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 Welcome to NPTEL MOOCs course on machine learning and deep learning fundamentals 

and applications.  I have been discussing about the Bayesian decision theory. In the 

Bayesian decision  theory, I have to determine the probability of omega i given x that is 

the posterior probability.  And that can be determined by considering two information one 

is the likelihood that  is the 𝑃(𝑥/𝜔𝑖) that is also called the class conditional density.  And 

also another information is the prior probability that is probability of 𝜔𝑖.   

And in the Bayesian decision theory already I told you that in case of the Bayes law,  the 

evidence has no role in classification. 

 

 It is same for all the classes. So, it is  simply a normalizing factor. So, that should not be 

considered. So, we need these two information  one is the class conditional density the 

probability of x given omega i and another one is the  probability of 𝜔𝑖. 

 

 But in many cases, some information are not available. For example,  the class conditional 

density 𝑃(𝑥/𝜔𝑖) the density from is known  that is we know what is the density, but we do 

not know about the values of the parameters.  So, for example, if I consider a Gaussian 

distribution or the normal distribution, it  has two parameters, one is the mean another one 

is the variance. So, if I consider the  multivariate case, one is the mean vector and another 

one is the covariance matrix.  So, we do not know about the values of these parameters. 

 

 So, we have to estimate these  parameters. So, the first problem is the density from is 

known that means the density  of the class conditional density that is known, but we do not 

know the values of the parameters.  So, we have to estimate the parameters and there are 

two popular techniques one is called  the maximum likelihood estimation and another one 

is called a Bayesian estimation. So, this  is called a parameter estimation. In the non-

parametric methods, the density from is not known. 

 



  The density from of that is the 𝑃(𝑥/𝜔𝑖) that density from is not  available. We do not 

know about the density from. So, we have to estimate the density  and there are two popular 

techniques one is the Parzen window technique and another one  is the k nearest neighbor 

techniques. So, that is called a non-parametric techniques.  So, now I will be discussing 

these parametric methods and the non-parametric methods. 

 

 So,  in the parametric methods, I have to estimate the values of the parameters by these 

two  techniques one is the maximum likelihood estimation another one is the Bayesian 

estimation. So,  first I will discuss about the maximum likelihood estimation and in the 

next class I will be  discussing the concept of the Bayesian estimation. So, let us start this 

class.  So, in case of the Bayesian decision making. So, already I told you because we have 

to  determine the 𝑃(𝜔𝑖/𝑥) that we have to determine and that is equal  to probability of x 

given omega i that is the class conditional density and the prior  probability the probability 

of omega i and we have the normalizing factor. 

 

 So, i is equal  to 1 to c probability of x given omega i and probability of omega i. So, in 

this case  what information we need for determining this probability that is the posterior 

probability  the probability of omega i given x. So, that is the supervised classification. So, 

in the  supervised classification I already told you for each and every classes I have the 

training  data samples. So, that concept I will explain later on, but in the statistical machine 

learning  we have to determine this probability that 𝑃(𝜔𝑖/𝑥). 

 

  So, for this I need this information that is the class conditional density and another  one 

is the prior probability and maybe I have these number of classes c number of classes.  So, 

this information I need for determination of the this posterior probability. So, all  this 

information I need. So, in case of the parametric method the density from is known  that is 

this density from is known and suppose it is a normal density. So, in the normal  density I 

have two parameters one is the mean vector and another one is the covariance matrix  we 

have to estimate the values of these parameters. 

 

 So, this parameter vector the parameter vector  is represented by 𝜃. So, suppose these are 

the components of the parameter vector  theta 1 theta 2 suppose theta p. So, this is a 

parameter vector and in this case suppose  the theta 1 is a parameter the parameter is 

nothing, but the mean theta 2 is another parameter  and that parameter may be the 

covariance. So, in this case what we have to consider  that we have to estimate the 

parameter vector. So, we have to determine the parameters. 

 

 So,  what information is available the information is the class conditional density the 

density  from is known, but we do not know what are the values of the parameters.  So, in 

case of the supervised learning we have the training samples for each and every  classes. 



So, for C number of classes I have C number of training data samples and with  the help of 

these data samples or with the help of this training data I have to determine  the values of 

these parameters. That means I have to estimate the parameter vector that  is the supervised 

learning. In case of the unsupervised already I told you I have the  Feature vectors and I 

have to group the Feature vectors based on some similarity. 

 

  So, for determination of the similarity I can consider maybe Euclidean distance and  based 

on this similarity measurement I can group the Feature vectors and that is nothing,  but the 

clustering. So, one is the supervised learning and another one is the unsupervised  learning. 

So, these two information I need for determination of the posterior probability  probability 

of omega I given X the first information is the likelihood information that is the  class 

conditional density and another one is the prior information the prior probability.  So, for 

estimation of these parameters already I told you. So, there are two popular techniques  one 

is the maximum likelihood estimation and another one is the Bayesian estimation. 

 

 So,  in my next slide I will be explaining the basic concept of the maximum likelihood 

estimation  and the Bayesian estimation.  So, in case of the maximum likelihood estimation  

that I can say ML estimation the maximum likelihood estimation. So, we have to estimate 

the parameters  so, in this case the parameters are fixed parameters are fixed, but unknown. 

So, in  case of the maximum likelihood estimation the parameters are fixed, but it is 

unknown.   

Now what we have to consider maximize the probability of obtaining the  given training 

data set. 

 

 So, that means the parameter estimation  maximizes a likelihood function. So, in this case 

we have to maximize the probability  of obtaining the given training data set. So, that means 

the parameter estimation technique  maximizes a likelihood function. So, mathematically 

I can say the maximize what I have to maximize  the probability of D, D is the training data 

set and theta is the parameter vector.  

So,  we have to maximize this and in this case the theta is fixed. 

 

 So, this is the fundamental  concept of the maximum likelihood estimation. So, I will 

explain in detail about the maximum  likelihood estimation in my next slide.  And another 

technique of parameter estimation I should say that is the Bayesian estimation.  So, in the 

Bayesian estimation we consider the parameters are random variables, parameters  are 

random variables, rb means the random variables with a known a priori information  or I 

can say a priori distribution. So, what is the objective of the training samples?  Training 

samples allows conversion of a priori information  into posterior density. 

 



 So, in this case the parameters are random variable with a  known priori distribution and 

the training samples convert the priori information into  a posterior density. So, in this case 

the objective is mainly to maximize the probability  of theta given D, D is the training data 

set and theta is the parameter vector. So, we  have to maximize theta given D. So, that we 

have to maximize and theta already I told  you that theta is a random variable. In case of 

the maximum likelihood estimation we consider  the theta it is fixed but it is unknown. 

 

 But in this case we are considering theta  is a random variable and we have to maximize 

the probability of theta given D. So, you  can see the fundamental difference between the 

maximum likelihood estimation and the  Bayesian estimation. In case of the maximum 

likelihood estimation we have to maximize  this. This is for the maximum likelihood and 

for the Bayesian estimation we have to maximize  the theta given D.  

This is for the Bayesian estimation one is for the maximum likelihood  estimation another 

one is the Bayesian estimation. 

 

 So, this is the fundamental difference between  the maximum likelihood estimation and 

the Bayesian estimation. So, these are the parametric  methods. So, already I told you so 

what I need to discuss the one is the parametric  methods. In a parametric methods the 

density from is known but I do not know the values  of the parameters.  

So, for this I will be discussing these two techniques one is the  maximum likelihood 

estimation and another one is the Bayesian estimation. 

 

 So, in case  of the parametric methods we know the density from the density from is known 

what density  from density from is known form is known density means the probability of 

X given Omega I.  So, this density from is known and from this we have to estimate the 

parameters estimate  the values of the parameters. So, this is the concept of the parametric 

methods and  in case of the non-parametric methods density from is not known density 

from is not known  we have to estimate the density. So, for this I will be discussing two 

important concepts  one is called the Parzen window technique Parzen window and another 

one is a popular  technique that is the k nearest neighbor k and n method.   

So, these things I am going to discuss. 

 

 So, first I will discuss about the parametric  methods the maximum likelihood and the 

Bayesian estimation. So, what I have discussed in maximum  likelihood estimation the 

parameters in the ML estimations are fixed but unknown. So,  what is the best parameters 

the best parameters are obtained by maximizing the probability  of obtaining the samples 

observed that is the the principle that means we have to maximize  the probability of D 

given theta that is the objective and parameters are chosen in a way  that the best support 

describe the training data set.  So, parameters are selected in a way that they best describe 



the training data set.  So, that concept already I have explained that is the concept of the 

maximum likelihood  estimation in case of the Bayesian method the parameters are random 

variable having  some known distribution. 

 

 So, the training samples that is the observation of the samples  converts these to a posterior 

density. So, already I have explained. So, the prior information  is converted into a posterior 

density with the help of the training samples and in this  case we have to maximize the 

probability of theta given D and theta is a random variable.  So, this we will discuss later 

on now what is the Bayesian estimation and in this case  whenever we maximize this one 

because we have to maximize this one. So, we will be getting  a peak corresponding to we 

are plotting this one probability of theta given D and this  is the estimated value of theta. 

 

 So, we will be getting a peak near the true value of the  parameters. So, this is called the 

Bayesian learning. So, we have to take the help of  the training samples and ultimately we 

are estimating the value of the parameter the  parameter is the theta theta is the parameter 

vector.  So, now before going to the Bayesian learning I will now discuss the concept of 

the maximum  likelihood estimation and in both the cases the main concept is the Bayes 

theorem. So,  now let us discuss the fundamental concept of the maximum likelihood 

estimation. 

 

  So, maximum likelihood estimation. So, first let us discuss this one this is the Bayesian  

decision theory we have to determine the posterior probability. So, probability of  X given 

omega J and the prior probability is omega J and we have the normalizing factor.  So, J is 

equal to 1 to C, C number of classes we are considering X omega J probability of  omega 

J. So, we are considering this.  

Now, let us consider the theta J that is the parameter  vector it is fixed, but unknown. 

 

 So, theta J is fixed, but unknown. So, we have to see  what is the role of the training 

algorithm. So, this is my training algorithms. So, my  input is the training data set suppose 

the training data set is D 1, D 2 these are the  training data set for C number of classes I 

have C number of training data set and we  know the class conditional density the density 

from is known that is also my input. So, from  these two information I have to determine 

the values of the parameters that is the parameter  estimation. 

 So, corresponding to this one this class conditional density. 

 

 So, already  I told you the density from is known. So, what is the density from the 

probability of  X given omega J the density from is known and that is also called the 

parametric form  the parametric from I can write like this probability of X given theta is a 

parametric  from is known and suppose if I consider it is the normal density. So, I have two 



parameters  one is the mean vector and another one is the covariance matrix. So, this is 

available.  So, that means parameter vector is theta J and it has two components one is the 

mean  vector another one is the covariance matrix. 

 

 So, this is the concept of this parametric  from. So, let us move to the next slide dependence 

on the parameter vector dependence dependence  on theta J. So, how to write the 

dependence on  𝑃(𝑥/𝜔𝑗) and theta J. So, this is the dependence on theta J. So, what we 

need to determine  we need to determine theta 1 theta 2 from the training data set. 

 

 So, we have to determine  these parameters. So, what is the supervised training? So, I can 

show like this suppose  this is my training data set D 1 D 2 D I and I have some samples 

suppose the samples are  X 1 X 2 these are the samples and the samples are nothing but the 

feature vectors these  are the samples corresponding to the training data set D I and I have 

the classes is suppose  omega 1 omega 2 omega I and omega J. So, what is the supervised 

classification? The supervised  classification is suppose this training data set D I that is 

only for the class omega I  that is not for the class omega J that is not for the class omega 

J. So, for each and  every classes I have the separate training data set for example, 

corresponding to the  class omega 1 I have the training data set the training data set is D 1. 

So, you can  see this is the fundamental concept of the training data set in the case of the 

supervised  learning and another important consideration in case of the maximum 

likelihood estimations  the samples this is a very important consideration samples in D I D 

I is the training data set  corresponding to the class omega I the samples in D I are drawn 

independently  according to the probability law  and the samples are also samples are I I 

D. So, what is the meaning of I I D? I I D  means independent and identically distributed. 

 

 So, samples  are I I D that is a very important consideration in case of the maximum 

likelihood estimation  the samples are I I D and identically distributed random variables. 

So, R V means the random  variables. So, now let us move to the basic principle of the 

maximum likelihood estimation.  So, let us see how we have to determine the values of the 

parameters. So, suppose we use  a set the training data set is suppose D of training samples  

drawn independently this is a very important consideration drawn independently  in a 

probability density  the probability density is probability of X given theta to estimate the 

unknown parameter  vector theta. 

 

 So, in this case we are considering the training data set is the D and suppose  this training 

data set D contains n samples n number of samples. So, what are the samples  X 1 the 

samples are the feature vectors actually X 2. So, these are the samples and already  I told 

you these samples are drawn independently the samples are drawn independently  the 

samples are drawn independently. So, I can write this probability of D given theta  the 

probability of D given theta that is actually called the likelihood of theta this is called  



likelihood of the vector theta. theta is the parameter vector with respect  to the set of 

samples. 

 

 So, we have to determine this one that likelihood of theta with respect  to the set of 

samples. So, that is probability of D given theta. So, I can write so in the  product from 

because the samples are drawn independently. So, it is in the product from  I can write the 

probability of X k given theta. So, I can write like this to k is equal  to 1 to n because we 

are considering n number of samples that is available in the training  data set D. 

 

 So, in case of the maximum likelihood estimation in case of the ML estimation. So,  what 

actually we are looking for maximize the probability of D given theta that we have  to 

maximize. So, what actually it is meaning the meaning is so this estimate  corresponds to 

corresponds to the value of theta value of theta that I can say that supports  the actually 

observed training samples. This estimate corresponds to the value of theta  that supports 

the actually observed training samples. 

 

 So, that is the meaning of this.  So, we have to maximize the probability of D given theta 

that is that the maximize the  probability of obtaining a given data set and D for the vector 

the vector is theta.  So, we move to the next slide. So, we have to maximize  probability of 

D given theta that we have to maximize. So, now let us consider the log  likelihood 

function. So, what is the likelihood function we are considering  now that is L theta that is 

we are taking the natural logarithm. 

 

 So, why we are considering  the log because from the arithmatic point of view it is also 

important because the multiplication  can be converted into addition and also that I can 

write the monotonically increasing the  estimated value of theta that maximize log 

likelihood we are considering log likelihood  also maximize likelihood. So, that is the 

likelihood is probability of D given theta.  So, this log is a monotonically increasing 

function. So, that is one important aspect.  Another one is from the arithmatic point of view 

and this multiplication is converted  into addition with the help of the log. 

 

 So, this I can write like this. So, it is now  summation after taking the log k is equal to 1 

to n ln probability P X k given theta.  Now we have to maximize the likelihood function. 

So, for this what we have to consider we have  to determine or we have to take the 

derivative. So, this derivative is taken this is the gradient  operation I am taking. 

 

 So, I have to find a maximum value. So, that is why I am taking  the derivative with respect 

to theta. So, k is equal to 1 to n this is the gradient  operation D theta ln probability of X k 

given theta and because we have to find the maximum.  So, it is equating to 0. So, what is 

this gradient operator because we have to take  the partial derivative. So, this partial 



derivative it is with respect to theta 1 with respect  to theta 2 like this with respect to theta 

P. 

 

 So, for this parameter vector theta it  has this component theta 1 theta 2 up to suppose theta 

P. So, we have to take the partial  derivative with respect to theta 1 theta 2 and like this up 

to theta P. So, this maximum  likelihood estimation of theta is obtained from the P number 

of equations. So, if you  see here I have the P number of equations. So, in this case the theta 

is the parameter  vector theta for normal density I have 2 thetas one is theta 1 another one 

is theta 2. 

 

 So,  theta 1 corresponds to the mean vector and theta 2 corresponds to the covariance 

matrix.  So, you can see with the help of this equation with the help of this equation is an 

important  equation we can determine the values of the parameters. So, the values of the 

parameters  is nothing but this is the estimated value of theta argmax and this is the 

likelihood  function the log likelihood function L theta. So, corresponding to this you can 

see I have  to determine the this the maximum of this. So, probability of D given theta I am 

finding  the maximum value with respect to theta. 

 

 So, I will be getting a peak something like this  corresponding to the estimated value of 

theta. So, this is the estimated value of theta.  So, from the these equations from these 

equations I have this maximum likelihood estimation  ML maximum likelihood estimate 

of theta maximum likelihood estimation of theta is obtained  from P number of equations 

P number of equations. So, move to the next slide. 

 

 So, for example,  suppose I can estimate the mean. So, this is the estimated value of the 

mean and that  can be obtained like this. So, k is equal to 1 to n x k. So, that I will explain 

how  to determine this one in the next slide and that is nothing but the m, m is the arithmetic  

mean. So, that is nothing but the arithmetic mean of the samples.  Now let us consider 

another estimator that is called maximum a posteriori maximum a posterior  estimation. 

 

 So, that is equal to map estimator is nothing but we are considering the likelihood  function 

that already I have defined and we are considering the prior information the  prior 

information of theta. So, this is called a maximum a posterior estimation. So, if I  consider 

for flat prior that means the prior has no information for flat prior the ML estimation  is 

equivalent to the map estimation the same for flat priors ML estimation is nothing but  this 

equivalent to map estimator. So, now let us discuss how to determine the values  of the 

parameters, because we have to determine the mean vector and also we have to determine  

the covariance matrix if I consider a normal distribution. 

 

 So, let us move to the next  slide. So, in the next slide, I will be discussing these two cases. 



In the first case, I will  be determining the mean vector and in the second case, I will be 

determining the mean  vector and the covariance matrix. So, let us move to the next slide. 

So, case 1 is estimation  of the mean vector mean vector is mu of a Gaussian PDF and in 

this case, we are considering  this sigma is known that is the covariance matrix is known 

this case. So, this case is  estimation of the mean mu of a Gaussian PDF and the sigma is 

known. 

 

 So, that is why I  am considering mu i is equal to theta i that is a parameter vector and only 

one parameter  we are considering mu and the covariance matrix is known. So, 

corresponding to this, I can  write like this probability of X given mu. So, that is it follows 

the normal distribution.  So, we are considering the multivariate normal distribution. 

 

 So, 𝑓(𝑋 ∣ 𝜇, 𝛴) =
1

2𝜋𝑑/2𝛴
1
2

𝑒𝑥𝑝(−
1

2
(𝑋 − 𝜇)𝑇𝛴−1(𝑋 − 𝜇)) . So, the training set  normal X 

k of D i is log we are taking the log likelihood function we are considering  this one log 

likelihood function that is equal to if I take the log of this it will be minus  1 by 2 X k minus 

mu transpose.  So, actually from this we are getting this, this is simply I am taking the log. 

So, after  taking log, I will be getting this one that is a log likelihood function. After this 

we  have to maximize this. So, that is why I have to take the differentiation with respect  to 

the parameter mu that is a mean vector and this mu cap is nothing but the estimated  value 

of the parameter mean. 

 

 So, it is k is equal to 1 to n  because we have to equate it to 0 because we are finding the 

maximum. So, that I can  write like this k is equal to 1 to n. So, mu estimated that is equal 

to 0. So, we are  getting this expression. After this we have to do some mathematics to get 

the values of  the parameter the parameter is the mean. 

 

 So, move to the next slide.  So, in the previous slide we obtained this one that we are taking 

the differentiation  of the log likelihood function. This is the estimated value of the 

parameter. So, we obtained  like this. So, k is equal to 1 to n sigma inverse X k minus mu 

that is equal to 0. 

 

 Now  after this the next step is we have to do some mathematics. The mathematics is 

multiplying  by sigma and rearranging. We will be getting n mu hat k is equal to 1 to n X 

k. So, these  are the sample. 

 

 So, k is equal to 1 to n. So, n number of samples are there. So, from  this you can directly 

estimate the values of the parameter that is a mean vector you  can determine and that is 

nothing but k is equal to 1 to n X k. So, we have obtained  this one. So, this is the expression 

for the estimated value of the parameter the parameter  is mean. And already I told you this 

is nothing but  the arithmetic mean of the samples. So, like this you can determine the 



values of the parameters  from the training data set and move to the case number 2. 

 

 So, I am moving to the case  number 2 unknown mean vector and also the covariance. So, 

corresponding to this the  same procedure can be applied and we can determine the mean 

vector again the mean vector is nothing  but it is a sample mean. So, k is equal to 1 to n X 

k. So, this is nothing but a sample  mean sample mean we can determine and also we can 

determine the covariance matrix that  is equal to 1 by n k is equal to 1 to n X k minus mu 

X k minus mu transpose. So, we  can determine the covariance matrix this is nothing but 

the arithmetic average of n  number of matrices n matrices. 

 

 So, this is this part is nothing but the matrix 1 matrix.  So, we have n number of matrices 

and what is the matrices X k minus mu hat and X k minus  mu hat transpose. So, that means 

we are taking the average of this arithmetic average of  this matrix. So, like this you can 

determine the values of these two parameters one is  the mean vector another one is the 

covariance matrix.  So, in this class I discussed the fundamental concept of parameter 

estimation there are  two techniques popular techniques one is the maximum likelihood 

estimation another one  is the Bayesian estimation. So, I have explained how to determine 

the values of the parameter  by considering the maximum likelihood estimation. 

 

 So, we have to maximize the probability of  D given theta and based on this we can 

determine the values of the parameters. So, in my class  I will be discussing the second 

technique that is called the Bayesian estimation. So,  that concept also I will be explaining 

in my next class. So, in that case I have to  maximize the probability of theta given D and 

theta is a random variable. 

 

 So, that concept  I will be explaining in my next class. So, let me stop here today.  Thank 

you. 


