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In the case studies initially we discussed about arithmetic logic unit and then register file. So,

which will acts as a small memory which is present inside the CPU. And the other case study

that we are going to discuss today is static random access memory.

So, as we have discussed in the earlier lectures also. So, if we take the CPU or the

microprocessor. So, difference between the microprocessor and CPU is, a CPU built into a

single integrated circuit is called microprocessor.

So, here we have arithmetic logic unit which is one of the important block and then we have

the register array or register file, this is register file which we have discussed in the previous

slides. Now the memory is external to this CPU.

So, this register file will act as a small memory, but the main memory will be interfaced

outside the microprocessor or CPU. Now we will discuss about this memory. Again memory



there are two types of the memories one is called as static RAM and dynamic RAM in

random access memory.

In read only memory also there are different types, but here we will discuss about the random

access memory. So in this static random access memory is having some advantages like it

does not require any refreshing circuitry whereas, dynamic RAM requires refreshing

circuitry.

So, here I will discuss about the static random access memory. So, you take any memory, so

what are the different signals for the memory? We have discussed this in earlier lectures also.

So, in the memory there will be some address lines which is unidirectional address lines and

there will be some data lines which are bidirectional and then any chip will be having chip

select. Normally in ICs chip select signal will be active low, but here for the sake of

simplicity I am assuming active high signal.

So, CS is equal to 1 means this IC is selected then we can read as well as write. So, there is a

read signal then we have one write enable signal and of course, we require the clock.

This is the write enable signal, read signal, chip select signal, clock then this data as I have

told bidirectional this datain is this direction data is inputted dataOut is this direction this will

be inside this, this will be outside this. Similarly, address there will be some address line this

is unidirectional.
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Now this address lines is going to decide the size of the memory the address lines is going to

decide the size of the memory. So, here I am taking 8 address lines. So, in general if n address

lines are there, the memory size is given by 2 raised to the power of n. So, this is equal to 2

raised to the power of 8 because n is equal to 8 in this case this is I think 256 bytes.

So, that means, this memory will be having 256 different locations 0 1 2 so, on up to the last

one is 255, 256 different locations. And this data line is going to decide the number of bits in

each location because this is also 8 bit. So, each location is capable of storing 8 bits of

information this will have 8 bits, this will have 8 bits. So, like that each location will have 8

bits of the information.

Now we can perform either read operation or write operation using two different read and

write signals. So, in order to perform either read or write operation the initial condition is

chip select should be 1. If chip select is not 1 we cannot perform neither read operation nor

write operation. So, we have written the Verilog code for this one and test bench and the

corresponding waveforms.

So, we can see here the module name is synchronous static RAM. So, we will call as

synchronous RAM. So, the inputs are dataIn is the input, dataOut is the output, address is

input, chip select is input, write enable, read, clock then we are defining this later. So, on the



parameters we are going to define as address as 8, data as 8 and data path is also 8. So, the

number of bits to be proceed.

And then we have defined the input port as dataIn, this dataIn I am defining here. So, this is

data minus 1 0 what is DAT? Is 8, so this will be 7 is to 0. So, this is total 8 lines this

becomes 7 is to 0 because DAT is 8 similarly output register. So, this also again 7 is to 0. So,

8-bit dataIn 8-bit dataOut then address is also 8 bit because ADR is 8 this is also 7 is to 0.

And these are single bit signals CF, CS, chip select, write enable, read, clock then the internal

variable. This is external register we have defined this as register external register we have

defined as dataOut. So, this dataOut will be taking the data from the memory. So, we can call

this inside this memory. So, we can have 256 locations. So, we are calling this SRAM data

minus 1 7 is to 0 as SRAM 7 is to 0.

So whatever this data that is available here as 8 bits, this we are calling as SRAM 7 is to 0.

So, this data we are going to output onto this data. So, this is internal variable. Up to here its

initialization coming for the main program always at positive edge of the clock we are

assuming that the clock is positive edge. Begin if chip select equal to 1 if chip select is 0 no

operation. So, this chip will not be selected we cannot perform neither read operation nor

write operation.

So, in order to perform either read or write operation the primary condition is chip select

should be 1, then we are checking for the write enable and read. So, this is write enable is 1,

read is 0 because these are active high signals this will indicate write operation. So, in write

operation what we will do? We will write some data into the memory we will take the data

onto the dataIn and we will write into the memory.

So, what is SRAM? This SRAM is equal to dataIn; whatever the data that is taken in the

dataIn will be write into the SRAM address that we have defined here end. On the other hand

if read is equal to 1 and write enable is 0, this is read operation.

In read operation reverse whatever the data that is available here that will be outputted onto

the dataOut. So, for that the assignment is dataOut is equal to SRAM address these two are

opposite then end. So, this is the end module.



So, this is actually behavioral modeling. So, we are not discussed about the internal circuitry

of this synchronous static RAM. So, we just discussed about the external devices only

external the signals of the SRAM.
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Now what is the corresponding test bench? This is the corresponding test bench. So, we have

timescale. So, 1 nanosecond by precision of 1 picoseconds then we know that all the inputs

will be declared as registers in test bench and all the outputs will be declared as wire.

Then after initialization then the next step is instantiate the design under test, here I am using

the same names we can use the different names also as you have discussed in the previous

lecture with an example.

So, here I have used the same names dot followed by CS and then CS. So, this will give the

connections between the test bench and the design under test. Now initially dataIn we are

taking 8 hexadecimal zeros means 0 0 0 0 0 0 0 0 H. And then address is also 8 hexadecimal,

chip select is single bit 1 bit binary 0 initially I have taken as chip select as 0. So, write is also

0, read is also 0, clock is 0.

So, we will wait 100 nanoseconds for the reset. Because chip select is 0 means it is some sort

of a reset type of the operation. Then after 100 nanoseconds I will take the dataIn as 0 0 0 0

only address is also 0 0 0 0 the same thing I have taken, but this time chip select is 1 then



write is 1 read is 0 means this is write operation. After 100 nanoseconds it will perform the

write operation with data as all zeros address is also 0 0 means what does it mean?

So, we are going to write in the first location this is all zeros 0 0 0 0 see here we are going to

enter all zeros for this assignment. Then after 20 nanoseconds, so I will make this dataIn is

also 0 address is also 0. So, I will keep as it is and then after 20 nanoseconds I will make all

ones means totally 140 nanoseconds. So, this data become all ones address becomes all ones

the last one these are all ones this is address is also all ones.

(Refer Slide Time: 13:59)

Then after another 20 nanoseconds I will make 8 bit hexadecimal 1 all zeros, 8-bit

hexadecimal all twos, after 20 nanoseconds I am giving different values of dataIn address,

different value of dataIn address. After total of this much time the total time is 40 plus 20

plus 20 plus 20 plus the previous 120 it seems. So, now, I will make this as a read operation

because write is 0 read is 1.

Again for every 20 nanoseconds I will change the bit pattern of the address. Then for the

clock I will use this similar type of the logic that we have discussed in the earlier examples.

So, for every 10 nanoseconds clock becomes clock bar means, the clock period is equal to 20

nanoseconds clock frequency is 1 by 20 nanoseconds.
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So, you can see the corresponding waveforms. You can see that initially for 100 nanoseconds,

the write signal is 0 read chip select is 0 write is 0 read is 0 that is what we have written in the

test bench. Then after 100 and nanoseconds, we make this chip select equal to 1 and then

write operation as I have discussed this is write operation because write equal to 1 read is 0.

So, while writing also we will write. So, whatever the data that is in and then address. So, in

that address this data will be written this is dataOut this data whatever the dataIn is 1 is

outputted here, 16 is outputted here, 6 is outputted here. Because the corresponding timings

are 220 nanoseconds and the clock is complemented for every 10 nanoseconds.

So we can check this values from the values that have given in the test bench these values

you can verify. So, this is about the next third case study, so which is on the memory. So, with

this 3 case studies you should be able to design now any microprocessor. So, because the

main blocks we have already discussed. So, arithmetic logic unit, register file, external

memory the remaining blocks are minor only. So, we have some control circuit is like

decoders, multiplexers.

So, with this knowledge you should be able to design a CPU or microprocessor which can

perform the different operation you can vary the specifications. So, the number of operation

that is to be performed, the number of registers, the address, width of the microprocessor, the



data lines by changing the different parameters we can design the different microprocessors.

So the next case studies on digital filter design.
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This is also another important relation. So, the people who works on the Verilog

implementation of dsp algorithms, so one of the important dsp block is digital filter. So, how

to implement digital filter using Verilog?

So, we know that a filter is a frequency selective network it selects some frequencies and

rejects the remaining frequencies. Based on whether this is going to select the low

frequencies high frequencies a band of frequencies or it rejects the band of frequencies we

have basically four types of the filters low pass, high pass, band pass, band reject.

Again the filters will be broadly classified into two types one is called as FIR another is

called IIR. FIR is finite impulse response or infinite impulse response. So, here we will not

discuss about how to design this.

So, designing of this filters will be studied at dsp course, here in this particular course we will

discuss how to implement this filters using Verilog. So, we will discuss about the Verilog

code then test benches and then the output waveforms. So, I will start with the FIR filter later

I will discuss about the IIR filter.



So, if you consider a 3 tap FIR filter the difference equation for the 3 tap FIR filter is. So, y of

n is equal to a into x of n plus b into x of n minus 1 plus c into x of n minus 2. So, this is

output, this is input these are the taps or weights we can also call this as taps or weights. So,

by properly choosing this abc values we can set the specifications of the filters that we are not

going to discuss.

Suppose, if I take a low pass filter. So, ideally it should pass all the frequencies from 0 to wc

with unity gain it has to reject all the frequencies beyond wc, but practically we will get

something like this one. So, there are four parameters basically one is called as pass band

gain, pass band frequency, stop band gain, stop band frequency.

So, to satisfy these parameters we will design filter. So, accordingly we will fix abc. So, that

filter design you might have studied at dsp course now here we will be discussing only

implementation. So, here basically we require 3 multipliers which says some T M is the

computation T M of each multiplier and two adders. So, initially I will start with a simple

multiplier which is unsigned multiplier, multiplier can be either signed or unsigned.

But in most of the practical applications we need the signed multipliers only because the data

can be either positive or negative. But in order to better understand this filter I will first start

with the unsigned multiplier then later the IIR filter I will implement with the signed

multiplier.

FIR filter I will use unsigned multiplier one of the important unsigned multiplier is Braun

multiplier. And then this adder you can use any of the adders, but I will use here ripple carry

adder which we have discussed in the earlier lectures.

This adder we are going to multiply with ripple carry adder this multiplies with Braun

multiplier then I will implement the FIR filter. So, for that initially we have to I mean

implement Braun multiplier, you write down the Verilog code then Verilog code for the RCA,

then Verilog code for this delays which are D flip flops this already I have discussed in the

earlier lectures this also I have already discussed.

So, now, we will discuss about the Braun multiplier here and then we will instantiate this D

flip flop, Braun multiplier and RCA to implement the final FIR filter. So, to start with this we



will first discuss about the Braun multiplier, Braun multiplier is unsigned multiplier as I have

told.
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If I consider a 4 bit by 4-bit multiplier this requires in general for n sorry this is n actually n

bit by n bit multiplier we require n into n minus 1 full adders. If I take n is equal to 8, this will

be 8 into 8 minus 1 which is 56 full adders are required and to generate the partial products

we require the AND gates. The number of AND gates required is simply n into n, n is 8. So,

total 64 AND gates are required.

Then as usual in any multiplication we will first find out the partial products and then we will

shift and then add. So, this will be better understand from the algorithm in the next slide.
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So, I have taken basically two 8 bit numbers a 7 a 6 so, on up to a 0 b 7 b 6 so, on up to b 0

where a 7 is MSB most significant bit and a 0 b 0 are LSB’s least significant bits. Then we

will perform this multiplication in the conventional manner we will multiply first with b 0 a 0

b 0 a 1 ok we will put the values here then we will shift and then we will put the values. So,

like that this is the complete table.

so here to get the final 16-bit output, they are performing two 8 bit by 8 bit multiplications,

the result can be maximum result can be 16 bit. So, that 16-bit result will be showed by P 15

to P 0 this is LSB, this is MSB then how to implement this P 0 to P 15? So, P 0

implementation is basically AND gate nothing is divided AND gate. So, totally we have to

generate all this partial product, this is a partial product, this is another partial product, this is

another partial product.

So, totally we have eight partial products. Once if we generate the eight partial products then

we can perform the addition of this partial products using fully adders. So, in order to

generate this partial products, how many AND gates are required? In each partial product we

require 8 AND gates and total 8 partial products. So, total 8 into 8 64 AND gates. So, this is 1

2 3 4 5 6 7 8. So, like that total 64 AND gates are required.



So we can write directly and the keyword primitive and you can obtain this and the all the

outputs of this, AND gates we will assign some wires because the outputs of this AND gates

you have to use to generate the final product terms. And then in the second row to get P 1

what you have to do? a 1 b 0 a 0 b 1 you have to adder of course, this you can perform with

half adder also, but to have the uniformity I will make the third bit as 0 and I will use full

adder to perform this.

Then to perform this, so this 3 bits are directly there, but here you may get one carry from

here also. So, total four bits we have to add. So, we require one full adder one half adder, but

to have the uniformity again, I will use all full adders only if it requires only two bits third bit

I will make as 0. So, this table is shown in the next slide.
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We can see that a 0 b 0 I am not showing the AND gate here. So, total I am using 64 AND

gates to generate all the product terms. So, this is generated through AND gate with a 0 b 0 as

the inputs output is a 0 b 0.

So, this itself is your P 0 ok then P 1 is as I have told a 1 b 0 plus a 0 b 1 the third input here I

have not shown this is 0 for all this is 0, this is 0. In fact, for this half errors are enough, but to

have the uniformity because we can instantiate full adders. So, I am implementing the entire

algorithm using only full adders.



So, that is why the third bit I make as zeros. So, we can see here this a 1 b 0 plus a 0 b 1 a 1 b

0 plus a 1 a 0 b 1. So, and 0 full adder the sum bit is this along with this carry bit we have to

perform addition of 3 more bits. So, this a 3 b 0 a 1 b 1 a 0 b 2 along with this carry. So, that

will be performed by using this. So, we are adding two bits along with the carry, then we will

get sum and carry this sum and the third bit then other bit we will make as 0, so that we will

get P 2.

So, like that we can easily verify. So, this table can be mapped on to this architecture there is

a one to one mapping is there. Now we will first write the Verilog code for the Braun

multiplier and then we will just repeat the codes of ripple carry adder which we have

discussed in the earlier lectures and then D flip flop. Then finally, we will instantiate all these

3 blocks to implement the final 3 tap FIR filter. So, this is the basic module for the Braun

multiplier.
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So, this is 8 bit input, 8 bit output and product output is 16 bit P 0 to P 15 then we require the

buffers as I have told at the output of each AND gate we need a buffer. Because that output of

the AND gate we have to give as input for the full adders. So, we require total of 63 buffers

and similarly.



So, carry buffers we require 55 sum buffers 41. So, the first product 0 is simply a 0 b 0

because we do not need any full adders, here we do not need any full adder to generate P 0.

For P 1 we are using a 1 b 0 and then using AND gate. So, we have to generate all the

product terms that is why these many AND gates are 64 AND gates total this is 1 AND gate

remaining all are 64 AND gates.
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This is straight forward this one after the AND gates for the next one is full adder. So, we

have to generate this full adder code, this we have already discussed in the earlier lectures.

So, we can easily go through this one. So, using this full adder we will instantiate these full

adders in the Braun multiplier.
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So how many such full adders are required? 8 into 7 56 such full adders are required.

(Refer Slide Time: 30:39)

So, you can see here full adder 1 2 full adder 56. So, total 56 full adders are required and

based on these values we have to assign the inputs and outputs of the full adder module that is

the endmodule that is. So, this Braun multiplier will give all the product terms from P 0 to P

15. Now we have the multiplication Verilog code the full adder and then using full adder we



can construct the ripple carry adder. And then for D flip flop we have some code finally, we

will implement the FIR filter.
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So, this is D flip flop, so in the 3 tap FIR filter we have delays that delays can be

implemented by using the D flip flop. So, this code also we have already explained in the

earlier lectures, then ripple carry adder is basically full adders. So, this 16-bit ripple carry

adder will be having 16 full adders.

We have discussed this ripple carry adder also in the earlier lectures. So, using these blocks

now ripple carry adder, D flip flop and Braun multiplier we finally, implement the 3 tap FIR

filter.
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This is the Verilog code for 3 tap FIR filter. So, we know that in 3 tap FIR filter we require 3

multiplications 2 adders and then this was the diagram that we have discussed earlier. So, this

two D flip flops now using two D flip flops for this and this is input x of n and there are 3

multipliers these are 3 multipliers which multiplies with a b c. So, these 3 multipliers

represented by Braun multiplier M 1 M 2 M 3.

So, we are calling this as instead of a we are calling as H 0 this up to you here I have used H

0 this is H 0, H 1, H 2 and then two adders ripple carry adders because this ripple carry

adders size should be 16 bit because we are multiplying two numbers here. So, one is H 0 or

a.

So, this we have taken as 8-bit, x of n we have taken as 8 bit. So, this 8 bit by 8-bit

multiplication we have implemented using the Braun multiplier. So, the output of this one

will be 16 bit, this is also 16 bit. So, we need a 16-bit adder.

Similarly, the output of the 16-bit adder will be again we will get 17 bit also. So, the carry bit

if you neglect again 16 bit only this is also 16 bit RCA here yn also we will get 17 bit, but

you are considering the 16 bit by truncating one bit. If you want you can store here 17 bits

also second RCA we can implement a 17 bit RCA so, that we can increase the accuracy.

So, this is the Verilog code for 3 tap FIR filter by instantiating 3 multipliers 2 ripple carry

adders 2 D flip flops. And then always at positive edge we will assign final output that is



output of this second adder output of the second adder as the final output. This is final output

this is output of the second adder then the corresponding test bench for this one is this is test

bench.
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So, we have define all the inputs as the registers, output as a wire this is module declaration

then we have instantiate DUT I have used the same names for input of the test bench as well

as DUT. And here I am going to complement the clock for every 5 nanoseconds. So, initially

I have given this is two-digit decimal 10 this is H 0 is 10, H 1 is 20 these are decimal values

H 2 is 30.

Initially I have given the input as 0 after 40 nanoseconds I will make input as 3, after another

10 nanoseconds 1, then one of these are the values of the x of n then finally, we have ended

the module. So, this is basically the RTL schematic of a Braun multiplier.
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We can easily see the structure how this multiplication, the products, partial products will be

generated then we have finally, 3 tap FIR filter.
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So, this is a Braun multiplier which is the previous one, this is another multiplier this is

another multiplier, this is D flip flop, this is RCA and final output block this is the total 3 tap

FIR filter top module.
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Then coming for the simulation results of this one, so initially we have taken this x as 0 if we

take 0 whatever this H 0 H 1 H 2, H 0 we have taken as 10, H 1 we have taken as 20, H 2 we

have taken as 30. Initially x is equal to x of n is equal to 0 if I assume that the signal is causal

x of n minus 1 will be 0, x of n minus 2 is 0 because the first sample itself is this previous

sample. So, I will assume that 0.

Then what is y of n? This into this H 0 into x of 0 0 plus 0 plus 0 output 0. So, after some

time 10 nanosecond it seems 40 nanoseconds. So, after 40 nanoseconds, so what you have

given is x of n is you have given as 3 this we have given as 3. So, this value becomes this

value becomes this. So, previous values becomes 0 0. So, what is the output? So, these two

are zeros. So, H 1 multiplication factor is 0, H 2 is also 0, but H naught is 10. So, 3 into 10

you will get 30 value. So, you can see here 30 value.

So, after some time you have given x of n as 1. So, the previous value 3 becomes x of n

minus 1 ok x of n minus 1 means you have to multiply with 20. So, 1 into H 0 is 10 plus the

previous value is 3 into 20 which is equal to 70, you can see here. So, in after another 40

nanoseconds x of n we have given as x of n you have given as 2, this is 3, this is 1, this is 2.

So, this 2 will be now with H 0. So, 2 into 10 the previous value is 1, 1 with H 1 plus 1 into

20 plus and the previous value is 3, 3 into H 2 which is 30. So, this is equal to 20 plus 20 plus

90 130. We can see here this is a 2 into 10 the latest value is x of n is 2 2 into 10 20, 1 into 20



H 1 H 0 H 1 H 2 are 10, 20, 30 right 10, 20, 30. So, this is 1 into 20 and 3 into 30 this you

should get 130. So, this is how you can verify the operation of this 3 tap FIR filter.

So, next we will discuss about the IIR filter implementation, but this time while

implementing the IIR filter, we will use a signed multiplier. So, there are different types of

signed multipliers. So, first I will discuss about the signed multipliers and then using signed

multiplies, I will show the representation of or the implementation of IIR filter.

Thank you.


