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  Welcome to NPTEL MOOCs course on machine learning and deep learning fundamentals 

and applications.  I have been discussing about the concept of Bayesian decision theory. 

Today I will be  discussing another topic. The topic is Bayesian belief network. This is a 

graphical model.  With the help of this graphical model, I can take a classification decision. 

 

 In the graph,  I have nodes. Actually, it is the random variable I can represent by nodes. 

And also  in the graph, I have edges. So this edges actually represents the dependencies. 

 

 So in  case of the Bayesian belief network, the conditional dependencies can be represented 

by directed  graphs. And based on this belief network, I can take many classification 

decisions.  So let us discuss about the Bayesian belief network. So the introduction, a 

Bayesian network  is a probabilistic graphical model. So it is a graphical model and it is a 

probabilistic  model and which represents a set of variables and their conditional 

dependencies. 

 

 So we  will consider the conditional dependencies of the variables using a directed acyclic  

graph. So this is the definition of the Bayesian network. And the dependency of variables 

can  be represented efficiently by the Bayesian belief network or I can say the belief 

network  or maybe the Bayesian network. Also, the Bayesian network allows us to 

represent a joint probability  density that is the probability of X, Y, Z that is the joint 

probability density that  can be represented by considering the dependency relationships.  

So this concept I am going to explain what is this concept and you can see this conditional  

dependencies can be represented by directed graphs, the acyclic graph. 

 

 So a belief network  is usually a directed acyclic graph. Each node represents one of the 

system variables.  So nodes I can consider some random variables and each variable can 

assume certain states.  So some probability value I can assign corresponding to these 

variables. So each variable can assume  certain states. 



 

 So what is actually this belief network? This is actually I can say this Bayesian  network.  

It is a compact yet expressive representation. And the second point is efficient reasoning  

procedures. So that Bayesian network is the compact but yet expressive representation  and 

efficient reasoning procedures.  

So this Bayesian network  identifies a joint distribution in a structured form. 

 

 So that I will explain and it also represents  independence via a directed graph.  So this 

represents dependence and independence via a directed graph. So in the graph actually  we 

have nodes. So in the nodes I have the random variables  and I have the edges in the graph. 

So this edges shows direct dependence. 

 

 So structure  of the graph, structure of the graph that is actually the conditional 

independence relations.  The structure of the graph actually it shows the conditional 

independence relations. And  one important point is the graph is acyclic.  

This is an important point. The graph is acyclic. 

 

  This is an important point. The meaning is no directed cycles. So two structures or maybe  

I can say two components of the graph. One is the graph structure  that is mainly based on 

the conditional independence assumptions.   

So the graph structure is mainly based on this condition that the conditional independence  

assumptions and in the graph actually we are considering some numerical probabilities. 

 

  So that I will explain later on what is the numerical probabilities corresponding to this  

graph. So these are the components of the Bayesian  network. One is the graph structure. 

Actually it represents the conditional independence  or conditional dependence.  

So it is the assumption is the conditional independence assumptions  and  

also the numerical probabilities are assigned in the graph. 

 

 So let us discuss what is the  general form of the Bayesian network.  The general form of 

the Bayesian network is the probability 𝑋1, 𝑋2, … , 𝑋𝑛. So this is actually  what is the 

probability. This is the full joint distribution. So this is represented  like this. 

 

 This is the product for all i's. So i is equal to 1 to n and Xi, Xi is the  variable and the 

parents of Xi. So this is the approximation. This is the graph structured  approximation.  So 

in this case what we are considering the conditional independence assumption. 

 



 If I  consider the conditional independence then I can consider the representation. So we 

are  considering the full joint distribution. After this I am getting the graph structures  

approximation. So suppose I can give one example. 

 Suppose I have three variables A, B and C. 

 

  So we are considering joint distribution probability of A, B, C. That I can represent like 

this.  Probability of C given A, B that is the conditional probability. Probability of C given 

A, B  and also I can write like this probability of A, probability of B. 

 So this joint distribution  can be written like this. 

 

 And corresponding to this equation, I can say equation or the  these probabilities I can 

represent in the graph. So one node is A, one node is B. These  are independent node and 

if you see C, the node C depends on A and B. So I can show by  the directed graph.  

So the node C depends on A and B. 

 

 So I can represent like this.  So that is nothing but directed edges, directed edges. So these 

are the directed edges. If  you see these are the directed edges. That represents direct 

dependence. 

 

 And if I consider  suppose no edges or I can write absence of an edge, absence of an edge 

that is the conditional  independence. So here you can see if I consider A and B, if I consider 

A and B, there are  no edges and actually this A and B they are independent. A and B are 

independent.  But if I consider C, C depends on A and also it depends on B. 

 

 So move to the next slide.  Suppose I want to draw the belief network. So suppose belief 

network is given, belief  network is given. The network is something like this. A, three 

nodes are there, A, B  and C. So it is a three way Bayesian networks. 

 

 So corresponding to this I can write the joint  probabilities or joint distribution like this, 

probability of A, B, C that is probability  of A, probability of B and probability of C. This 

is actually the absolute independence.  This is the absolute independence. Now suppose I 

can give another example. There is probability  A, B, C is equal to suppose probability of 

B given A, probability of C given A, probability  of A. 

 

 Suppose I am showing like this. So suppose the variable A, it represents the  result and 

this B and C, I can say symptoms given A. So A is the disease and B and C are  symptoms 

given A. So we can model B and C as conditionally independent symptom given  A. So 

you can see this can be represented like this. A is the disease and B and C, they  are 

symptoms. 



 

 So B and C, I can write like this, B and C are the symptoms. So here you  can see the B 

and C are conditionally independent. So I can write B and C are conditionally independent.  

So in this example what we are considering, A is a disease and we model B and C as 

conditionally  independent symptoms given A.  

So you can see here in the graph, the B and C are conditionally  independent. 

 

 So this is the representation I am considering.  Now move to the next example. Suppose it 

is given like this, probability of A, B, C that  is equal to probability of C given A and B. 

So how to represent this one? So this is  represented like this.  

C depends on A and B, but A and B, they are independent. 

 

 So A  and B are independent. Suppose let us consider another graph A, B and C and you 

can see the  dependency. The dependency is represented like this. This is the dependency. 

So corresponding  to this, this probability of A, B, C, I can write like this. Probability of C, 

C depends  on B and B depends on A and this probability of A, it is independent. 

 

  So you can see the C depends on the previous state or previous variable. The variable is  

B and B also depends on A. So this type of dependence is called the Markov dependence. 

 

  Markov dependence. So this is one example. So I can give some of the structures like  

this. Suppose if I draw a structure, another structure I can draw like this. Suppose D  is a 

node, C is a node and suppose A is a node. This is another example. 

 

 I may have  this type of graphs. So it is B suppose and suppose it is E. So I have five nodes. 

So  corresponding to this, you can see the dependence. You can see the dependence. The 

D depends  on A and also I am considering this is, so D depends on C also because already 

I told  you I have to assign the probabilities corresponding to these variables. 

 

  So probability of D given A and C. So this probability we can consider and this C, you  

can see if I consider this, this is the directed graph. So corresponding to B, the probability  

is suppose probability B and corresponding to A, suppose the probability is A is a 

probability  and you can see that E also depends on D. So this probability I can write the 

probability  of E given D and this C depends on B. So I can write the probability of C given 

B.  So I am assigning probabilities to all these variables. 

 

 So this is one example of the Bayesian  belief network. So we have to consider this type 

of networks.  Now let us consider one problem. So how actually we can take a classification 

decision based  on the belief network. 



 

 So let us move to the next slide. The slide is how to determine  or how to take a decision 

based on the belief network and this is the belief network for  fish. So here you can see I 

am considering these variables A, B, X, C and D. So A represents  season. So season of 

year I am considering. So A1 may be winter, A2 is spring, A3 is summer,  A4 is autumn. 

 

 So these are the states corresponding to the variable, the variable is A. So corresponding  

to this B, the location, I have two states, one is B1 and another one is B2. So B1 is  the 

North Atlantic and B2 is South Atlantic. And similarly if I consider X, X is the fish.  So 

two types of fishes we are considering, one is the salmon, another one is the sea  bass. 

 

 And also the weightness, the lightness of the fish that variable we are considering  as C. 

So it may be light, it may be medium or it may be dark. That is the lightness of  the fish. 

And also the thickness of the fish corresponding to this we are considering the  variable, 

the variable is D. 

 

 So D1 is white and D2 is thin. So corresponding to all these  variables you can see the 

probabilities we are assigning. So corresponding to suppose  the A, the season, the 

probability of A1 is 0.25, probability of A2 is 0. 

 

25, probability  of A3 is 0.25 and probability of A4 is 0.25. So we are considering all these 

probabilities  corresponding to the state, the state is A, that variable. Similarly, 

corresponding to  B, I have the probabilities, the probability of B1 is 0.6, probability of B2 

is 0. 

 

4. And  after this if you see, I am considering the dependence. So X depends on A and B. 

This  variable X depends on A and B. So that is represented by the probability of X given  

A, B. And corresponding to this you can see this table. 

 

 In the table we have considered  these probabilities. In the first column you can see the 

probability of X1 given that Ai  Bi or Ai Bj. And similarly, in the second column we are 

considering the probability  of X2 given A and B. This we are considering. And 

corresponding to this all the states we  are considering first A1, B1, A2, B2, like this we 

are considering. 

 

 So all these probabilities  we are defining like this. These are the probabilities in the table. 

These are the conditional probabilities.  Similarly, corresponding to the variable C, the C 

depends on X. So we are writing probability  of C given X. And corresponding to this you 

can see I am defining the probabilities, the  probability of C1 given X1, probability of C2 

given this X, X may be X1 or X2, and probability  of C3 given X, X may be X1 or X2. 



 

 And corresponding to this I have all the probabilities are defined. 

 

  So it is 0.6, 0.2, 0.2, 0.2, 0.3, 0.5. And similarly, corresponding to the variable D,  I have 

two states, one is D1, another one is D2. So now I am defining the probability  that is the 

conditional probability, the probability of D given X. So this D1 given X1 like this,  D2 

given X1. So all these probabilities we are defining, these probabilities we are defining,  

we have these probabilities.  So because corresponding to D, I have two states D1 and D2, 

and X we have two states  also X1 and X2. 

 

 So X1 corresponds to the fish, the fish is 7, X2 corresponds to the another  fish, the name 

of the fish is C bus. So this is the belief network for fish. So which  fish we have to select, 

that is we have to go for a decision making. So which fish we  have to select based on these 

conditions.  And after this, this link joining these two nodes is directional and represents a 

causal  influence. 

 

 So already I have explained what is the causal influence, X depends on A or  I can say A 

influences X. Here you can see in this graph, X depends on A, that means  A influences X 

directly. And you can see A influences C indirectly through X. So if  you see the C and 

another one is A, C depends on X direct dependence.  But if I see this graph, A influences 

C indirectly through X, that means C also depends on A,  C also depends on A via X. 

 

 So A influences X directly and A influences C indirectly through  X. So these directional 

graphs we are considering to show the dependence because we are considering  the 

dependence of the variables. So these directed graphs we are considering to show  the 

dependence.  And each variable is associated with a set of weights, which represents prior 

or conditional  probabilities. So the probabilities may be discrete or continuous. So already 

I have  shown these probabilities we are considering corresponding to the state A, I have 

the probability  the probability of A. 

 

 So I have probability of A1, A2, A3, A4. So all these four probabilities  Similarly, 

probability value of B corresponding to the variable B we are considering two probabilities  

probability of B1 and probability of B2.  And after this you can see we are considering the 

probabilities the conditional probabilities  we are considering the probability of X given A, 

B that is also we are considering, probability  of C given X that is the conditional 

probability we are considering, probability of D given  X that is the conditional probability 

we are considering. So all the possible probabilities  we are considering here. And also you 

know that the probabilities the sum is equal to  1. 

 

 So if I see this row, the 0.25, 0.25, 0.25, 0.25, so ultimately it will be 1, because  some 



sum of all the probabilities should be 1. 

 

  So similarly, if you see here this line, so 0.2, 0.3 and 0. 

 

5, so it is 1. So in all the  cases like this 0.3, 0.7 it is 1, 0.6 and 0.4 it is 1. So sum of the 

probabilities corresponding  to a particular condition it is equal to 1. So that we are 

considering.  Now we are considering the same rule that is the same rule in the probability, 

you know  the same rule in the probability. The joint probability of a set of variables, the 

set  of variables are X1, X2, X3 like this. 

 

 So we are considering these variables and we  are considering the joint probability. So this 

is nothing but a joint probability. So  by same rules this joint probability you know how to 

write.  So we can write like this probability of X1 given X2, X3 up to Xn. 

 

 Next the probability  of X2 given X3, X4 up to Xn. And finally the probability of Xn. So 

we can represent like  this. And we are considering the conditional independence. The 

conditional independence  relationship encoded in the Bayesian network state that a node 

Xi is conditionally independent  of its ancestor given its parents, the parents are suppose pi 

i.  So based on this if I consider the conditional independence that can be represented like  

this. So the joint probability is represented by this one based on the conditional 

independence  relationship. 

 

 So the probability of Xi given pi i. So pi i is nothing but the parents,  the parents of Xi. So 

i is from 1 to n. So suppose I have n number of parents. So that  is you can see by 

considering this one, I am representing the conditional independence. 

 

  And this relationship is very important because the same rule is very important. So if you  

study the probability course, so you can get this same rule. So with the help of the same  

rule, you can see how I am representing joint probability. So this is about the joint 

probability  and the concept of the conditional independence. So now come to this problem. 

 

 The problem is  the classification of the fish by the belief network. So we can compute the 

probability  of any configuration of the variable in the joint density distribution.  So 

suppose this is the problem. The probability of catching a medium lightness thin sea bass  

from the North Atlantic in summer. So corresponding to this what is the probability I can 

determine.  So what is the probability of a3? a3 means that means we are considering the 

probability  of catching medium lightness. 

 

 So which one is the variable corresponding to the lightness?  The variable is C thin. Thin 

is the variable D. So this is D2 and sea bass we are considering  the variable X the sea bass 



is X2 sea bus from the North Atlantic.  North Atlantic is the variable we have to consider 

B. 

 

 So North Atlantic is B1. North  Atlantic is B1. B2 is the South Atlantic. So we are 

considering all these variables.  So probability of A3 that is A3 means it should appear in 

the in the summer. So summer is  A3. 

 

 So summer we are considering. So A3 is considered that is a summer we are considering.  

What is B1? B1 is not Atlantic. What is X2? X2 the name of the fish is sea bass. 

 

 What  is C3? C3 is the dark. So C3 is dark. And what is D2? D2 is the thin. So we are 

determining  this probability. And you can see this probability of A3 that is independent. 

Probability of  B1 that is also independent. 

 

 And X2 depends on A3 and B1. The probability of X2 given  A3 and B1. So that is why 

we are considering this probability. That is the conditional  probability. And probability of 

C3 given X2. 

 

 So because C3 depends on X2. So we are writing  probability of C3 given X2. And 

probability of D2 given X2. So D depends on X2. 

 

 So that  is the direct dependence. So D2 depends on X2. So all these probabilities I am 

defining.  And in the table or in this list we have all these probabilities. So these 

probabilities  I am just taking from the table. And if you see what is the probability of A3? 

The probability  of A3 is nothing but 0. 

 

25. This is the probability. What is the probability of B1? The probability  of B1 is 0.6. So 

all these probabilities I am taking from this table. And ultimately  after multiplication I am 

getting this probability. The probability is 0.012. 

 

 So that means corresponding  to this problem, corresponding to this problem my answer 

is the probability is 0.012. That  probability of catching a medium lightness, thin seabass 

from the North Atlantic in summer.  So that probability we can compute. So this is a very 

simple understanding, the simple  concept that is the concept of Bayesian belief network. 

 

  Now let us consider this example suppose. Suppose I have the nodes A, B, C and D. These  

are the nodes. And you can see I am showing the directed graphs. These are the directed  

graphs. So this probability of A is given, probability of B given A. 

 

 So that is also  the conditional probability. Probability of C given B and probability of D 



given C. These  are given. So in this case we have to determine the probability of D. So we 

have to determine  this, the probability of D. So the probability of D, P D is nothing but 

summation over A,  B and C. 

 

 So we have to consider this joint probability A, B, C and D. This joint probability  can be 

represented like this by considering the same rule.  The probability of A, probability of B 

given A, probability of C given B and probability  of D given C. It can be represented like 

this or this can be written like this. Probability  of D given C I can take outside here and 

suppose another summation over B, summation over B,  probability of C given B. 

 

 So in determining probability of D, we are considering D given  C. So for this we are 

considering all the Cs, the summation over all Cs we are considering.  Similarly if I want 

to determine probability of C given B, we have to consider all Bs.  So that is a summation 

over all Bs we are considering. 

 

 And the summation A, probability  of B given A, probability of A. So we can write like 

this. So if I do this computation  here, so this part, from this part to this part if you see, this 

part is nothing but  probability of B. And if you see from this part to this part, this part to 

this part,  this is nothing but probability of C. And if I consider the complete expression, 

the  complete expression is this is the probability of D.  So here you can see in this case, 

we have all these values, the probability of D given  C, probability of C given B, probability 

of B given A, probability of A, all these are  available. 

 

 So that means we can determine the probability at D, the probability at D  we can 

determine. So determine the probability at D. So this is one example.  Come to the next 

example. Suppose the belief network is given, the belief network is something  like this. 

 

 Suppose E and suppose it is F, suppose it is G and this is H. So these probabilities  are 

given, the probability of E is given and you can show or you can see here that  F depends 

on E. So this is the probability of F given E and also here the probability  of G given E that 

we are considering and you can see the dependence, the dependence like  this, these are the 

dependence.  So considering this graph, I have to determine the probability at H. So I have 

to determine  the probability at H, that probability we have to determine. So how to 

determine this  probability? You can see this probability I can determine, the probability at 

H I can  determine that is the summation over E, F and G. 

 

 So probability of E, F, G, H I can  write like this. So this can be written like this E, F and 

G, the probability of E because  it is independent, E does not depend on any other nodes, 

the probability of F given E.  So F depends on E, the probability of G given E, so G depends 

on E and probability of H  over F, G. So these are the cases, so which can be written like 



this. It is F, G, probability  of H, F, G, summation E, probability of E, probability of F 

given E and probability  of G given E. 

 

 So we can write like this.  So already we have all the probabilities defined in the graph 

and based on this we can determine  the probability at H, the pH we can determine. So this 

probability we can determine. This  is about these two examples we are considering how 

to determine the probability at a particular  node we can determine. So come to this 

classification problem. 

 

 So the classify fish given that  the fish is light, so light is defined by C1 and was caught in 

South Atlantic.  So the variable B2 we have to consider and no evidence about what time 

of the year the  fish was caught nor its thickness. So based on this, what is the problem? So 

already I  have shown this belief network already I have shown that is already I have 

explained, but  now problem is slightly complicated. The complicated is no evidence about 

what time of the year  the fish was caught nor its thickness. So that the thickness 

information is not available  and also that season information that what time of the year the 

fish was caught that  means this information is also not available. 

 

  The P A probability of A is not available and probability of D given X that is also  not 

available. So we have to determine or we have to classify a fish given that the  fish is light. 

So light means we have to consider the variable the variable is C. So  this probability we 

have to consider probability of C given X we have to consider and was caught  in South 

Atlantic that means we have to consider the variable B this probability of B we have  to 

consider, but no evidence about what time of the year that means the season information  

is not available. So we have to we have to we should not consider this variable probability  

of that information is not available and also that the thickness of the fish that  information 

is also not available. 

 

  So corresponding to this how to determine this one. So we have to determine the 

probability  of X 1 given C 1 comma B 2 this you have to determine this is the problem. 

So what is  the problem. So we have to determine or we have to classify a fish given that 

the fish  is light. So light means C 1 and caught in the South Atlantic that is B 2 and no 

evidence  about what time of the year of the fish was caught nor is thickness. 

 

 So that information  is not available. So we have to determine this probability.  So that is 

equal to probability of X 1 comma C 1 comma B 2 divided by probability of C  1 B 2 I can 

write like this these probabilities. So from the probability theory I can write  like this and 

after this we are considering this one. So alpha is the proportionality  constant the 

summation over A and D. So probability of X 1 A B 2 C 1 and D. 

 



 So in this case we  are writing A is a vector because A may have all the values maybe it is 

A 1 A 2 A 3 A 4.  So that is why we are considering A as a vector and similarly D also we 

are considering  as a vector because we do not have the information about the thickness of 

the fish. So that  means that D has these two components one is D 1 and another one is D 

2. So D 1 is the  wide and D 2 is the thin. So that is why A and D we are considering as a 

vector. 

 

 But  we have this information X 1 we have to consider B 2 we have to consider C 1 we 

have to consider  but I do not have the information of A. So that is why we have to consider 

all the cases  A 1 A 2 A 3 A 4. So A is represented as a vector and D also I have to consider 

as a  vector because I have two information one is D 1 another one is D 2.  So alpha is the 

proportionality constant so it is alpha summation over A and D A and  D is the vector A 

and D the probability of A probability of B 2 probability of X 1 A  B 2 A is a vector already 

I told you probability of C 1 given X 1 and probability of D D is  a vector so it is X 1. So 

we are considering this one it is alpha the probability of B  2 probability of C 1 given X 1 

into summation over A. 

 

  So probability of A probability of X 1 A B 2 and the summation over D probability  of D 

given X 1. So we can write like this. So corresponding to this or maybe equal to  this I can 

write the probability of B 2 probability of C 1 given X 1 into probability of now we  have 

to consider this all the components of the A the vector A the components of the  vector A 

is A 1 A 2 A 3 A 4. So that means the corresponding to the variable A I have  four states 

that the states are A 1 A 2 A 3 A 4 these are the four states.  So probability of A 1 and 

probability of X 1 A 1 B 2 plus probability of A 2 probability  of X 1 A 2 B 2 plus 

probability of A 3 probability of X 1 A 3 B 2 and finally we have to consider  A 4 also. So 

all the states we have to consider A 1 A 2 A 3 A 4 into so this is multiplied  and into here 

this D we have to consider D 1 X 1 because in this case D has two states  D 1 and D 2 so 

this we have to consider. 

 

 So here you can see if I consider these two probabilities  then values would be equal to 1. 

So from the table also you can determine this one. 

 

  So here if I put all the probabilities values available in the table so alpha 0. 

 

4 0.6 after  this 0.25 into 0.7 plus 0.25 so these probabilities are available in the belief 

network 0.8 plus  0.25 into 0.1 plus 0.25 into 0.3 so this is a bracket close into the last one 

is because  this probability is 1 so it is 1 so is equal to 1. So ultimately we have this value 

so  alpha 0. 

 

114 so I will be getting this. So we can compute the probability of X 1 given  C 1 comma 



B 2 we can determine. So move to the next slide. So in this case what we have  to determine 

the probability of X 1 given C 1 B 2 that is equal to alpha 0.114 so alpha  is the 

proportionality constant. Similarly we can determine the probability of X 2 given  C 1 B 2 

that is also equal to alpha 0.066 that also you can determine. So you see we  are determining 

these probabilities so this probability of X 1 C 1 B 2 already we have  determined and now 

we have determined the probability of X 2 given C 1 B 2 that should  be equal to 1. 

 

 So we have to normalize the probabilities and based on this we have obtained  and the 

value of alpha is equal to 1 by 0.18 that is the constant of proportionality. So  alpha we 

have determined like this because we have to normalize probabilities but not  needed 

necessarily so it is equal to 1.  So that means this probability of X 1 given C 1 B 2 is 

obtained 0. 

 

73 and probability of  X 1 given C 1 B 2 probability of X 2 this should be X 2 probability 

X 2 C 1 B 2 this  is equal to 0.27. So these two probabilities we can determine. So the 

problem already you  know what is the problem the problem is classify a fish given that 

the fish is light, light  means C 1 and was caught in South Atlantic that means B 2 and no 

evidence about what  time of the year the fish was caught nor it thickness.  So these two 

information it is not available and based on this we have determined the probabilities.  So 

this is the example so the classification of the fish so this calculation already I  have shown 

here this is the calculation so we can determine this alpha and finally this  normalized 

probabilities we are getting this probability already I have explained this  probability is 

obtained 0. 

 

73 and 0.27. Now this is these are the examples another example  for the Bayesian belief 

network I can give one how to draw the Bayesian belief network.  So this is one example 

the example is the fire diagnosis.  So this is a problem the problem is whether there is a fire 

in a building. So the conditions  are receive a noisy report about whether everyone is 

leaving the building  so receive a noisy report about whether everyone is leaving the 

building because when there  is a fire there should be some report and all the people should 

leave the building.  Next one is if everyone is leaving this may have been caused by a fire 

alarm this is the  another condition and if there is a fire alarm it may have it may have been 

caused  by caused by a fire it may be caused by fire or  by a tempering. 

 

 So all these  conditions we are considering and maybe another consideration we can 

consider if there is  a fire there may be smoke. So these are the cases so these are the 

problem of fire diagnosis  and we are considering these conditions.  So based on these 

inputs I can formulate the problem the problem formulation is number  one tempering is 

true when the alarm has been  with so tempering is true when the alarm has been tempered 

with so this one condition we  are considering number two condition is the fire is true when 



there is a fire. So this  is the second condition so move to the next slide number three alarm 

is true when there  is an alarm when there is an alarm number four condition we can 

consider smoke is true  when there is a smoke when there is smoke number five living is 

true that is the living  from the building living is true if there are lots of people living the 

building. So  number five is considered and number six report is true because we have to 

report about  the incidents the fire the report is true if the sensor reports that lots of people  

are living the building. 

 

 So these are the things these are the consideration we are  considering based on the 

problem.  So what are the variables the variables are fire so what are the variables we can 

consider  the variable is fire tempering alarm smoke living and the report so these are the 

variables  we can consider so fire tempering alarm smoke living and a report. So based on 

this we can  draw the Bayesian belief network so the network is something like this the 

tempering is I  am writing tempering here tempering the fire alarm smoke when there is a 

fire there may  be smoke living and a report. So when there is a tempering the alarm may 

be on so I am  putting this condition when there is a fire there may be alarm when there is 

a fire the  possibility of smoke when the alarm rings people are leaving the building and 

after  this if all the peoples are living then we have a report.  So like this we can construct 

the belief network so based on this I can determine the probabilities  so how to determine 

the probabilities the probability of T, T means the tempering F  means the fire F means the 

fire A means the alarm S is the smoke L is the living R is  the report. So we can write like 

this probability of T tempering is independent into probability  of fire that is also 

independent but this alarm probability of alarm alarm depends on  two variables one is the 

tempering another one is fire into the probability of the smoke  smoke depends on the fire 

so S given F and probability of L living depends on alarm and  finally the probability of 

the report generation based on the information of living. 

 

  So I can determine these probabilities so this joint probability I can determine by  

considering this so this is one example so how to construct a Bayesian belief network.  So 

up till now I discussed the concept of the Bayesian belief network so how to construct  a 

belief network based on the problem I have shown it is a directed graph and you can see  

we can determine the probabilities this joint probabilities can be determined by considering  

the conditional probabilities. So for this we are considering the assumption the assumption  

is the conditional independence and one important point is the same rule of the probability  

so with the help of the same rule we can decompose the joint probabilities into the 

conditional  probabilities. 

 

  So this is the fundamental concept of the Bayesian belief network with the help of this  

graphical model I can do classifications. So let me stop here today. Thank you. 


