
Usability Engineering

Dr. Debayan Dhar

Department of Design

Indian Institute of Technology, Guwahati

Module - 02

Lecture - 05

Usability In Software Development

Welcome to lecture 5 and the first lecture for module 2. In this lecture or in this module

we are going to discuss about Usability in Software Development. It is essential for us to

understand the emergence of software engineering, the emergence of software

development, issues behind the various techniques and models that were that emerged

during those early periods of software engineering. And how those issues became critical

in order for usability to be considered as a significant characteristic as a significant quality

attribute of software products. So, let us begin this lecture.

(Refer Slide Time: 01:37)

Now software development is a process guided by systematic methods and techniques. So,

when we talk about software essentially what we refer to as a product in itself, but then we

hardly do realize the amount of work the amount of processes that are involved in the

development of these softwares.

So, in 1960s saw the emergence of challenges for software development and its primarily

driven because the third generation of computer hardware enabled new applications were

introduced into the market, new techniques technologies were introduced and this led to

software systems of much greater scale and complexity and this resulted in cost overruns,

late delivery and ineffective and unreliable systems. Now, this led to the software crisis in

late in early ‘70s and this crisis led to the emergence of software engineering as a

professional discipline.

(Refer Slide Time: 03:04)

Now, software engineering was founded on the ideas of structured programming,

programmers first define the major structures of a software system likely like the database,

the event handler, the network server so on and so forth, and then recursively, they

decomposed means broke down they used to break down each of these structures into

substructures. So, the driving vision is to gain control over design activities by making

software development process explicit and systematic.

(Refer Slide Time: 03:46)

An early influential model for software engineering was the waterfall model. Software

development is organized into a series of modular phases beginning with the analysis of

functional requirements. And continuing through software design, implementation, testing

and maintenance. The figure that you can see in this slide would let you understand would

provide you and in depth understanding about the process that are involved in waterfall

model.

What you see here are the modular phases like requirements, design, implementation,

verification. And maintenance this was the first known emergence of the modular concepts

or series of modular phases that were focused on how software was developed. Each phase

produces one or more documents that are handed off as a specification for the work of the

next phase. The waterfall is a wonderful management tool because projects are organized,

tracked and measured in terms of process through the phases.

(Refer Slide Time: 05:13)

Now, in spite of waterfall model being modular and providing a lot of benefits to software

developers, it had its own challenges and one tradeoff associated with waterfall models is

that many requirements for a system cannot be anticipated and specified in advance. So,

essentially if you see the waterfall model, you would realize its a very linear process.

So, therefore, systems that are complex in nature, unanticipated dependencies or entirely

new requirements are often discovered only after clients or end users interact with a

running prototype of a system and therefore, this led to a lot of loss in resources in terms

of time that were involved, in terms of the amount of other resources like manpower

involved in development of the software, a wrong decision at an any initial stage led on to

the entire process being carried on and can only be interpreted at the last phase of the

development model.

What it means that if an early issue existed this would not be able, it is not possible for the

design team to identify the issue unless and until they get it tested at the end user stage

where testing with clients and users happen. And therefore, this became one of the major

challenges of using waterfall model.

(Refer Slide Time: 06:57)

The waterfall model offers a framework for addressing the software crisis, but it is

simplistic, it cannot handle challenges of complex systems modeling complex systems and

moreover an issue arising at the initial stage could only be handled until you complete the

entire process and testing results are out.

Therefore, a strict linear flow of design specifications is unlikely to work for systems of

non-trivial scale and complexity and that is one of the reasons that led to the development

of prototyping and iterative development. A complement to structure development is

prototyping where designers develop one or more operational models to demonstrate a

design idea.

A prototype implements ideas that are abstract making them concrete viewable and

testable. By turning a proposal into a prototype, designers can test it for usefulness,

feasibility or other project concerns. Now what we understand from this is that the primary

requirement that drove the emergence of prototyping and iterative development was

primarily because designers simply did not want to wait until the testing phase to identify

issues with their concepts with their requirements they want to test early so, that the issues

the early issues can be tackled and an entire cycle is not wasted.

(Refer Slide Time: 08:50)

Prototypes can be built at many phases; they can be used to evaluate requirements high

level decision detailed software design and so on. The feedback provided by prototyping

is used to guide further development, but importantly, it may also be used to transform or

reject aspects of design. What we observe in history in software development is the early

acceptance of an iterative process.

If you remember in our introduction lectures we discussed about iterative design. Design

is a time bound activity and identifying requirements that are that reflect needs of actual

users is important for the software getting success and therefore, quality of requirements

that are extracted are of paramount importance for the design community. It is this

important aspect that led to the initial rejection of waterfall model and the adoption of

prototyping and iterative development models by software developers and designers.

(Refer Slide Time: 10:20)

Now, prototyping and iteration has also their own problems. Process management can be

difficult if the system evolves too rapidly to document and track the changes. Constant

change can also undermine the integrity of a software design. One way to integrate

prototyping with structure design is to view prototyping as a requirement analysis method.

Prototypes are built as trial versions of a system that will be later discarded the essence of

prototyping development is test early. And it many a time it is difficult to track changes,

to track the states of the systems that evolve too fast and therefore, it is highly difficult to

document and track those changes.

These are some of these issues that created or that ensured that prototyping need to be

visualized as a requirement analysis method. So, you test early you identify the

requirement the need from the users come up with your concepts test early and that is how

you do you build trial versions of a system, which based on the results of your user testing

might be accepted or discarded at the later stage.

(Refer Slide Time: 12:11)

Another approach for prototyping is to assume that prototyping will be used to revise

design documents; that means, decisions that were taken at the early phase of software

development can be revised if we have prototyping and test results out in time or early in

the phase. In iterative development design documents are produced as an output of each

phase, but they are continually modified through prototyping and testing.

The final version of the design specification describes the system that was built right. So,

in order to ensure that any wrong information does not get carried away any wrong way

of defining the requirements. And a wrong feature design does not get carried away to the

final testing phase. Iterative development and prototyping can be used to ensure that quick

results quick test data with users can be accessed in order to take a call on the design

decisions at an early stage.

(Refer Slide Time: 13:33)

This gradually led to the emergence of usability. Now in 1970s it became clear that an

important component of software engineering would be the user interface design. And why

so? Because developers understood that this is the medium through which our users are

going to interact with the hardware and the software system.

This is the medium through which they would ensure that the tasks and goals are

completed. As more and more softwares were developed for interactive views, attention

to the needs and preferences of end users intensified. In 1960s, most software users were

computing professionals who developed and maintained applications for their

organizations. But as computing technology became more and more powerful, users

became more diverse.

As end users became more diverse and less technical interactive systems came to be

compared and evaluated with respect to usability. The quality of a system with respect to

ease of learning, ease of use and user satisfaction. Three distinct perspectives that

contributed to early views of usability and still being considered are human performance

learning and cognition and collaborative activity.

(Refer Slide Time: 15:34)

Now, when usability entered the software development process it entered from both the

ends. So, it entered from the requirements phase as well as the system testing phase.

Marketing groups interviewed customers they analyzed competitive products to

understand requirements. Quality assurance groups tested whether systems met design

specifications regarding human performance with the system; this testing was often

summarized as human factors evaluation.

(Refer Slide Time: 16:15)

Unfortunately, the marketing groups rarely talked to people who would actually use the

products, instead gathering requirements from management or from similar products.

These led to serious issues in defining actual need and requirement of end users. It was

also a problem that quality assurance testing occurred at the very end of the development

cycle or the process.

The usability evaluators might gather realistic data performance on a fully functioning

system, but the findings were too late to have an impact on design. So, this tells that

gradually there is a belief that is forming that we need usability experts or practitioners at

an early phase of the software development life cycle so that we can get quality, actual

requirements been defined and designed decisions being informed and directed so that the

software development can fulfill the actual needs of the users.

(Refer Slide Time: 17:47)

The scientific foundations for studies of human performance are psychology and industrial

engineering. The emphasis for this is on optimal performance simpler displays and

commands, fewer keystrokes, and shorter execution times.

The specification and testing of human performance objectives demonstrated that usability

could be studied empirically, and that it could play a role in software development. A first

generation of experimental methods were developed, and important design variables were

identified like display complexity, length of command strings etcetera.

(Refer Slide Time: 18:47)

Now, this started the advent of what we call as the human-computer interaction, the

emergence of human-computer interaction. In the early 1980s, new usability challenges

emerged rapid learning and self-study became critical and product development cycles

were compressed this placed a high premium on lightweight methods for improving

system usability, including inspection methods based on guidelines, heuristics or theory.

New programming languages and tools were helping to streamlined software

development. Small and distributed software development organizations became very very

common and prototyping was used more and more to drive system development.

(Refer Slide Time: 19:57)

Now during the 1980s, the increasing prominence of personal computers in society made

usability more visible. One important new user group consisted of cognitive scientists,

psychologists, anthropologists, sociologists and philosophers became interested in how

people solve problems and learn new things. These scientists were starting to use

computers for their own research activities their personal experiences often prompted

research programs exploring how people learn to use and solve problems on computers.

(Refer Slide Time: 20:52)

Now, many of these cognitive scientists felt that the field needed to study complex tasks.

Soon spreadsheets, word processors, drawing programs, personal databases and other

applications were also in use. This new area of shared interest between computer science

and cognitive science was later called as human-computer interaction or HCI in short.

Now, a significant early HCI projects was focused on cognitive models or cognitive theory

driven models like GOMS. GOMS means goals, operators, methods and selection rules

proposed in 1983 for the first time by Card, Moran and Newell. We will discuss about

GOMS later in the next lectures.

Now, GOMS is used to analyze the goals the methods and actions of routine human

computer interaction. Routine human computer interaction means task that were routinely

performed by your customers or your users. This was an advance in human performance

testing; why?

Because for the first time the parameter that is mental activities guided were considered as

a construct that guide human behavior that was the advent of consideration of mental

operators, mental processes as parameters that influences human decision making,

specifically in the context of software development.

(Refer Slide Time: 23:13)

In late 1880s and in early 1990s, the scope of usability broadened and it broadened to

incorporate social and organizational aspects of system development and use. Usability

came to include more emphasis on understanding the activities of users in the real world

this went beyond what is sometimes called as task analysis. It involved detailed studies of

work practices, roles and concepts, field methods were adopted from anthropology and

sociology.

Usability engineers sometimes used to spend months at works place or work site collecting

data for requirements analysis for defining the users need. These descriptions such work

procedures are rich but then they are not structured and therefore, lately we see the advent

of scenario-based framework which offered a unique approach to working with work-

oriented methods.

(Refer Slide Time: 24:56)

Through the 1990s, electronic mail became a pervasive communication tool and other

internet tools such as news groups, multi user domains and real time chat became more

accessible. Communication and the coordination of work using networking software had

powerful effects on organizations.

The portrait of a solitary user single user finding and creating information on a PC on a

personal computer became background while the portrait of groups working together in a

variety of times and places networking with each other in the form of completing

collaboration and group interaction emerged.

(Refer Slide Time: 26:00)

Now, the term usability engineering is influenced by all these developments that happened

through 1980s and the early 1990s. The term was first coined by usability professionals

from Digital Equipment Corporation and they used the term to refer to concepts and

techniques for planning, achieving and verifying objectives for system usability. Initially,

the parameters were limited to planning, achieving and verifying objectives; that is what

were focused essentially on planning, achieving and verifying objectives system usability.

The key idea here is that measurable usability goals must be defined early in software

development because this would ensure how features or the software products are designed

so, as to ensure that the requirements of your end users are met. So, the key idea here is

that measurable usability goals must be defined early in software development life cycle

and then assessed repeatedly during development to ensure that these objectives are met

and achieved.

(Refer Slide Time: 27:37)

From the start, usability engineering has relied extensively on user interaction scenarios.

An example, early proposals suggested that developers should track changes in

performance times, errors and user attitudes for specific task scenarios. Such a process

would allow developers to measure the impact of particular design changes on usability.

Although the focus might be on the general implications of display features or commands

these functions would be considered in a concrete user interaction context.

(Refer Slide Time: 28:39)

So, initially usability engineering focused on the design of the user interface, the medium

that allowed the end users to communicate with the software and the hardware assembly

to ensure their task or goal is reached. So, usability engineering initially focused on the

design of the user interface. On engineering effective interactive presentations of

information and functions and more recently the management of usability goals has been

extended to other software development activities.

Particularly, requirement analysis and system envisionment. With this what we would do

now is we would gradually discuss about the tools and techniques that are considered by

usability practitioners human computer interaction designers specifically for defining the

requirements of their end users. In the subsequent lecture we will discuss about this in

detail we will explore some of the techniques and then we will also explore the detailed

process of developing these software’s from a human-centered perspective.

