
Computer Vision and Image Processing – Fundamentals and Application
Professor Doctor M. K. Bhuyan

Department of Electronics and Electrical Engineering
Indian Institute of Technology Guwahati India

Lecture 41
Programming Examples

Welcome to NPTEL MOOCs course on Computer Vision and Image Processing Fundamentals

and Applications. This is my last class of this course. In this class I will give some programming

assignments. So, mainly I will discuss twenty programming assignments, the twenty

programming problems. These programming assignments you can do either in MATLAB or

maybe open CV Python or maybe any other programming languages. So, one by one all these

programming assignments I will discuss now. So, let us start now.

(Refer Slide Time: 01:01)

So, first programming assignment is, consider an image containing one arbitrary object and after

this apply affine transformation to show all the following cases. So, first we have to show the

rotation, after this translation, shearing, scaling and also the combined translation, rotation and

scaling. So, this concept already I have explained in my class, the concept of the affine

transformation.

(Refer Slide Time: 01:26)

So, your output will be something like this, you can see I have the original image. This image

can be rotated by 60 degree. And also this image can be translated. So, this is the translated

image. This image can be sheared, that shearing can be done. That means, the scaling is not any

form throughout the image, that is called shearing. Also we can do the scaling, scale image you

can see.

And also we can do the combined translation, rotation and scaling. So, this is the concept of the

affine transformation. So, for this you have to write a program, the program in MATLAB or

maybe you can use Python, the open CV Python also you can use.

(Refer Slide Time: 02:12)

So, in this case, I am showing one MATLAB program. So, here you can see first I am reading

the image, the image is the Lena image. And after this what I am doing, the resizing the image.

So, that resizing to make the computation first, after this I am showing the original image. After

this I am considering the rotation of the image. So, 60 degree I am considering. So, first I am

doing the rotation and this is the transformation matrix for the rotation.

So, you know the transformation matrix for the rotation is cos theta sin theta minus sin theta cos

theta. And also we have to see the minimum and the maximum coordinates for avoiding negative

coordinates. So, that we have checked this, in this part.

(Refer Slide Time: 02:56)

After this, I am doing the rotation. So, I am finding the rotated image based on the

transformation matrix. So, this rotated image can be displayed. After this I am considering the

translation. So, for the translation I am considering the translation vector, the translation vector e

is equal to 10, 01 and based on this I am translating the image, the input image. So, I can do the

translation and I can show the result of the translation. So, this is the imshow result 2.

After this I am considering the shearing, shearing means the scaling is not any form throughout

the object. So, for shearing, I am considering this. So, scaling along the x direction, scaling along

the y direction I am considering. And from this I am considering the shearing matrix. After this, I

am doing this one, these computations.

(Refer Slide Time: 03:54)

And finally, you can see I am showing the result of shearing, imshow result 3, that is the result of

shearing operation. And after this, what am I considering? The scaling of the image. So, so,

scaling along the x direction, scaling along the y direction I am considering. And after this I am

doing the scaling and after scaling, I can show the result of the scaling operation. So, you can see

result 4, that is nothing but the result of the scaling operation.

After this, what am I considering? I am considering the affine transformation, considering

translation, rotation and the scaling. So, for this I am defining the parameters, all the parameters I

am defining, like scaling, translation parameter and also the rotation parameters I am defining.

And based on this I am doing the combined operation.

(Refer Slide Time: 04:46)

And after this finally you can see, I am showing the result. The result is, result 7. That is the

result corresponding to combined translation, rotation and scaling. So, this is about the first

assignment. So, in the first assignment, the problem is I have to do the affine transformation of

the image.

(Refer Slide Time: 05:06)

The second problem is writing MATLAB program to show perspective, weak perspective and

orthographic projections of an object in an image. And for this make suitable assumptions if

required. So, I am showing the original 3D cube and you can see the output corresponding to

perspective projection. So, first one is the perspective projection. Next one is the orthographic

projection and the last one is the weak perspective projection.

So, in the case of the perspective projection, I have already explained that distant objects appear

smaller. In case of the orthographic projection, it is nothing but x, y, z is projected onto x, y

coordinate. That is the orthographic projection. And in case of the weak perspective projection, it

is nothing but the scaling of the x coordinate, scaling of the y coordinate like this and the scaling

of the z coordinate.

So, that is the weak perspective projection. So, based on some assumptions, you can show the

perspective projection, orthographic projection and weak perspective projection. There is a

mistake here in the spelling, it should be perspective, it should be perspective. So, this is the

second assignment. So, you can do it in the MATLAB.

(Refer Slide Time: 06:32)

Third problem is, write a MATLAB program to determine a depth map by using the concept of

photometric stereo. So, this problem is already I have explained that is, the concept of the shape

from shading. The shape from shading problem can be solved by the concept of photometric

stereo. So, for this I am considering different light sources and shading information is used to

determine the depth information.

So, different illumination conditions or different lighting conditions I am considering and you

can see, I am getting the image of sphere one, sphere two like this. Because I am considering

different lighting conditions. That means, I am getting the shading conditions. So, from all these

images, I have to get the depth information, that is the concept of the photometric stereo. So,

images of a sphere at different illuminations.

So, different illuminations I am considering and based on this I am getting the shading. So, from

the shading information, I have to get the depth information.

(Refer Slide Time: 07:34)

So, here first based on the principle of the photometric stereo, you can determine the albedo

surface map. The albedo also you can determine, and from the albedo you can determine the

depth map of the object. So, the principle of the photometric stereo has already I have explained

in my classes. So, this is the output of this assignment, that is you can determine the albedo of

the surface map, albedo you can determine. And also from this you can determine the depth map.

This is about the third assignment.

(Refer Slide Time: 08:10)

The next assignment is for an arbitrary object in an image, determine chain code and shape

number. So, here I am showing the original image and this image or the this boundary of the

object, I have to represent by using the chain code. So, for this you can see I am showing the

boundary of the object, that is the boundary of the input image. That can be represented by the

chain code.

The concept of the chain code has already I have explained. And after this I can reconstruct the

boundary from the chain code. So, in the fourth result, that is the fourth image, that is the

reconstruction of the boundary from that chain code. So, this problem you can try, that is first

from the boundary information, you can determine the chain code and again from the chain code

you can reconstruct the original boundary.

(Refer Slide Time: 09:10)

Question number five is for an arbitrary object in an image, obtain fourier descriptors to

represents its boundary. So, that means the fourier descriptor we have to use to represent a

particular boundary. So, you can see, this is the original image. And you can see the boundary of

the original image, that can be reconstructed by the fourier descriptors. So, corresponding to this

original image, the boundary can be represented by the fourier descriptors.

After this, this boundary can be reconstructed by considering inverse fourier transform, that is by

considering the fourier coefficients, I can reconstruct the original boundary. That is the

reconstructed boundary. Similarly, I am considering the rotated image and corresponding to this

I am reconstructing the boundary with the help of the fourier descriptors. So, for the rotated

image also we can determine the fourier descriptors.

After this, by using these fourier descriptors, we can reconstruct the boundary. So, all the

properties of the fourier descriptors can be verified, because there are many properties of the

fourier descriptors like scaling, rotation, translation. So, all the properties I have discussed in my

class. So, all these properties you can verify with the help of these images. So, you take one

image and you try to verify all the properties of the fourier descriptors. So, this is question

number five.

(Refer Slide Time: 10:40)

After this the next question is, writing MATLAB code to represent a boundary of an object by B-

spline of order four, show the represented boundary. So, here I am considering the input image

and you know that in the case of the B-spline, I have to consider some control points. And also

the important point is the order of the B-spline. So, here I am considering the order is four. So,

with these B-spline curves, I can represent the boundary with the help of the control points.

So, in the picture you can see here, I am showing the control points. And after this between these

control points, I am considering the B spline curve of order four. And like this you can represent

the boundary of the input image. So, this problem also you can see, that is, the representation of

the object boundary by B-spline curve. So, that is one important problem, the B-spline curve.

(Refer Slide Time: 11:42)

The problem number seven is, represent a texture by gray level co-occurrence matrix. So, that is

GLCM and determines all the relevant parameters. So, in my class I have discussed how to

determine the GLCM that is the gray level co-occurrence matrix. So, for a particular

displacement vector, you can determine the gray level co-occurrence matrix that is the array, the

P [i , j] you can determine. And that is displayed as an image.

So, for a particular displacement d, I can determine the co-occurrence matrix, the P [i , j]. That

array I can determine and that is displayed as an image, that is the gray level co-occurrence

matrix. And from this I can determine the parameters, the parameters maybe the maximum

probability I can determine, moments I can determine, the contrast I can determine, entropy I can

determine, uniformity I can determine, homogeneity I can determine.

So, all these parameters I can determine. And this GLCM is computed from several values of d.

So, the GLCM can be computed from several values of d, and the, the one who is maximizes a

statistical measure computed from P [i , j] is ultimately used. So, that means I am repeating this:

The GLCM is computed from several values of d, that is the displacement vector. And the one

which maximizes a statistical measure computed from P [i , j] that is the GLCM is finally

employed or finally used.

So, that is the concept of the GLCM. So, we can determine all the relevant parameters, the

parameters like the maximum permeability, moments entropy, all these parameters I can

determine from the GLCM. So, corresponding to this original image, I can determine the GLCM

matrix. So, this is problem seven.

(Refer Slide Time: 13:52)

Next the problem is, use seven invariance that is the moment invariance to represent a shape.

And for this write a MATLAB program for shape representation. Also show the seven moments

are invariant to translation, rotation, scaling and reflection. So, corresponding to this original

image, you can determine seven moments, that is seven moment invariants you can determine to

represent a particular shape. So, corresponding to this original image, you can determine seven

moment invariants.

After this, we have to prove them, the seven moments are invariant to translation, rotation,

scaling and reflection. So, this image can be rotated. In this case I am rotating the image by 45

degree, rotated by 90 degree I can do the scaling, I can do the translation and also I can do the

reflection of the original image. So, for all these cases I can determine seven moment invariance.

And from this I can prove the seven moments are invariant to this transformation, the

transformation are translation, rotation, scaling and reflection.

So, the problem is corresponding to these images I can determine seven moment invariance. And

with the help of the seven moment invariance, we have to prove that these moments are invariant

to translation, rotations, scaling and reflection. So, this is one important problem. So you can

write a MATLAB program or maybe the Python program for this assignment. This is about

question number eight.

(Refer Slide Time: 15:40)

Next one is question number nine. Determine the radon test from for tomographic images and

show the sonogram, show the back projected images. So, suppose if I consider the original

image, this is the original image, I can determine g s theta that is nothing but a radon test from

the input image. So that I have to determine, g s theta. And the g s theta can be represented as an

image, and that is called the sinogram. So, how to determine the radon transform?

We have to compute g s theta, there are two parameters one is s another one is theta. After

determining g s theta, we can display the g s theta as an image and that is called the sonogram.

After this I am considering the reconstruction of the image. And in this case, I am considering

the back projection technique. So, for different angles theta, I am doing the back projections. So,

I will be getting the back projected images.

So, from the number of back projected images, I can reconstruct the original image. So, for this I

have to determine that ray sum, so ray some soul also I have to determine. And this ray some or

the, this GST data can be displayed as an image and that is called a sonogram. And

reconstruction is nothing but four different theta, I have to determine the back projected images

and from the back projected images, if I combined all the back projected images, I can

reconstruct the original image.

So, this is the reconstructed image by considering the back projection technique. There are two

techniques, in my class I have explained, one is the back projection technique, another one is the

fourier transform technique. But in this case, I am considering the back projection technique, you

can also apply the fourier transform technique.

(Refer Slide Time: 17:30)

So, corresponding to this I am showing the program. So, first I have to read the original image.

So, this is the original image I am showing. After this, what am I considering? I am finding the

ray sum in different directions, in 90 degree directions, in a lambda zero divided by 180 degree

like this, all the directions I am determining the ray sums. So that means I am calculating the ray

sum.

(Refer Slide Time: 17:57)

After calculating the ray sums, what I am considering? So, ray sums lambda 135 degree, adding

the ray sums 45 degree like this. So, I am showing the reconstructed image, because I am doing

the back projection at different angles. And from this back projected image, I can reconstruct the

original image. So, that means I am considering the ray sum, ray sum in different angles,

different directions.

And after this, I am reconstructing the original image from this back projected images, that is

about the sonogram and the reconstructed image. So, for the sonogram I have to determine the g

s theta.

(Refer Slide Time: 18:38)

The next program is, write a program to implement K L transform of an image. And show the,

transform image, represent the image in terms of Eigen images and show the results. So, in the K

L transformation, so what is it the transformation? Y is equal to a x−μx, that already I have

explained. So, a is the transformation matrix, this transformation matrix A, that is determined

from the Eigen vectors of the covariance matrix.

So, x is the input vector. So, from the input vector, I can determine the mean and also I can

determine the covariance. From the covariance matrix I can determine the Eigen values and

Eigen vectors. So, e i is the Eigen vectors and lambda i is the Eigen values and from this I can

determine the transformation matrix. So, a is the transformation matrix. So, if I apply thios

transformation, y is equal to a x−μx, then I will be getting the transformed image something like

this.

So, this is the transform image. After this I can reconstruct the original image. If I consider all

the Eigen vectors and all the Eigen values, then the perfect reconstruction is possible. So, what is

the reconstruction formula? The reconstruction formula is a transpose y+μx. So, by using this I

can reconstruct the original image. So, already I have explained that if I consider all the

Eigenvalues, Eigen vectors, then I will be getting the original image.

But if I consider the truncated transformation matrix, then in this case I will, I will not be getting

the original image, I will be getting the approximated image. So, if I consider all the Eigen

values and the Eigen vectors in the transformation matrix, then in this case, the perfect

reconstruction is possible. But if I consider only some Eigen vectors for the transformation

matrix, then the perfect reconstruction may not be possible. So, this is about the image

reconstruction, in case of K L transformation.

(Refer Slide Time: 20:49)

The next problem is write a MATLAB program to extract SIFT features of an image. So, the

extracted features. So, first what you have to consider? First I have to consider the skill spedge

representation, after this I have to consider the difference of Gaussian and from the difference of

Gaussian, roughly I can look at the key points. Because I have to, I have to find the extrema, I

have to find a maxima or the minima of the difference of Gaussian. And from this, I can

determine the roughly, the key points.

After this I have to neglect the low contrast key points and also the edge pixels corresponding to

the key points. So, by considering the hessian matrix, I can remove the edge pixels which are

detected as key points. After this, I have to do the orientation assignments and finally, the SIFT

descriptors I will be getting. So, here you can see I am showing the key points corresponding to

this input image. These key points are the SIFT features. So, I will be getting the SIFT features

and I will be getting the descriptor and the size of the descriptor is generally 128.

(Refer Slide Time: 22:06)

Question number twelve, write a MATLAB program to extract HOG features of an image. So,

the extracted features. So, hog principle already I have explained in my class, the histogram of

oriented gradient. So, you can get the feature vectors based on the gradients. So, gradient of an

image you can determine and from the orientation of this gradient, you can determine the feature

vector, corresponding to the input image.

So, you take one input image and corresponding to this, you can determine the HOG features.

And with the HOG features, you can detect objects present in an image, that is nothing but object

detection. That is question number twelve.

(Refer Slide Time: 22:48)

Question number thirteen, write a program to detect edges of an image by canny edge detector.

So, this problem is the detection of the ages by canny edge detector. So, here I am showing the

input image, for canny edge detection, first I have to do the Gaussian blurring, that is the image

is convolve with the Gaussian, that means the noises are removed. And after this, I have to

determine the gradient magnitude and also the orientation, that is the direction of the edge

normal.

Here you can see, I am determining the gradient magnitude and also I am determining the

orientations, that is the direction of the a is normal. So, first step is to convolve the image with

Gaussian. The second step is, I have to determine the gradient magnitude and the direction. So,

you can see I am determining the gradient magnitude and I can determine the angle. After this,

the next important step is the non maximum suppression.

So, that concept already I have explained, the non maximum suppression. And after non

maximum suppression, you have to apply the concept of the thresholding with hysteresis. So, for

this you can consider the low threshold and the high threshold, and based on this, you can

determine the edge pixels. And you can see the finally, the edges are determined, that is the edge

pixels are determined with the help of the canny edge detector. So, this is the concept of canny

edge detector.

(Refer Slide Time: 24:21)

So, the main steps I have already explained. So, first I have to do the convolution of the image

with the Gaussian, that is the noise reduction using a Gaussian filter. After this, I have to

determine the gradient magnitude. So, first I have to determine the gradient along the x direction

and the gradient along the y direction, the horizontal and the vertical directions. After this I can

determine the gradient magnitude.

And also I can determine the, direction of the edge is normal. After this the non maximum

suppression, that principle I have to consider. Because in this case, I have to see the

neighborhood. So, based on the neighborhood, I can apply the principle of non maximum

suppression. The next one is the thesholding with the hysteresis.

So, that means I can consider two thresholds, one is the low threshold another one is the high

threshold. And I can determine the strong and the weak edge pixels. So, that is the thresholding

with hysteresis. And finally, we can do the edge linking. So, these are the steps of a canny edge

detector.

(Refer Slide Time: 25:30)

So, the corresponding program you can see, I am considering the input image. So, this input

image I am converting from RGB to gray, that is RGB image is converted into gray. And this is

the input image. After this, I am doing the Gaussian blurring, that is the image is convolve with

the Gaussian and we can determine the x gradient and the y gradient, that is the gradient along

the x direction and the gradient along the y direction I can determine.

And also I can determine the gradient magnitude and also the angle I can determine. And after

this I can plot the gradient magnitude and also the directions, the direction of the edge normals.

So, this Eigen plot, so these are the first and the second steps.

(Refer Slide Time: 26:18)

After this I can consider the non maximum suppression. So, that means, I can consider the

quantization of the all possible directions into four or five directions, because I have to search the

neighborhood pixels. So, for this I am doing the quantization of all the directions into four

directions. So, here you can see, I am considering the directions like this. And based on this I am

finding the neighborhood pixels.

After this I have to apply the principle of the non maximum suppression. So, you can see I am

applying the non maximum suppression and I am getting the intermediate image. So, this is the

intermediate image. After this I am considering the thresholding with hysteresis. So, for this I am

considering two thresholds, one is the low threshold, another one is the high threshold. And after

this I am applying the thresholding with hysteresis principle, that principle I am applying.

(Refer Slide Time: 27:10)

And corresponding to this, I will be getting the edge pixels, and this edge pixels of the input

image you can display, you can show. So, these are, these are the, this is the concept of the edge

detection with the help of canny edge detector, that is the MATLAB program.

(Refer Slide Time: 27:30)

Similarly, I can consider the same thing that is the canny edge detector by considering the

Python programming. So, I am just giving one example of Python programming here. So, first, I

am considering import numpy as np. So, what is numpy? Numpy is an open source numerical

Python library. So, if you read the Python library, then you will get this one. So, it is an open

source numerical Python library. And what is available in the numpy?

So numpy contains a multi dimensional array and matrix data structures, and it can be utilized to

perform a number of mathematical operations on areas such as trigonometric operations,

statistical operations, algebraic routines, so, all these operations we can perform with the help of

this library, that is the numpy library. And one is the pandes, pandes is an open source Python

package. And that is most widely used for data science, data analysis or in machine learning also,

we used this pandes and it is built on top of the numpy package.

So, this pandes is also another library. And you can see input os, what is os? The os module in

Python, provide functions for interacting with the operating system, os comes under pythons

standard utility module. So, os means, the os module in Python provides function for interacting

with the operating systems. So, that is os. After this, next one is input cv2, that is nothing but

open cv Python.

So, open cv Python is a library of Python designed to solve computer vision problems. So,

suppose if I consider, suppose cv2 dot suppose im read. So, if I consider this statements cv2 im

read this one. So, it loads an image from the specified file and suppose if the images cannot be

read, because of missing pile or unsupported or invalid format, then this method returns an

empty matrix.

So, input cv2 means it is an open CV Python. So, it is used for computer vision problems. So

after this I am considering import matplotlib, that is a collection of functions that make

matplotlib work like MATLAB. So, we can create the figure, we can do the plotting like this

with the help of matplotlib. So, this is a library, the import this one. After this I am considering

the Canny edge detector in Python.

So, here you can see the conversion of the image to grayscale, again I am converting the image

into grayscale. Suppose the RGB image is available, so we can convert the image into grayscale.

After this we can do the Gaussian blurring. So, you can see, I am doing Gaussian blurring. After

this I am considering the sobel operator, to determine the gradient magnitude. So, we can

determine the gradient magnitude, we can determine the gradient along the x direction and the

gradient along the y direction. And from this we can determine the gradient magnitude.

(Refer Slide Time: 31:11)

After this we are considering, the concept of the non maximum suppression. So, all these angles

I am considering, like 22.5 degree plus 90 degree plus 135 degree. So, quantization of all

possible directions into four directions by defining the range. So, that means I am defining the

range, and I am doing the non maximum suppression. That means I am finding the neighborhood

pixels. And based on this, I am doing the comparisons. And from this, I am getting the non

maxima suppress image.

(Refer Slide Time: 31:43)

After this, what am I considering? I am considering the thresholding with hysteresis. So, for this,

I am considering the strong threshold and the weak threshold. Also I am considering and I will

be getting the strong edge pixels and the weak edge pixels. And finally, I can get the edge pixels

and I can show the output image and the input images. So, this is the Python programming to

show the canny edge detector. So, like this you can write either a MATLAB program or the open

cv Python program.

(Refer Slide Time: 32:24)

So, corresponding to this you can see the input image and the output images. So, edges are

detected in the output image. That is the edge detection by canny edge detector.

(Refer Slide Time: 32:37)

Next problem is to write a program to detect lines and the circle by Hough transform. So,

corresponding to this image, I am determining the lines and the circles by considering the Hough

transformation. So, this principle has already I have explained in my class. So, for this we have

to consider the parametric space, the parameter space is rho theta is the parameter space. And

mainly I have to do the voting.

So, for this I have to first initialize the accumulator and after this I have to go for the voting,

corresponding to the pixels, all the edge pixels if I consider. And from this I can determine the or

I can detect the lines, I can detect that circles. So, you can see this is the parametric space, I can

show the outputs in the parameter space. And based on this booting, I can detect the lines, I can

detect the circles. This is question number 14.

(Refer Slide Time: 33:38)

Write a program to balance a color image. So, here you can see, I am considering the input

image, that is not color balance, the colors are improper. So, I have to balance the colors. So, the

simple procedure is, suppose it corresponds to a known region. Suppose if I consider this is the

known region, corresponding to this, this is a, this should be white, this should be white, but in

this case I am not getting the white.

So, corresponding to this known white portion, R should be equal to G should be equal to B

should be equal to 1, but actually, I am not getting the white color. Similarly, if I consider this is

the black. So, this is the black color, but I am not getting the black color because of the

imperfection of the image capturing device. So, what can I consider? I have to consider the color

balancing principle.

So, corresponding to the known region, suppose white region I am considering R is equal to G is

equal to B is equal to 1. Now, suppose I make one component fix, suppose I am making R fix

and find a transformation for the other two components that is the G and B. So, that R is equal to

G is equal to B is equal to 1. So, I have to make one component fix and find a transformation for

other two components. So, that R is equal to G is equal to B is equal to 1.

And apply this transformation for all the pixels of the image. So, apply this transformation for all

the pixels of the image. And after this if I apply this transformation, I will be getting the color

balance image, that is the output. So, I am getting the color image, color balance image in the

output, that is called the color balancing. So, you can write a MATLAB program or maybe open

CV Python program for this problem.

(Refer Slide Time: 35:25)

Next one is to write a program for a vector median filter and show the results for a color image.

So, here I am showing you one input image, Lena image. And this image is corrupted by noise,

the salt and pepper noise. And after this I can remove the salt and pepper noise by considering

the vector median filter. So, I cannot apply the scalar median filter, in case of the color image.

So, that concept also I have discussed in the class. So, for removing the salt and pepper noise in

the color image I have to apply the vector median filter.

(Refer Slide Time: 36:03)

So, what is the program for this? You can see, so first I am considering the original image and

after this, I am applying the salt and pepper noise and we can display the images, the original

image with noise. After this mainly I have to determine the distances. So, I have to consider one

window and in this window I have to consider the distances. So, distances in terms of RGB

value. So, that is nothing but the Euclidean distance I have to determine, the distances in terms of

RGB value.

So, you can see the distances in terms of the RGB value r - r, b - b like this g - g. So, I am finding

the distance in terms of RGB value and I have to find a minimum distance. So, this is the

minimum distance I have to find, and based on this I can find the median value. So, median

value I can determine and after this, I can display the output image that is the salt and pepper

noise can be removed. So, this is the program for the vector median filter.

(Refer Slide Time: 37:05)

And the question number seventeen is to write a program for image segmentation by k means

clustering. So, the input image I am considering, and you can see I am doing the image

segmentation by considering the K means clustering, first I have to consider the means. So,

randomly I have to select the means, after this I have to update the means, based on the minimum

distance of the algorithm, the algorithm is a k- means clustering.

(Refer Slide Time: 37:34)

So, you can see the program. So, first I am initializing the means, mean 1, mean 2, mean 3, 3

means I am considering. After this, I have to find the distance between the sample points and the

means, and after this I have to update the clusters. So, I will be getting the new cluster centers.

(Refer Slide Time: 37:51)

This process I have to repeat again and again until there is no change of the means. And after this

finally, I will be getting the segmented output image. So, that is about the K means clustering.

(Refer Slide Time: 38:05)

The problem number eighteen, eighteen is to write a program for motion estimation by optical

flow. So, here I am showing two examples, one is the input image. I am considering the frames

of the input video, here I am showing two frames only. And similarly, for the second case also

I'm showing the input image frames corresponding to a video, particular video. And after this I

can apply the optical flow principle.

So, I can determine the optical flow you can see, the direction of the optical flow. And similarly,

you can see the optical flow directions I can determine from the input image frames. So, you

have to apply the principle of optical flow. So, this also you can do in MATLAB or maybe in

open CV Python. So, this is a very interesting program.

(Refer Slide Time: 38:51)

Next is question number nineteen, write a program to recognize features by PCA and the LDA.

So, any database I can use. And in this case I have to first determine the Eigenfaces for the PCA.

And for the LDA I have to determine the fisher faces. So, here you can see I am showing the

Eigen faces. So, the principle is, any unknown face can be represented by a linear combination of

Eigen faces.

So, these are the Eigen faces I can determine. These Eigen faces I can determine from the

Eigenvectors of the covariance matrix. That means, from the input vector I can determine a

covariance matrix, from the covariance matrix I can determine the Eigenvectors. And that can be

displayed as an image, that is nothing but the Eigen faces. So, any face can be represented by a

linear combination of the Eigen faces.

(Refer Slide Time: 39:42)

So, these are the Eigen faces.

(Refer Slide Time: 39:44)

And similarly, I can also determine LDA faces. So, I have to apply the LDA principle and I can

determine the fisher faces. So, that means I have to determine the fisher faces from this matrix

that is the, within scatter matrix inverse into SB, that is the between scatter matrix. So, from this

you can determine the fisher faces. So, these are the fisher faces.

(Refer Slide Time: 40:12)

The last problem is, read the frames of a video one by one and then convert them to a color

video. That is nothing but the pseudo coloring, that is the false coloring. Segment out different

objects, vehicles, persons etc from the input video and then determine the trajectory path

showing the motion of the two vehicles. So, in this case, in this input, you can see I am

considering the frames of a video. So, these are the frames of a video and I have to determine the

moving objects.

So, simply you can apply the sense detection algorithm, for determining the moving objects or

maybe you can apply the optical flow algorithm or any other algorithms you can apply. But the

simple one is the sense detection algorithm, to determine the moving objects. And for the pseudo

coloring, the pseudo coloring concept can be used to convert the black and white image, into

color image, and the grayscale image into color image.

(Refer Slide Time: 41:13)

So, I am applying the pseudo coloring principle and you can see the outputs. So, I am converting

the grayscale image into color images.

(Refer Slide Time: 41:21)

So, this transformation I can apply for pseudo coloring. So, the first transformation is part of the

r component. Suppose these are transformations for the g component, and this is the

transformation for the blue components. And you can see if I see the transformation, there is a

difference in the face and the frequency. And for this I am getting the false colors and

corresponding to each portion I will be getting different, different colors.

So, corresponding to this portion I will be getting one color, corresponding to this portion I will

be getting another color. So, this is the concept of pseudo coloring.

(Refer Slide Time: 41:54)

And you can see, corresponding to this input image, I am converting the input image into the

color image, And also by applying the sense detection algorithm, I can determine the moving

objects and corresponding to these I can determine that trajectory. So, you can even apply the

optical flow algorithm. In this class I have given some examples of programming, I have given

twenty examples, the programming examples.

I feel you should do programming to understand the concept of image processing, the concept of

computer vision and also the machine learning algorithms. If you do programming in MATLAB

or any programming languages, your concept will be clear. Initially I thought that I can cover

many topics, particularly the applications of computer vision, but in a thirty hours course, it is

not possible to cover all the applications of computer vision.

So, that is why I have to stop here because I have already covered forty hours of lectures. So

maybe next time I can discuss more applications of computer vision. So, I hope you have

enjoyed the course. Thank you.

