. 

 

 So this is the average that is the mean we have determined.  So what is the interpretation 

of this expression? The interpretation of this expression is if  you see this expression 

minutely, you can see it is the convolution of actual or unknown  density with the delta 

function. So this expression is nothing but the convolution  of the actual or the unknown 

density. The density is PV with the delta function. So  that means in this case the mean 

actually, this mean actually represents the blurred  because we are taking the average. 

 

 So blurred version of the actual density, the blurred  version of the actual density.  So now 

let us discuss what is the conditions for the convergence. So let us move to the  next slide. 

So I am writing this equation again and that is the mean value of the estimated  density I 

can write like this. This is the delta function x minus V rho V dV. 

 

 So that  is nothing but the convolution of the actual or the unknown density with the delta 

function.  Now when VN tends to 0, that is the volume approaches 0, then delta N x minus 

V that  is the delta function, the meaning will be this delta function will be centered at x.  

So if I consider VN tends to 0, then the delta function will be centered at x. So that  means 

I can say then this mean approaches the actual density Px as N tends to infinity.  N is very 

very high, then this volume VN may be very very small. 

 

 So one important thing  is that is if the N is very very high, then we can consider a very 

small volume. That  means we can expect that some of the samples will fall in this small 

volume. So you can  see the conditions for the convergence, the volume should be very 

very small and corresponding  to this, this is the condition for the convergence.  The one 

important thing is N need not be very high.  

So I can say N need not be infinity,  but the VN tends to 0. 

 

 The VN should be very very small. Now let us discuss the second  condition that is the 

convergence of the variance. So this variance, this is the variance  of the estimated value 

of the density, that is the Nth estimate of the density. So that  is obtained like this. So i is 

equal to 1 to N expected value. So from the definition  of the variance we can determine 

like this expected value 1 by N VN pi x minus xi divided  by hN minus 1 by N. 

 



 This is the mean, mean of the estimated density square. So you can  see this is the 

expression for the variance.  So this expression I can write like this. If I take N out from 

the summation sign, i  is equal to N expected value 1 by N square VN square pi square x 

minus xi hN minus 1  by N square PN square x and I can write like this. 

 

 Now let us consider this term. So if  I consider this term suppose, this term I can write like 

this, this star term I am showing.  This is 1 by N square VN, I can write like this expected 

value 1 by VN pi x minus xi  hN pi x minus xi hN like this. I can put like this, this position, 

this term I am showing  like this here. So based on this I can expand that variance the sigma 

N square is equal  to N summation i is equal to 1 to N. 

 

  So after expansion I am getting this one. So the next step is 1 by N VN, I am taking  it out 

the integration 1 by VN, the pi is the window function x minus V hN pi x minus  V hN PV 

dV minus 1 by N PN square x that is the mean square x. So in this case what  I am 

considering this term, if I consider this term that I can consider as the supremum  of pi, we 

can consider like this. So that means we are dropping in this case, dropping  the second 

term. In this case how actually we obtain the dropping the second term and  using the 

equation what equation? So equation already we know that is the mean of this estimated  

value of the density that is nothing but the delta N x minus V. 

 

  So we have derived this equation dV. So by using this we are getting this one, this 

expression.  So now what is the conditions for the convergence? This variance sigma N 

square should be less  than supremum of pi and the mean of PN x that is the mean value of 

the estimated density  N VN. That means what we are considering taking the maximum 

value of pi. So that is  the supremum we are considering. Now what condition we need? 

The variance should be  0, the variance tends to 0. 

 

 This is the required condition. So corresponding to this condition  what will be the case? 

N VN should be equal to infinity. So this is the case. To get sigma  N square tends to 0, the 

sigma N square that is the variance should be very very small.  The N VN should be equal 

to infinity. 

 

 So move to the next slide. So what we have considered?  We have considered that this 

variance should be very very small. This is the condition  and corresponding to this 

condition N VN should be equal to infinity. That is the condition.  And again the supremum 

of pi should be less than infinity. So pi U that is the window  function should be equal to 0 

when U J tends to infinity. 

 

 The supremum of pi should be  infinity. So these are two conditions. And based on these 

two conditions you can see  we have obtained the condition. The condition is the 



convergence of the variance. So this  is about the convergence. The one is the convergence 

of the mean and another one is the convergence  of the variance corresponding to Parzen 

window. 

 

  Now let us discuss the second concept that is the K nearest neighbor technique. So what  

we have considered in the KN nearest neighbor technique? What we have fixed that KN is 

fixed  and we are growing the volume so that it encloses KN number of samples. That 

means what we have  to determine? Find a volume VN which encloses KN number of 

samples. So this KN is fixed,  the number of sample is fixed and we have to grow the 

region. We have to increase the  region so that this volume encloses the KN number of 

samples. 

 

  And based on this we can determine the density. So what is the estimate of the density? 

The  Nth estimate of the density is KN divided by N divided by VN. So what is N? N is 

the  total number of sample. KN is the number of samples within this volume. The volume 

is  VN. So this is actually the probability that the sample falls in a region and the region  

has a volume, the volume is VN. 

 

 Now this KN we can select like this KN is equal to  root N that is actually data dependent 

way. So KN is equal to root N and that is selected  based on this data dependent way. So 

based on this we can determine the VN what is the  volume? So KN divided by N divided 

by density. So from this expression we can determine the  density. 
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 So if you  see this expression the VN is equal to so this is one important equation. So VN 

is equal  to 1 by root N into 1 by PN x. So what is the interpretation of this equation? If the  

density of the training samples is high around the point x then the region will be small  and 

vice versa. So this is the concept of the density estimation by KN nearest neighbor  

technique.  So what we have considered? So we are considering the point x and we are 

considering the regions  centered at x. 

 

 So that means I can say each region is centered about  the point x that is actually in R to 

the power d space the d dimensional space. So  what we have to consider the size of the 

region is expanded until it encloses KN number of  samples. So move to the next slide we 

have obtained the volume VN is equal to 1 by root  N into 1 by PN x. So if you see the 

density of the training sample is very high around  the point x the region will be very very 

small and vice versa.  So now you can see the size of the region is expanded until it  encloses 



KN number of samples. 

 

 So where KN is a function of N that is already I have  explained actually the KN is equal 

to root N. So then these samples are the KN nearest  neighbor of the location x. So I can 

write like this. So these samples  are then the KN nearest neighbor of the location x. So 

these samples are then the KN nearest  neighbor of the location x. 

 

 Now let us discuss how this K nearest neighbor technique can  be employed for 

classification.  So in the base classification technique so what we considered suppose this 

probability  of omega i that is the class given x is greater than the probability of omega j 

given x. So  this is the condition we considered for classification. So that means 

corresponding to this condition  I have to select the class the class is omega i this class we 

have to select. So now how  to write this probability of omega i given x I can write like this 

this probability of  x omega i divided by the probability of x I can write like this. 

 

  So this can be written like this Ki divided by NVN and this K by NVN. So that is equal  

to Ki divided by K. So this actually this K is nothing but summation of all the Ki's  

summation of all the Ki's. So this evidence Px the evidence Px so it is nothing but the  

summation of probability of x and given omega i. 

 

 So that is nothing but the summation of  Ki divided by NVN. So this Ki actually represents 

these are the training samples or these are  the samples corresponding to the class the class 

is omega i.  So Ki is the samples corresponding to the class omega i and how many samples 

we are  considering total number of sample is K. So for all the classes if I do the summation  

of this Ki's then I will be getting the total value the total value is K. So Ki is the sample  

corresponding to the class omega i. So if you see in the base classification we have  

considered this decision rule if the probability of omega i given x is greater than probability  

of omega j given x then in this case I have to consider the class omega i. 

 

  That means the meaning is x is assigned to the class omega i. So this is the case and  by 

using the bayes rule we can write like this the probability of omega i given x is equal  to 

probability of x given omega i divided by evidence. So we are not considering that  this 

prior information. So probability of x given omega i that I can write like this  Ki divided 

by nVn and this Px already I have shown it is nothing but the summation Ki divided  by 

nVn. So that is nothing but the K nVn the Px I can determine like this. So putting this  value 

I will be getting this one and I will be getting finally Ki divided by K. 

 

  So I am writing it again. So what we have determined the probability of omega i given  x 

is nothing but Ki divided by K. So that means the meaning is the fraction of samples  in 

the region R with level omega i. So that means the corresponding to the class omega  i my 



samples are Ki. So now if Ki is greater than Kj then based on this we can take a 

classification  decision that means we have to select the class. If the Ki is greater than Kj 

then we  can consider the x should be assigned to the class omega i. 

 

 So we can take a decision based  on the voting process. So based on the voting process we 

can take a classification decision.  So how to do that is voting the voting process that means 

we have to count the Ki's. The Ki  is the number of samples corresponding to the class 

omega i and Kj is the number of  samples corresponding to the class omega j. So if Ki is 

greater than Kj then we have to  select the class omega i. So this is the classification rule 

based on the K nearest neighbor technique. 

 

  Now mainly it is a voting process. So let us discuss how actually we can do the 

classification  decision by considering this voting process. In this figure you can see we are 

considering  a new data point that is the blue color data point and I have two classes the 

class A and  class B. So in the first figure you can see I am considering a new data point. 

After this  what we have to consider we have to find the distance between the new data 

point and the  corresponding samples of two classes. So based on the nearest neighbor 

distance I can  assign this new data sample to a particular class. 

 

 So here you can see in the figure 2  the new data point is assigned to the class omega 1 

that is the category 1 the class A  because the distance is minimum with respect to the 

category A that is the class A omega  i. So this class I can say it is omega i and this class I 

can say it is omega j two  classes we are considering. So this point is now assigned to the 

class omega i because  the distance from this new point to these samples of the class A is 

small as compared  to the class B the category B. So let us see how actually we can do the 

voting. 

 

  So based on the voting we can take a classification decision. So here you can see in the 

first  figure we are considering three classes one is the yellow one is the green and another  

one is the red. So three classes we are considering and these are the samples of the classes 

three  classes and we are considering a data point the new data point is the gray color. So 

this  is a gray color data point we are considering. So corresponding to this point this data 

point  we are finding the distance between the samples. 

 

 So the first distance is 2.1 and another distance  is 2.4 corresponding to the class the class 

is the yellow. After this corresponding to  this green the one nearest distance is 3.1 and 

corresponding to that is red class I can  say the orange class the distance is the 4.5 this is 

the nearest distance. So after computing  these distances you can see the first distance, the 

nearest neighbor distance is 2. 

 



1. So 2.1  is the first nearest neighbor distance corresponding to the class yellow. Again 

the second nearest  neighbor distance is 2.4 corresponding to the class yellow. The third 

nearest neighbor  is distance is 3.1 testifying to the class green and the fourth nearest 

neighbor distance  is 4. 

 

5 corresponding to the class red or the orange. So in this case, you can see how  many votes 

I can give to the class yellow. So because you can see two times it is the  nearest neighbor 

corresponding to the class yellow. So that means the yellow class it  will get the vote of 2 

and the green class will get the vote of 1 and the red class it  will get the vote of 1. So that 

means that this new data point now will be assigned to  the class the class is yellow. 

 

 So these three classes I can consider like this omega i,  omega j and omega k. So that 

means this new data point is suppose x. So now x will be  assigned to the class omega i 

because corresponding to this class omega i, I will be getting the  maximum number of 

votes I will be getting because I have two votes corresponding to  the class omega i and 

based on this new data point x is assigned to the class the class  is omega i that is the yellow 

class. So this is the concept of the KN nearest neighbor  algorithm for classification. So we 

have to find the distances. 

 

 So that is why it is computationally  complex because we have to find all the distances. So 

that is why computationally it is more  complex. So in this figure also the same thing I have 

explained. So you can see the new data  point we are considering and we are considering 

two classes class A and class B. So that is  suppose omega i and this is suppose omega j 

and after this we are finding the distance  in the second figure and after this we are counting 

number of votes. So how many votes  it is getting and based on this nearest neighbor I can 

decide the class the corresponding class. 

 

  So this is the concept of the KN nearest neighbor classification. So in this class I have 

explained  two important concepts. One is the Parzen window technique and another one 

is the KN  nearest neighbor technique. In the Parzen window technique we have considered 

the convergence  of mean and the convergence of variance. These two important issues we 

have considered.  That means the convergence of the estimated value of the density that is 

the Nth estimate  of the density approaches the actual density. 

 

 Actual density is Px. So for this we have  considered the two cases. One is the convergence 

of the mean another one is the convergence  of the variance. After this I have discussed 

how to determine the density with the help  of the KN nearest neighbor technique. In the 

KN nearest neighbor technique we are fixing  the number of samples that is the KN we are 

fixing. And after this we are growing the  region so that it encloses KN number of samples. 

 



 And based on this we can determine the density.  After this I discuss the concept of 

classification with the help of the KN nearest neighbor technique.  So it is mainly the 

concept of voting and that means we can find the nearest neighbor  based on the distance 

calculation and based on this we can take a classification decision.  This is about the Parzen 

window technique and the KN nearest neighbor technique. So  let us stop here today. Thank 

you. 


