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Welcome  to  NPTEL  MOOCS  course  on  Computer  Vision  and  Image  Processing

Fundamentals and Applications. In my last class I discussed the basic concept of artificial

neural  network.  Also,  I  highlighted  the  concept  of  supervised  learning  and unsupervised

learning. And also, I mentioned the importance of hidden layer in an artificial neural network.

For this I have given 1 example, implementation of AND and OR logic and also XOR logic

that implementation I have shown. 

For AND an OR I do not need any hidden layers, but if I consider the XOR logic in this case,

I need 1 hidden layer between input layer and the output layer. Also, I discussed the concept

of nearest neighbor classifier. Today I am going to discuss about different types of artificial

neural networks. And also, I will discuss the concept of supervised learning and unsupervised

learning. Let us see what are the different types of artificial neural networks. 

(Refer Slide Time: 1:53)

So, this training concept I will explain later on that is about the supervised learning and the

training  is  mainly to  find appropriate  weights and that  knowledge of the artificial  neural

network is stored in the form of weights. That concept I have explained in my last class and

some basic  neural network structures I can mention,  one is MLP that  is  multi  layer feed

forward network also it is called a multi layer perception, that is MLP. So, in case of MLP I

have the input layer and also, I have the output layer in between I may have some hidden



layers. After this the next one is the feedback or the recurrent network that I will explain,

another one is the hopfield network, competitive network and the self organizing network. 

(Refer Slide Time: 2:49)

So,  in  case  of  the  multi  layer  feed  forward  network  that  is  the  MLP,  that  multi  layer

perception. So, we have 1 input layer, 1 output layer and maybe the hidden layers in between.

And in this case, if I consider the simplest form of feed forward network, then in this case, no

hidden layer between input layer and the output layer. So, in this figure I have shown 1 MLP,

that is the multi layer perception 1 input layer you can see 1 output layer and in between you

can see 1 hidden, and layer that is the multi layer feed forward network. 
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And in this case also I have shown 1 feed forward network, you can see 1 is the input layer

and in between the hidden layer is available and you can see the output layer. And you can

see  the  interconnections  between  the  input  layer  and  the  hidden  layer  and  also  the

interconnections  between hidden layer  and the output  layers.  And also,  you can  see that

neurons for the output layer, input layer and the hidden layers. So, this is one example of the

feed forward artificial neural network. 
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So, I am giving one example of multi category classification. Suppose I am considering 3

classes w1, w2 , w3, 3 classes I am considering and what is the importance of the hidden layer

that I want to explain. So, suppose I am considering the decision boundaries like this and the

hidden layers are h1, h2 and h3. So, I can draw the neural network. So, suppose my input is x1

and I am considering the D dimensional feature vector. So, suppose this h1, similarly, I have

h2 and also, I haveh3, I am considering the hidden layers and maybe I may have one bias

input. So bias input also I am considering. 

So, I am considering the bias also. And you can see the hidden layers, I am consideringh1, h2 ,

h3 and after this I am not showing the interconnections, but output is suppose so y1, y2 and y3

and between I have the interconnections, that interconnections I have not shown. So, h1, h2 ,

h3, I am showing the hidden layers and input is the feature vector, the feature vector is x that

is the D dimensional feature vector and I have the outputs output is y1, y2 and y3. 



So, suppose if I consider, suppose the hidden below h1, h2 and h3. So, if I consider 1 and 1, h1

is 1 and , h2 is 1 that means, I am considering this one, h1is 1 and  h2 is 1 corresponding to

these suppose my class is suppose w1. So, my output will be, my output will be y1, y1 should

be equal to 1. The that corresponds to the class W 1 and H 3 do not care, any value, but h1

should be 1 and , h2 should be 1, h3do not care. So, corresponding to this y1 will be 1 and the

corresponding class will be w1. 

Suppose if I consider h1 is do not care, h2 is suppose 0 and h3 is suppose 1, that I can consider

suppose y2 is equal to 1 and that corresponds to the class w2. So, that means this case in that

case h1 is do not care, but h2 is 0, if you see it is 0 andh3 is 1. So, corresponding to this the my

class is w2. So, this is my class, that class is w2, that class is w1 and suppose this class is w3.

So, corresponding to w3, h1 should be 0 andh3 should be 0, h2 do not care. So, corresponding

to this y3 will be equal to 1 and that corresponds to the class w3. 

So, you can see the importance of the hidden layer. So, based on the hidden layers, I am

doing  the  classification,  that  is  nothing  but  the  multi  category  classification.  So,  in  this

example I have shown the importance of the hidden layer. 
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Now, next one is our definition of feedback network, what is the feedback network. So, the

feedback network, that is the output is fed back to the input layer. So, it is also called the

recurrent neural network. Feedback networks can have signals travelling in both directions.



And this is implemented by introducing loop in the network. And the feedback networks are

generally dynamic and their state changes continuously until they reach an equilibrium point. 

And in this case, the recurrent network suppose if I consider. So, a recurrent network is one

example of the feedback network. So, recurrent neural network uses feedback connections in

single layer neural network architecture. So, that is the briefly the concept of the feedback

network. That is the output is feedback to the input layer. And in case of a recurrent network,

so  recurrent  network  uses  the  feedback  connections  in  single  layer  neural  network

architecture. After this the next one is the Hopfield network. 

So, you can see the bigger the concept of the Hopfield network. Every node is connected to

every other node, but not itself. So, here you can see in this figure, the node 1 is connected to

node  3,  node  1  is  connected  to  node  2  like  this  and  also  the  connection  weights  are

symmetric. So, what is the meaning of this, the weight from node i to j is same as that from

node j to i. So, in this figure if you see what is the weight from node 1 to 2, it is 1 and from 2

to 1 the weight is 1, that is the symmetric weights. 

Similarly, if I consider the weights from the node 2 to 3, so, it is 1 and from 3 to 1 it is also 1

and similarly, if I consider the weights from node 1 to 3 that is minus 2 and from 3 to 1 it is

minus 2. So, that is the symmetric weight. So, every node is connected to every other node

and in this case, we are considering symmetric weights, that is the concept of the Hopfield

network. 
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After this next one is the competitive networks. So, outputs of a feed forward networks are

paid to a competitive layer.  And in this  case,  you can see I  am showing 1 feed forward

network  first  part  is  the  feedforward  network,  feedforward  network  and  I  have  one

competitive  layer  here  you  can  see  I  have  one  competitive  layer.  So,  in  this  case  the

competitive layer has the same number of inputs and the output nodes which is equal to the

number of feed forward network outputs. 

So, you can see this is suppose  I 1,  I 2,  I 3. So, like this suppose this  I 1,  I 2,  I 3, these are the

inputs to the competitive layer, the competitive layer is nothing but a competitive. So, in the

competitive layer the output node corresponding to the maximum input files. So, in suppose

in this case, the output from the competitive layer is suppose O, O2, O3 these are the output

from that competitive layers and suppose at a particular time suppose I 2 is maximum,  I 2 is

maximum out of I 1, I 2, I 3 , I 4  like this. 

So, corresponding to this I will be getting the output, the output will be O2 because the I 2 is

maximum. So, I will be getting the output, output is  O2 and the competitive layer has the

same number of input and the output nodes which is equal to the number of feedforward

network outputs. And finally, what will be the output from the competitive layer, the output

node corresponding to the maximum input files. So, that concept I have explained. 
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So, in this figure I am showing one architecture for the competitive layer. I am considering

the inputs D1,  D2, and D3. So, 3 inputs I am considering and this structure can be used for



determining minimum among 3 inputs using perceptions. So, you can see I want to determine

the minimum between D1, D2, and D3 at a particular time and this structure can be used for

determining minimum among 3 inputs D1, D2, and D3using perceptions. So, from this figure

you can see, I want to determine the minimum of D1, D2, and D3. 

So, for this I am considering the first threshold, the threshold is equal to 0 and 2nd threshold I

am considering, threshold is equal to 3 divided by 2. And you can see I am determining the

minimum. So, suppose all 1 is equal to 1 that corresponds to D1 is minimum, otherwise it will

be 0. 
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And after this the next concept is the self organizing network.  This is the interconnected

neurons which compete for the signal and in this case you can see in the figure I have shown

the input vector and the self organizing defines a mapping from the input n dimensional data

space on to 1 or 2 dimensional array of nodes in a way that the topological relationships in

the input space are maintained when mapped to the output array of nodes. So, meaning is you

can see the input is the, suppose the n dimensional and data vector I am considering and I am

doing the mapping, the mapping that is I am considering it is a 2-dimensional array of nodes. 

And in this case, I am maintaining the topological relationship in the input space. So, here

you can see the x2 is close to x1. So, that information I am maintaining after mapping. In this

figure I am considering the n dimensional data space that is the input vector, I am mapped



into a 2-dimensional  array and also, I am maintaining that topological relationship in the

input space. So, suppose x2 is close to x1, so, that information I am maintaining here. 

So, corresponding to suppose this is x1 you can see, so, neighborhood will be x2 like this. So,

the topological relationships in the input space are maintained during the mapping. So, this is

about the self organizing network. So, we will be discussing one important self organizing

network, that is the kohonen self organizing network I will be explaining later on. So, this is

very important, so, self organizing network that can be used for clustering of input data. 

(Refer Slide Time: 15:55)

So, first I will be discussing the concept of the supervised learning and after this I will discuss

the concept of the unsupervised learning in the artificial neural network. So, in case of the

supervised learning, we know that desired output of the artificial neural network and also, we

can determine the actual output from the neural network, the difference between these 2 is

called the error. So, I have to minimize the error and for this, I am back propagating the error

to the input and I can adjust the weights of the artificial neural network. The objective is to

reduce the error, the error between the desired output and the actual output. So, that is the

supervised learning. 
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So, the concept is the Generalized Delta Rule GDR. So, what I have to consider here, first I

have to apply inputs to the network, after this determine all neuron outputs, I can determine

the output from the neural network, after this compare all outputs at output layer with desired

output. Since, we know the desired output corresponding to a particular training sample, that

is  why  it  is  called  the  supervised  learning.  After  this  compute  and  the  propagate  error

measure backward through the network. 

So, objective is to minimize the error. So, for this I have to adjust the weights. So, minimize

error at each stage through unit weight adjustment. So, I have to adjust the weights of the

artificial  neural  network,  so  that  the  error  will  be  minimum.  That  is  the  procedure  of

supervised  learning  and  that  is  done  generalized  delta  rule.  And  this  is  called  the  back

propagation training, because the error is back propagated to the input. 
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Then mathematically how can I explain this one. Suppose, an input I have the inputs x1 x2 .. xn

and where n is the number of input nodes. So, I have the n number of input nodes and I am

considering W ij, that is the weights connecting input node i and the output node j. So, I am

considering the weights of the artificial neural networks, the weights connecting input node i

and the output node j . And also, we know the desired output at a particular node, then node

is suppose  j. So, we know the desired output. So, that information is available. So, that is

why it is called a supervised learning. 

And we can determine the output error, the output error is nothing but the desired output

minus actual output. So, if you see this term, this term is nothing but I can compute the actual

output from the artificial neural network. So, desired output minus actual output, that gives

the error and I have to minimize the error and, in this case, I have to adjust the weights. So,

that is why I am doing the differentiation of the error with respect to the weights, the weights

are W ij. So, I am doing the minimization of this. 

So,  after  minimization  you  will  be  getting  this  one.  Now,  I  am considering  the  weight

updation rule. So, the rule is this one, weight updation rule. So, here you can see, this is the

new weight I am considering, this is the old weight I am considering and here you can see

this is nothing but the error, the error between the desired output and the actual output and xi

is the input you can see. And one parameter I am considering that parameter is the eta, that

controls the learning rate, that controls the learning rate. This parameter decides the rate of

convergence, that parameter eta. 



So,  that  means,  suppose  eta  is  small,  the  convergence  will  be  slow,  if  eta  high,  the

convergence will be fast. So, this is the weight updation rule for the back propagation training

So, objective is to reduce the error and for this I have to adjust the weights. 
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So, here you can see I am showing one example of the backpropagation training, you can see

I have the input layers and also, I am considering the bias inputs. And in between the input

and the output layers, you can see this is the output layer and this is my input layer, we can

have the hidden layers between the input layer and the output layers. And the concept is the

same concept, we can have the desired output and we can determine the actual output in the

network and we have to minimize the error. So, for this I have to adjust the weights. 

So, weights are available here, all the weights I have to adjust, so that the error is minimum.

So, the error is back propagated to the input, that is why it is called the backpropagation

training and the error is back propagated to the input so that  I  can adjust the weights to

minimize the error. So, this is the concept of the backpropagation training. So, this concept I

can explain like this. 



(Refer Slide Time: 21:12)

 

Suppose I am considering a very simple network. So, suppose my input vector is suppose x

and W is the weights of the network, the railway weight vector and output is y. So, y is

nothing but xTW, that is the dot product between the input vector and the weight. So, this is

one simple network I am considering and, in this case, I can determine the error. The error is

nothing but the desired output minus actual output, that is the error and after this, I have to

minimize the error. 

So,  for  this  I  have  to  differentiate  this  one,dw  the  error  should  be  minimized.  So,  if  I

minimize this error, this will be  2( y d− y )x I will be getting this one. So, how to get this

expression, how to get these expressions, suppose y is equal to, suppose y=W 1 x1+W 2 x2, I

am considering 2 inputs suppose x1 and x2 and suppose I am considering weight W 1 and W 2.

So, what will be my error now, the error square? The desired output I know and what is the

actual output the actual output is W 1 x1 plus it will be minus now, W 2 x2. 

So, error is desired output minus actual output and I am considering the squared error. I have

to minimize the error, so this I have to take the differentiation with respect to the weight W 1.

So, if I do the differentiation, then in this case it will be minus 2. So, yd –W 1 x1−W 2 x2and it

will be  x1. Similarly,  if I take the differentiation with respect to  W 2, the error should be

minimized. So, in this case it will be  -2 (yd –W 1 x1−W 2 x2 ) x2 and this will be x2. 

So, from this you can see I will be getting this one. After this I have to adjust the weights. So,

suppose this is my new weight, W star is the new weight, that is the weight vector, that is the



old weight minus half eta I am considering. So, this I am considering 1 by 2. So, this is the

new weight, this is the old weight and eta controls the learning rate, already I have explained,

that is it controls the rate of convergence. If eta is small, the convergence will be slow. And if

the eta is high that convergence will be fast. 

And this is nothing but this what I am considering this is this algorithm is also called the

gradient descent, gradient descent algorithm. Gradient Decent algorithm, because in this case

I am minimizing the error, so for this I am determining the gradient. So, that is why it is

called the gradient descent algorithms. So, you can see how to adjust the weights, how to get

the new weight from the old weight. So, I have to minimize the error. So, this is the concept

of the supervised learning and this is nothing but a back propagation algorithm. 

(Refer Slide Time: 25:32)

Next learning is the unsupervised learning. So, unsupervised learning is used for grouping of

input  data,  that  is  nothing  but  the  clustering,  the  clustering  of  input  data.  This  the

unsupervised learning process also term is the self organizing map. And in this case, in case

of the unsupervised networks, in general, we do not use external input to adjust the weights.

So, unsupervised learning, itself organizes data inputted to the network. 

Unsupervised network look for some regularities or similarities of the input data and make

adaptations according to the function of the network. And one important point is supervised

learning is performed offline, while unsupervised learning is performed online. Now, I will

explain some of the unsupervised learning techniques. 
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One is the competitive learning. Competitive networks cluster, encode and classify input data

stream. That is,  the objective is to classify an input pattern into one of the M number of

classes. The network is learned to form classes of examplers, sample patterns, according to

some similarities of these patterns. So, I have to find the similarities of the patterns and based

on this, we have to form classes. Patterns in a cluster should have similar features. So, based

on the similarity, we can group the patterns. 

Now, in this case, the first one is you can see the competitive learning method generates the

weight  vector  as  follows.  So,  what  is  the  method  here  you can  see,  all  the  weights  are

randomly initialized and training vectors are applied one by one. And if the output node j

fires  for  an  input  x,  the  corresponding  weight  vector  is  updated,  that  means  I  have  to

determine the winner. And in this case, you can see the rule, the winner is updated and that is

W j is the new weight. And you can see that this is the old, this is the old weight. 

And in this case, the winner is updated this concept I will explain, so what is the what is the

competitive  learning.  So,  the  first  the  winner  is  determined  by  computing  the  distance

between the weight vectors of the connecting neurons and the input vector. The winner is that

neuron for which the weight vector has the smallest distance to the input vector. The square

of the minimum equilibrium distance is used to select the winner. 

So first, I have to select the winner. And subsequently, that weight vector W i of the winning

neuron is moved towards the input vector x. And this, you can see, the winner is updated by

using  this  updation  rule  that  I  am going  to  explain  now.  So,  first  concept  is  I  have  to



determine the winner and how to determine the winner. That is by computing the distance

between the weight vectors of the connecting neurons and the input vector. 

And in this case, I can consider the square of the minimum Euclidean distance. And after this

after determining the winner what I have to do, the weight vector W i of the winning neuron

is moved towards the input vector x. And is the output node i fires for an input vector x, the

corresponding weight vector is updated. The updation is like this. 
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So, I  am considering one network suppose,  x is  the input  feature vector  and this  is  a  D

dimensional  feature  vector.  So,  here  you can  see  I  am considering  one,  the  competitive

learning technique that  is  a competitive  network,  I  am considering x is  the input  feature

vector and this is a D dimensional feature vector and I am considering c number of classes.

So, y 1, y 2, y c these are the cluster centers I am considering corresponding to c number of

clusters y 1 y 2 y c, these are the cluster centers. 

And corresponding to the first cluster center y 1 you can see, I am considering the weight

vector, the weight vector  W 1. So, in this case and this yi actually, it  depends on Wi. That

means the output depends on the weight vector, the weight vector is W i. So, any output, that

is the output the center of the cluster center depends on the weight vector W i. And for this,

for the competitive learning I have to determine the winner. So, for this I have to determine

the distance between the input feature vector and the centroid.



So that I can consider the Euclidean distance. So, that means, I am determining the distance

between the input vector x and that centroid. So, I have to find a winner which one is the

winner,  the minimum distance  corresponds to  the  winner.  Similarly,  I  can determine  the

distance between x and y to x and y see like this I can determine all the distances based on

that minimum distance I can determine the winner. After this, after determining the winner,

what I have to consider, we have to update the weight vectors. 

Suppose, the winner is W i that is that weight vector is W i. So, I have to update the winner.

So, corresponding to y i, my winning weight vector is W i and in this case, I have to update

the weight vector, the weight vector is W i that is the winner. So, updation will be something

like this. So, W i is the winner. So, W i it is updated like this. So, this is the new weight vector,

weight  vector,  this  is  the  old  weight  vector.  And  I  am  considering  one  small  fraction

parameter. 

So, this is the weight updation rule I am considering. That means what I am doing since W i is

the winner, that means using W i nearer to x and what about that weight updation rule for the

other neurons. For other neurons the weight updation rule will be Wj is not the winner. So,

what is the weight updation rule? The weight updation rule is ϵx−W j . So, i is not equal to j

for is not equal to j. So, this is for the loser. For the winner this is the weight updation rule for

the loser, the weight updation rule is like this. 

So, that means for the winner what I am doing, pushing Wi nearer to x and for the loser what

I am doing pushing  W j  away from x. So, this concept suppose if I consider and this is

suppose W i  weight, so this is moved, W i  is moved to W i  1 that is pushing W i  towards x. So

that pushing by the amount, amount is x, pushing Wi towards x, and I am getting the new

weight vector, the new weight is W i. And in case of the loser what I am considering putting

W j, away from x. 

So, that means the winner is updated, but the losers are not updated. So, our concept of the

competitive  learning is  that  first,  I  have to determine  the winner  based on the minimum

distance, after this I have to update the winner, the winner is updated by using this formula.

So, this is the winner is updated. That means what I am doing, that is pushing W i  nearer to x.

And in case of  the loser,  this  is  the weight  updation rule.  That  means what  I  am doing

pushing W j away from x. 



So, what is the problem of this the competitive learning you can see here I am pushing Wi

nearer to x, but what about the losers that means the pushing  W j  away from x. So, this

problem is called the problem of under utilization, this is the problem of, I can write this

problem of under utilization, because the winner is updated, but the losers are not updated.

So, like this, I am getting the clusters in case of the competitive learning. 

(Refer Slide Time: 36:54)

  

Next, I am considering another network and that is called the frequency sensitive, frequency

sensitive competitive learning. So, in competitive learning, we define the updation rule is like

this Wi is equal to Wi plus epsilon x minus Wi. So, this is the old weight, this is the old

weight and this is the new weight. In case of the frequency synthetic quantitative learning,

what  I  am considering  this  parameter  the  epsilon  parameter  that  is  defined,  this  epsilon

parameter is defined. 

So, epsilon is defined like this epsilon is equal to 1 by Fi. So, what is Fi, Fi is number of

number of times x is mapped to Wi. So, Fi is number of times x is mapped to Wi, that means,

the number of times Wi is the winner. So, frequency is defined and based on the frequency I

am defining the epsilon, that small fraction I am considering epsilon is a small fraction. So,

epsilon is equal to 1 by Fi. So, that means, I can write W i star is equal to epsilon x plus 1

minus epsilon Wi. So, this is the weight updation rule for frequency sensitive competitive

learning. 

So, like this, this is my new weight, this is the old weight and I am considering this is the

weight updation rule and in this case and this is nothing but the Wi is equal to 1 by Fi because



epsilon is equal to 1 by Fi, Fi is the frequency x plus Fi minus 1 Fi Wi is equal to 1 by Fi x

plus Fi minus 1 Wi. So, this is the weight updation rule. If I give one example suppose x 1 is

mapped into the weight vector the weight vector Wi. So, that means I am considering number

of times and Wi is the winner. So, that means the number of times the x is mapped into Wi. 

And corresponding to this what will be my weight updation rule, the weight updation rule

will be Wi is equal to x because only one time Wi is the winner. Suppose, next one is x 2, I

am considering,  next  feature  vector  I  am considering and in  this  case 2 times Wi is  the

winner. So, that means, what will be the new weight, the new weight will be x 1 plus x 2

divided by 2, that is my new weights. And after this suppose the next x 20 suppose I consider

x 20, that is mapped into W i, in between there is no mapping suppose. 

So, first mapping is x 1 is mapped into Wi, that means 1 time Wi is the winner. Next x 2 is

mapped into Wi that means 2 times Wi is the winner. In between there is there is no mapping

and after this x 20 is mapped into Wi that means, how many times Wi is the winner, the 3

times. So, that means the new weight will be x 1 divided by 3. So, like this I can determine

the Wi star, that is the new weight vector I can determine. 

And in this case, it is nothing but the centroid you can see it is the centroid I am determining.

So, in this  example what I am considering So, 3 times Wi is the winner, that means the

frequency I am defining, frequency Fi. So, in this example 3 times it is mapped into Wi. So,

that is why based on this I am determining the updated or the new weights I am determining

and that is nothing but I am determining the centroid. So, this is the concept of the frequency

sensitive competitive learning and that is one variant of the competitive learning.



(Refer Slide Time: 42:39)

 

The next competitive learning is the Kohonen neural network, Kohonen neural network, that

is also called a Self-Organizing Map, that is also called SOM. So, what is the concept of the

Kohonen neural network? The weight updation rule will be something like this. So, Wi star is

equal to Wi plus epsilon k 0 x Wi. This is for that winner, first I have to determine the winner

based on the minimum distance. So, suppose Wi is the winner. So, for winner, this is the

weight updation rule. 

And for the loser that weight updation rule is W j plus epsilon k D. In case of the competitive

learning the winner is updated, it is moving towards the feature vector x, but the losers are

not updated, they are moving away from x, that is the problem and that problem already I

have explained that is called the problem of under utilization. So, that problem is eliminated

in kohonen neural network, that is the self organizing neural network. So, here you can see

for the winner, this is the weight updation rule, Wi star is equal to Wi plus epsilon k 0 x

minus Wi. 

And Wj is equal to Wj plus epsilon k d. So, here you can see, now epsilon is a function of

two parameters one is K and other one is D. So, what is k? k is nothing but the frequency and

what is D, the D is the distance between Wi and Wj. So, D is the distance between Wi and

Wj. So, in case of these if I consider the first one is in case of the winner, the updation rule is

this and why I am considering it is 0, because the distance between Wi and Wi will be 0. So,

that is the distance between the Wi and the Wi it will be 0. So, that is why I am considering it

is 0. 



But if I consider the distance between Wi and Wj, that distance is D. In case of the kohonen

neural network, I have to define, the distance the maximum distance I have to define. So, this

is the maximum details D max is the maximum distance and what actually I am doing here,

you can see I am considering a neighborhood around a winner suppose the winner is Wi,

winner is updated. And here you can see I am considering the distance, I am considering the

epsilon, epsilon is a function of k n d. 

So, I am considering the distance the D max I am considering.  So, I am considering the

neighborhood, neighborhood is suppose W h 1 weight vector is W h, another weight vector is

suppose W k suppose or maybe suppose W m suppose. So, here you can see that winner is

updated and also the weight vectors which are neighborhood of the weight vector Wi they are

also updated. So, W h will be updated and W m will be updated. So, that means all the weight

vectors near to that weight vector Wi will also be updated and here you can see the epsilon is

a function of frequency and the distance. 

And in this case, you can see, so up to D max, up to D max, that is the maximum distance we

can update all that weight vectors and beyond this I am not updating. That means D max the

learning vector will be 0, that means no updating. And the weight vectors away from Wi will

be less updated. But after D max, there will be no updating. So, up to D max I can update all

the neighborhood weight vectors. 

So, winner I have to consider based on the minimum distance and unlike the competitive

neural  networks only the winner is  updated but here winner is  updated and all  the other

weights, that is the neighborhood of Wi will be updated but based on the frequency and based

on  the  distance.  So,  I  am repeating  this,  that  is  unlike  competitive  learning  the  weight

associated with other nodes within his topological neighborhood are also updated along with

the winner node. 

And in case of the kohonen and neural network that is a self organizing map it is called

topology preserving maps, because it assumes a topological structure among the cluster units.

The self organizing defines a mapping from the input n dimensional data space onto a one- or

two-dimensional array of nodes in a way that the topological relationship in the input space

are maintained. So, a self organizing map is a structure of interconnected neurons, which

compete for a signal. So that concept already explained. 



So, that is why the self organizing neural networks are also called the topological preserving

maps.  It assumes a topological  structure among the cluster units. And unlike competitive

learning, the weights associated with other nodes within each topological neighborhood are

also updated along with the winner node. So, that means in competitive learning, only the

winner is updated, the losers are not updated. 

But in case of the kohonen neural network or a self organizing map the winner is updated and

also  the  neighborhoods  are  also  updated.  So,  that  is  the  concept  and  the  learning  rate

monotonically  decreases  with  increasing  topological  distance  and  the  learning  rate  also

decreases  as  training  progresses.  The winning neuron  is  considered  as  the  output  of  the

network and in this case the concept is winner takes all. Because first I have to determine the

winner and after this the winner is updated and the neighborhood around the winner is also

updated. 

So, that is why it is called winner takes all, this is called the winner takes all. In the sum,

nodes compete with each other using the strategy winner takes all. And I will be showing the

some lateral connections later on. But this is the concept of the kohonen neural network. So,

the problem of under utilization is eliminated, in case of the competitive learning the problem

is  the  problem  of  under  utilization.  But  in  case  of  the  kohonen  neural  network,  I  am

considering the neighborhood. So, that is why the problem of under utilization is eliminated. 

Now, one problem is here. So, suppose this is Wi, the winning node, the winning neuron and

the corresponding weights. So, Wi is the winner suppose here and suppose the feature vector

is x and suppose this is W k and it suppose Wj. So, here you can see the distance is computed

from the winner, not from the feature vector. So, here you can see the distance between Wi

and Wj, that is less than D max and suppose that this distance is greater than D max. 

So, that means, that W j will  be updated,  but Wk is not updated because the distance is

measured from the winner, the winner is Wi. That is why it is called a winner takes all, but

the  distance  should be measured  from x that  is  the  feature  vector.  So,  if  I  consider  this

distance, this distance is suppose Dj and suppose this distance this distance is suppose DK.

So, in this case you can see the Dj is greater than DK. 

So, if you consider this distance, the distance from the feature vector, then in this case the Wk

should be updated first and after this the Wj should be updated. Because the distance from X

to W k is smaller than the distance from X to W j. So, that is why the W k should be updated



and after this we can update W j. But since in this case, we are determining the distance from

the winner. So, that is why the W j is updated first and after this the Wk may not be updated,

because it is greater than D max. 

But the problem is here that we are not determining the distance from the feature vector, the

feature vector is x, that is the problem of the kohonen neural network. So, this problem can be

eliminated  by considering  another  competitive  network,  that  is  called  the  fuzzy kohonen

neural network. 
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In this case, I am showing one structure of the self organizing map that is the kohonen neural

network I am showing. You can see, we have the input layer, we have the hidden layer and

we have the output layer. And also, you can see the mapping from the input layer to the 2d

array. The input is the suppose n dimensional vector, and I am considering the 2d array and

you can see I am considering the winning neuron. So, in the SOM, nodes compete with each

other using the strategy, the strategy is winner takes all. 

And I can consider some connections, these connections are called the lateral connections,

the lateral connections are employed to develop a competition between the neurons of the

network. The neurons having the largest activation level among all the output layer neurons is

considered  as  the winner.  The activity  of  all  other  network neurons is  suppressed in  the

competition  process.  I  am  considering  lateral  feedback  connections  which  are  used  to

produce  excitatory  or  the  inhibitory  effects  depending  on the  distance  from the  winning

neuron of the network. And this is implemented by using a Mexican head function. So, an in



the next slide I can show what is the Mexican head function and that is used to produce

excitatory or inhibitory effects. 
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So, let us see what is the Mexican hat function, here you can see. So, by considering this

Mexican hat function, that we are considering the lateral  connections, which can produce

excitatory effect,  you can see here the excitatory effect or we can produce the inhibitory

effect. So, I am repeating this. So, this Mexican hat function describes the distribution of the

weights  between  the  neuron  in  the  kohonen  layer.  So,  because  I  have  to  consider  the

neighborhood weights, so, that is why, so, we are considering the neighborhood weights. 

But after D max, I am not considering the weights. So, that is why I am considering the

inhibitory effects. For the excitatory effects, we are considering the neighborhood weights

around the winning neuron. The problem of the kohonen neural network is that the distance is

computed from the winner, but distance should be computed from the feature vector. So, that

is why to overcome this problem, I can consider another competitive network that is called a

fuzzy kohonen neural network. 
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So,  that  concept  I  am going to  explain  now, so,  that  is  called  the fuzzy kohonen neural

network. So, simply I want to first explain the concept of the fuzzy set and the normal set. So,

suppose the set is suppose A and suppose I am considering the domain X. So, x iis an element

of Xand domain I am considering is X is the domain and set I am considering A is the set. So,

I am considering one function, that is the membership function I am considering. 

μA(X) that is the membership function of the set A is equal to 0, if xiis not an element of A is

equal to 1 if x iis an element of A. This is the case of the crisp set. So, for the crisp set it will

be either 0 or 1. So, I can show the pictorially, so what is the meaning of this. So, suppose the

membership grade I am considering x and you can see the crisp case is something like this.

So, either it will be 1 or it will be 0. But in case of the fuzzy set you can see, I have the

membership function something like this. This is a membership function. 

So, this is the Crisp set our crisp set. And I can consider this is a fuzzy set. You should read

the  concept  of  fuzzy logic  from a book on fuzzy logic.  But  briefly  I  am explaining  the

concept of the crisp set and also the fuzzy set. In case of the crisp set, you can see either I

have the 0 value or 1 value. But in case of the fuzzy sets, based on the membership function,

the membership grade and this is called a membership grade, membership grade I will be

getting the value 0, 0.1, 0.2, 0.3, 0.4, 0.5, like this I will be getting, so all the values I will be

getting based on the membership grade. This membership grade lies between 0 and 1. 

So, this concept better you should read from a book on fuzzy logic. Briefly I am explaining

the concept of the fuzzy set and the crisp set. Now what is the fuzzy Kohonen neural network



because we have seen the problem of the kohonen neural network because the distance is

measured  from  the  winner.  In  case  of  the  fuzzy  Kohonen  neural  network,  what  I  am

considering  the  updation  rule  is  something  like  this.  The  weight  updation  rule  is

W i=W i+μ i(X ). 

So, this is the weight updation rule for the fuzzy kohonen neural network. So, this is the new

weight you can see this is the new weight and this is the old weight, this is the old weight.

And in place of epsilon, because in case of the competitive network it was epsilon, I am

considering  this  one.  So,  what  I  am  considering  what  is  the  membership  grade  I  am

considering here the μi (m). is the membership grade and, in this case, what is m, m is nothing

but m not minus k delta m a I am considering. 

So,  some initial  value  I  am considering some initial  high-value  I  am considering  and K

nothing but the iteration number, iteration number I am considering and delta m is the step

size. What is  ∇M?∇M  is equal to  m0−¿1 K max. So, it is iteration limit. So, maximum

iteration I am considering, So, ∇M  is the step size and in this case what I am considering the

membership grade, this is the membership grade, membership grade I am considering. 

So, I am defining the weight updation rule, the weight of updation rule is like this. So, in

place of epsilon I am writing this 1 mu i m x divided by summation mu i m x dash. So, what

is x dash actually we are considering all the patterns, x dash means all the patterns I am

considering all the patterns I am considering. And in this case, what is the importance of this

m you can see. So, I am just plotting a membership, I am plotting the membership against the

distance from the feature vector, feature vector is x. 

So, corresponding to m is equal to 1, I have this one corresponding to the m is medium

suppose, medium is this one, i is suppose this. So, corresponding to m is equal to 1, I am not

considering any neighborhood, but if I consider that means corresponding to m is equal to 0,

corresponding to m is equal to 1 I am not considering any neighborhood. But if I consider m

is greater than 1, that means I am considering that neighborhood. So, suppose m is very high,

that means, I am considering more and more neighborhood. 

So, in this case instead of considering the D max that I have defined in the kohonen neural

network, here I am considering m and if the m is greater than 1, that means, if I consider a

very  high  value,  that  means,  I  am  considering  more  and  more  neighborhood.  And  if  I

consider m is equal to 1, that means I am not considering any neighborhood. And in this case,



you can see the distance I am computing from x. Distance is not computed from the winner

and corresponding to m is equal to 1 membership will be 0, that means in this case, I am not

considering the neighborhood. 

But if I consider the m is greater than 1, then that means based on this membership function

you can see here, I am considering more and more neighborhood. So, that I can put in this

expression,  this  membership grade is  available  here.  So,  this  is  the concept  of the fuzzy

kohonen neural network. 
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And  finally,  I  want  to  summarize.  So,  what  are  the  advantages  of  the  artificial  neural

networks.Once  important  thing  is  the  parallel  processing.  So,  inherent  parallel  nature

provides  parallel  processing.  And  the  second  advantage  is  that  the  overall  complicated

processing is split into several smaller and simpler local competitions at the neurons. So, that

is  the  second advantage.  The first  advantage  is  the parallel  processing,  after  this  we are

considering the adaptive learning and the self organization based on information derived from

the training data. 

So,  that  is  the  concept  of  the adaptive  learning and the  self  organization  already I  have

explained, that is by using the self organization we can do the grouping. So, suppose the input

feature vector  is  available  and based on the similarity,  we can do the grouping. Another

advantage is that good for the realization of the real old problems that do not conform to ideal

mathematical  and statistical  model.  So, suppose one problem is there,  we cannot develop

mathematical or statistical models. 



So,  for  this  we can  apply  artificial  neural  networks.  So,  these  are  the  advantage  of  the

artificial neural networks. So, in this class, I discussed the concept of supervised learning and

unsupervised learning.  For  supervised learning,  I  considered the  back propagation  neural

network,  the back propagation  training.  For  this  what  we have considered,  we know the

desired output and also, we can compute the actual output. So, from this we can determine

the error. 

And the  error  is  back propagated  to  the input,  so that  we can  adjust  the weights  of  the

artificial  neural network, that is the concept  of the backpropagation learning. After  this  I

considered some unsupervised learning techniques. The first one is the competitive learning.

So, for this I have to determine the winner based on the distance between the feature vector

and the centroid. And after this, I discussed one variant of the competitive learning, that is the

frequency sensitive competitive learning. 

And finally, I discussed the kohonen neural network, that is the self organizing map. For this

we have to again determine the winning neurons. And also, we have to consider the updation

of the winners and also the neighborhood and the concept is winner takes all. And finally, I

discussed the concept of the fuzzy kohonen neural network. So, let me stop here today. Thank

you.


