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Welcome to NPTEL MOOC's course on Computer vision and Image Processing- Fundamental
and Applications. In my image transformation class, I discussed the concept of PCA, the
Principle Component Analysis. So, how to reduce the dimension of the input vector. If I consider
the feature vector, suppose X; I can reduce the dimension of the feature vector, by neglecting the
redundant information by PCA; the Principal Component Analysis. PCA finds the greatest

variance of data.

But one problem with the PCA is that, it does not consider the class information. Suppose I have
number of classes, and the discrimination between the classes, that information is not considered
by the PCA. So, for this, I will consider another method, that is called the Linear Discriminate
Analysis. So, in case of Linear Discriminate Analysis, I can reduce the dimension of the input
vector. Also, I can find the separation between the classes; that is the discrimination between the

classes, I can do. So, that concept I am going to discuss today.

And also, I discuss the concept of the Bayesian decision making; the Bayesian classifier. That is
nothing but the generative model. So, what is the concept of generative model? That means, |
have the information of the class conditional density. The probability of X given w, z. So, that
information is available, and with that information I can do the classification. So, I can determine

the posterior density; the density is probability of w, z given X; I can determine.

There is another classifier that is called discriminative classifier. So, in this case, the information
of the class conditional density is not important. So, I can find the best decision boundary
between the classes. Suppose, if I consider 2 classes, I can find the best decision boundary
between these 2 classes. So, for this I will discuss one algorithm that is the Support Vector

Machine.

So, today's class I will discuss these 2 concepts; one is the Linear Discriminant Analysis, and
another one is the Support Vector Machine. So first, let us consider the concept of the LDA.

And, what are the problems with the PCA? That concept I am going to explain.
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Recall ... PCA

In PCA, the main idea to re-express the available dataset to
extract the relevant information by reducing the redundancy
and minimize the noise.

*+ We didn't care about whether this dataset represent featuces from one

or more classes, ie. the discrimination power was not taken into
consideration while we were talking about PCA.

* In PCA, we had a dataset matrix X with dimensions #on, where
colums represent different data samples. =

m - dimensional data vector

—_—

n~-feature vectors /"

* We first started by subtacting the mean to have a zero mean dataset,
) —_— (data samples)

then we computed the covariance matds 8, = XXT.
e

»  Eigen values and eigen vectors were then computed for 8,. Hence the
o ] 7 =)
new basis vectors e those eigen vectors with highest eigen values,
where the inmbet of those vectors was onr choice.

¢ Thus, nsing the new basis, we can project the dataset onto a less
dimensional space with more powerfiul data representation

So, in case of the PCA, if you know, that I discuss in the image transformation class; I can
reduce the dimension of the feature vector or the input vector. But in this case, I am not
considering that discrimination between the classes, that information is not available in the PCA.
So, in this figure, you can see I am considering n number of feature vectors. And, I am
considering the m-dimensional vector, that I am considering. So that means, the dataset matrix X

has a dimension of m x n.

And for this PCA, the method is like this. First, I have to subtract the mean from the original
data. So that, I will be getting a zero-mean dataset. So, I will be getting a zero-mean dataset. And
after this, I have to compute the covariance matrix. The covariance is matrix, I can compute like
this. And, from the covariance matrix, I can determine the transformation matrix. So, for this, I
have to determine the eigenvectors, and also I have the corresponding eigenvalues. So, this
transformation matrix for the principal component analysis, I can determine from the

eigenvectors of the covariance matrix.

So, you can see, | can determine the eigenvalues, and the eigenvectors I can determine from the
covariance matrix. And from this, I can determine the transformation matrix. That is the basis
vector, I will be getting. And, I can consider the highest eigenvalue, I can consider; and the
corresponding eigenvectors, I can consider. So, that concept already I have explained in my PCA

class, that is in the image transformation.



But one problem of the PCA, that already I have highlighted, that is the class discrimination
information is not available. That is only I can reduce the dimension of the input vector, the input

data, or the input feature vector.
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Features of LDA

* Dimension Reduction:

- Reduce the dimensionality of a data set by finding a new set of
variables, smaller than the original set of variables

- Retains most of the sample's information.
* Classification:

- LDA unlike PCA, uses the class information and finds a set of
vectors that maximize the between-class scatter while minimizing

the within-class scatter.

So in case, of the LDA, the Linear Discriminant analysis, I can reduce the dimension of the data,
the input data. So, reduce the dimensionality of a data set, by finding a new set of variables,
smaller than the original set of variables. So, I can do this. And also, I can retain most of the
sample's information. So, redundant information I can neglect, but I can retain most of the

sample's information.

So, unlike PCA, LDA uses the class information. So, that information is available in case of the
Linear Discriminant Analysis. And, I have to find a set of vectors, that maximize the between-
class scatter, while minimizing the within-class scatter matrix. So, that concept I am going to
explain. Because, in case of the Linear Discriminant Analysis, I have the class information, and I
have to find a set of vectors, that maximize the between-class scatter, and I can also minimize the
within-class scatter. So, this mathematical concept I am going to explain in case of the LDA, the

Linear Discriminant Analysis.
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* LDA creates the new axis following the 2 criteria’s:
- Maximize the distance between means of classes.

- Minimize the variation (s*2) within each Class.
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This quantity should be maximized.

So, LDA finds the new axis based on these 2 criteria. So, one is the maximize the distance
between the means of the classes. So, I can consider, suppose 2 classes. So, I can maximize the
distance between these classes. So, that means, I can find the maximum distance between the
means of the classes, and also the minimize the variation within the class; that I can consider. So,
one is the maximize the distance between means of the classes, and also, I can minimize the

variation within the class.

So, I can consider this one, that means I have to minimize the variation within the class, and also,
I have to maximize the distance between that means of the classes. So, this quantity I have to

maximize.
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s PCA a good criterion for
classification?
* Data variation

determines the
projection direction

* What's missing?

— Class information

Now, the question is; is PCA a good criterion for classification? Now in case of the PCA, the
PCA finds direction of greatest variance. Data variation determines the projection direction, but
in case of the PCA, the class information is missing. We do not have the class information, but
how actually we consider. We consider the eigenvectors, that means we want to find the
directions of greatest variation, that means we can find the eigenvectors of the covariance matrix.

But the class information is missing in case of the PCA.
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What is a good projection?

* Similarly, what is a
good criterion?

— Separating different
classes




So, let us consider, what is the projection? In case of the PCA, we consider the eigenvectors, that
is the direction of the projection. Now let us consider, what is the good projection. Here, in this
figure, you can see I am considering 2 classes. You can see, one is the, this class, another one is
the, this class, the 2 classes. And I want to find the good projection. In case of the blue
projection, if I consider the blue projection line, there may be overlapping of the samples of
different classes. But, if I consider this projection, that means, these 2 classes will be well

separated.

In the first projection, if I consider the first projection, that is the, the blue projection, then in this
case, these 2 classes are not well separated. But, in the second case, if I consider, the second
projection, if I consider this projection, the 2 classes are separated. So, that means in case of the

LDA, I have to see this condition, that is the separation between the classes.
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What class information may be useful?

* Between-class distance

— Distance between the centroids o O

of different classes P
00 o

—  Between-class distance



What class information may be useful?

* Between-class distance i
meialnahd ke g

- Distance between the centroids of
different classes

+ Within-class distance

— Accumulated distance of an
instance to the centroid of its
class

—— Within-class distance

So, for this, this information is important; one is the between-class distance. So here, again [ am
showing 2 classes, you can see. So, this is the centroid of suppose class i, and this is the centroid
of another class m;; that is the mean. Now, in this case the between-class distance should be
maximum. So, you can see between these 2 means; one is m;, another one is m;. So, one is m,,
and another one is m;. These 2 means I am considering. For 2 classes, the distance between the

centroid of different classes should be maximum. That is between-class distance.

After this, I am considering another information, and that is within-class distance. So that means,

it is the accumulated distance of an instance to the centroid of its class. So, that means, if |
consider, this is a centroid, the centroid is m;and m;. And you can see, I am considering the
sample points, corresponding to the centroid m;. So, this within-class distance should be

minimum.

So, suppose distance between these samples and the centroid, I can determine, and I can
determine the accumulated distance. So, that should be minimum, that corresponds to within-
class distance. So, that means for the LDA, this is important; one is the between-class distance
that is important, distance between the centroid of different classes that should be maximum.
And within-class distance, that means accumulated distance of an instance to the centroid of its
class. So, that should be a minimum. So, these 2 conditions, one is the within-class distance,

another one is the between-class distance corresponding to LDA and that is very important.
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Linear discriminant analysis

* Linear discriminant analysis
(LDA) finds most discriminant
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Linear discriminant analysis

* Linear discriminant analysis v

(LDA) finds most discriminant
projection by maximizing
between-class distance and
minimizing within-class
distance

ama | 4k
iy | e

So, in case of the Linear Discriminant Analysis; LDA finds most discriminant projection by
maximizing between-class distance and minimizing within-class distance. So, here I am showing
these 2 cases. First you can see, I am considering; this is the projection direction, that is the blue
is the projection direction. And you can see, the classes, the samples of the classes, 2 classes are
overlapping, that is the discrimination between these 2 classes is minimum. But, if I consider the
second projection direction, that is the yellow, the discrimination between these 2 classes is

maximum.



So, you can see, the discrimination between these 2 classes is maximum. So, I have to find that
direction, in which direction, the discrimination between these classes will be maximum. So, that
direction I have to estimate. So, for this I have to consider these 2 cases; one is the within-class
distance, another one is the between-class distance, I have to consider. So that means, I have to

maximize between-class distance, and I have to minimize within-class distance.

So, based on this, I have to find the projection direction. And based on this projection direction, I
can find maximum separability between these 2 classes. Now, I am considering 2 classes. It may
be applicable for more than 2 classes also. So, if I consider C number of classes. So this concept

is also applicable. But in this example, I am only considering 2 classes.
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Now ... LDA

* Consider a pattern classification problem, where we have C-
classes, e.g. seabass, tuna, salmon ...

o7

* Each class has N; #-dimensional samples, where /= 1,2, ..., C.

* Hence we have a set of #-dimensional samples {x, x2..., x™}
belong to class w; «

* Stacking these samples from different classes into one big fat
matrix X such that each column represents one sample.

foe—

* We seek to obtain a transformation of X to Y through
projecting the samples in X onto a hyperplane with
dimension C-1.

* Let’s see what does this mean?
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So, what is the mathematics behind LDA, that I want to explain. So, let us consider a pattern
classification problem, and for this, I am considering C number of classes, I am considering. So,
maybe the classes, maybe the fishes; like the, seabass, tuna, salmon, like this I can consider
number of classes, the C number of classes I can consider. And each class has N; samples. So,
m-dimensional samples are available. And how many samples are available? N; number of

samples for each of the classes. And we have a set of m-dimensional samples.

So, we have a set of m-dimensional samples. So, corresponding to the class, the class is w;. |

have the samples x;, x, like this. So, we have Ni number of samples, and it is the m-dimensional

samples. And from this, I can get a matrix, the matrix is X. That is stacking these samples from



different classes into 1 matrix, that matrix is the X. And this is column of matrix represent 1

sample. So, I will be getting a matrix, the matrix is X, from all the samples of different classes.

Now, I want to find a transformation of X to Y; X is a input data vector, suppose. So, I want to
find a transformation of X to Y through projecting the samples in X onto a hyperplane with the
dimension C minus 1. So, I have to find the projection direction, that new data will be Y, after
the projection, and the objective is to get the maximum discrimination between the classes. So, |

have to find the best projection direction, I have to find.
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LDA ... Two Classes
X The two classes ace not well
sepunclsbics pevicsted ok * Assume we have s-dimensional samples {x!,
this line S
ey X8, N; of which belong to w; and

N, belong to w,.

* We seek to obtam a scalar y by projecting
the samples x onto a line (C-1 space, C = 2),
—"
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This line succeeded in separating
ewodisesadinde o Of 4] the possible lines we would like to
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scalar value y. i
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For simplicity, I am now considering only 2 classes suppose. So, this principle can be extended
for C number of classes. So first, I am considering 2 classes. So, we have the m-dimensional

samples. So, we have the m-dimensional samples, and we have the N number of samples. So, the

N, number of samples belong to the first class; the first class is w,. And N, number of samples

belonging to another class, another class is w,.

And, we seek to obtain a scalar y by projecting the samples x onto a line. So, in this case, we
have we are considering 2 number of classes, that means C is equal to 2. So that means, C minus
1 means, it is 2 minus 1; it is 1. So, dimension is reduced to 1. And what I am getting? I am just
doing the projection w ' x; that is actually the dot product, if I consider the vector form. So, it

will be the dot product. So, y will be the scalar. So, w ™. x. So, w is the projection vector, and x is



the input vector, that I am considering. So, if I take the dot product between w " and x. So, I will

be getting the scalar, the scalar is y.

In the figure, you can see, I am showing a projection direction, the direction is this, one
projection direction you can see. And in this case, also I am considering 2 classes, and here [ am
considering 2-dimensional samples. Because I am considering x1 and x2. This is 2-dimensional
samples. So, corresponding to this you can see the separation between the classes is minimum.

Because there is an overlapping between the samples of the classes, the 2 classes.

But, if I consider, in the second figure, I am considering a projection direction; you can see, [ am
getting the separation between the classes, between the samples of the 2 classes. So, that means
the second projection direction is better as compared to the first projection direction. So, I have

to find, which one is the best projection direction. So, that is the objective of the LDA.
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LDA ... Two Classes

* In order to find a good projection vector, we need to define a

measure of separation between the projections. 7_ WL

* The mean vector of each class in X and y feature space is:
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¥

* We could then choose the distance between the projected means

as our objective function
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So, in order to find a good projection vector, we need to define a measure of separation between
the projections. Because, I am getting the projection. The projection is nothing but y. That is
nothing but w ' . x. So, I am getting the scalar y. So, first the mean vector of each class in x and y
feature space, I can determine. So, [;, I can determine; because I have N; number of samples. So,
I can determine the mean of x corresponding to a particular class. And you can see I can also

determine the mean of the projected data. So, y is the projected data.
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So, ;, that I can determine. So, it will be something like this, Fz X' x, So, it is, 4;, I can also

1

determine. So, you can see it is NV T x. And after this, just you do this mathematics so I can

determine the mean of the projected data. Now, I am considering the objective function. The
objective function is J w, and the main objective, or the main goal is to find a maximum distance

between the projected means. So that, I will be getting maximum separation between the classes.

So, objective function J w, I am considering, and this is 1, is the projected mean for the class 1.
And [, is the projected mean, for the class 2. So, I am considering p;and [, that is the projected

mean. So, from this you can determine this. From the previous equation, you can determine this.
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LDA ... Two Classes

* However, the distance between the projected means is not a very
good measure since it does not take ito account the standard
deviation within the classes.

—
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This axis has a larger distance between means

A Tutorial on Data Reduction - Linear Discriminant Analysis (LDA), Aly A. Farag Shireen Y. Elhabian, CVIP Lab University of Louisville
Now in this case, you can see the distance between the projected mean is not a very good
measure. Because, it does not take into account the standard deviation within the class. So, that
information is not considered in this case. Because we considered the distance between the
projected mean, and that may not be a good measure. Because in this case, we are not

considering the standard deviation within the class. So, that information we are not considering.

So, pictorially that concept I am showing here. Here you can see, the axis has a larger distance
between the means, in the first case. But in this case, it is not a good separability. There may be

some overlapping between the classes. But if I consider the second case; this axis gives better



class separability. So, you can see if I consider this axis, that is, this projection direction, then I
will be getting maximum separability between the classes. But, in the first case, I will be getting
the larger distance between the mean. But in this case, the separability is not good. The
separability between the classes is not good as compared to the second case. In the second case, I

am getting better class separability.
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LDA ... Two Classes

* The solution proposed by Fisher 15 to maximize a function that
represents the difference between the means, normalized by a

measure of the within-class vagiability, or the so-called scatfer:

P

* For each class we define the scatter, an equivalent of the

vatiance, as; (sun of squate differences between the projected samples and their class

mean).
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* 8, measures the vatability within class w;after projecting it on
the y-space.
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* Thus S +5, measures the vagabiity within the two
classes at hand after projection, hence it is called within-lacs scatfer
____-——'——__

of the projected samples.
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So, that is the solution of the, this problem is given by Fisher. So that is why, this method is
called Fisher Linear Discriminant Analysis. So what is the solution of these problem? The
solution of this problem is to maximize a function that represents, the difference between the
means, normalized by a measure of within-class variability. So, that means, I am considering the
information or the measure of the within-class variability; and I can consider as a scatter. For

each class, we define the scatter and equivalent to the variance.

So, I can consider a, this is the scatter, and it is equivalent of the variance. That is the sum of
square differences between the projected samples and their class mean. So, that [ am considering.

The sum of square differences between the projected samples and their class mean, I am

considering. So, s, measures the variability within the class w ;. After projecting it onto the y-

~

space. So, y-space means it is the projected space. So, s,* means, it is a measure of the variability

within the class, the class is w ;.



So, that means if I consider this one, s *+s,’, that gives the measure of the variability within the

2 classes after the projection. So, that is called the within-class scatter of the projected sample.

That means, I am considering s *+s,*; that measures the variability within the 2 classes after the

projection, and it is called the within-class scatter of the projected samples.
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LDA ... Two Classes

* The Fisher linear discriminant 15 defined as
the linear function wix that maximizes the | %
criterion function: (the distance between the 5t l /

projected means normalized by the within- 171 Qy

class scatter of the projected samples. L . @

+ Therefore, we will be looking for a p[oiection
where examples from the same class are
projected very close to each other and, at the
same time, the projected means are as farther

apart as possible i

A Tutorial on Data Reduction - Linear Discriminant Analysis (LDA), Aly A. Farag Shireen Y. Elhabian, CVIP Lab University of Louisville

So, in case of the Fisher Linear Discriminant Function, we define a linear function, the linear

T x that maximize the criterion function. What is the criterion function? The

function is w
distance between the projected means normalized by the within-class scatter of the projected
samples. So, I am considering this, the criterion function J (w), I am considering. So, the
objective is to maximize the criterion function, I have to maximize this. That means the distance
between the projected means normalized by the within-class scatter of the projected samples, |

have to maximize.

So, that is the criterion function, I am considering in case of the Fisher Linear Discriminant. That
means, in case of the LDA, what actually we are considering? We are looking for a projection,
where the samples of the same class are projected very close to each other, and at the same time
the projected means are further apart as far as possible. So, that is I am considering. So, one is
within-class distance, another one is the between-class distance; that is I am considering. And

based on this, | am determining that projection direction. So, this concept I am showing here



again. So, that means, the maximum separation between the classes, but samples from the same

class are projected very close to each other. So, that I am also considering.
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LDA ... Two Classes

- : R
* In order to find the optimum projection #”, we need to express

J(w) as an explicit function ot .

¢ We will define a measure of the seatter in multivariate feature

space X which are denoted as scatfer matrices,
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within-class scatier matrix.

In order to find the optimum projection w star, we need to express J (w) as an explicit function of
w. So, I have to find the J (w), that is the criterion function. So, for this we are defining a
measure of the scatter in multivariate feature space x, which is denoted as scatter matrix. So, I
am considering S ;. So, S ; is the covariance matrix of class w ;and S y is called within-class
scatter matrix. So, I can determine the within-class scatter matrix from S1 and S2. So, S1 is the
covariance matrix of the class 1, and S2 is the covariance matrix of the class 2. So, from this I
can determine S w, that is nothing but within-class scatter matrix. This is important for

considering these criterion function. So, J (w) I am considering.
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LDA ... Two Classes

* Now, the scatter of the projection y can then be expressed as a function of

the scatter mateix in feature space x.
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Where §, is the within-class scatter matrix of the projected samples y.

Now, the scatter of the projection y can be expressed as a function of the scatter matrix in feature
space X. So, here you can see, I am considering the projected data. So, s.°, that I can determine.

So, y is the projected data. And you know, what is fI;; you know. So, from this you can

determine this one, just you can see this one. And similarly, you can also determine the S2. S1

and S2, that is the s *and s.,°, that you can determine. And that is nothing but S . So, 3\‘;, is the

within-class scatter matrix of the projected sample y. So, you can see the mathematics, and this

derivation you can see. So this is a very simple derivation.
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LDA ... Two Classes

* Similarly; the difference between the projected means (in y-space) can be
expressed in terms of the means in the original feature space (x-space).
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¢ The matnx 8y 15 called the befueen-class scatter of the ongi.tml Eg}ples/ feature

vectors, while 53 1s the between-class scatter of the projected samples y.

— o
+ Since 8 is the outer product of two vectors, its rank is at most one.

And based on this you can see, because I am considering the projected means, the projected
mean is [;and the [,. So, the separation between these 2 means, that is the projected mean
should be maximum. So, just I am determining this w T p,, that corresponds to f;, and H, is

nothing but w ™ p1,. So, you know this expression, and from this you can see, I am getting SNB.

So, S y is nothing but the between-class scatter matrix. So, you can see how to determine the

within-class scatter matrix S w and also, we can determine the between-class scatter matrix S .
So, S 5 1s the between-class scatter of the original samples. And what is :S\,;, that is the between-

class scatter of the projected sample y, that you can determine.
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LDA ... Two Classes

* We can finally express the Fisher criterion in terms of Sy and S
as:

* Hence J(w) is a measure of the difference between class
means (encoded in the between-class scatter matrix)
normalized by a measure of the within-class scatter matrix.

And after this, this Fisher criterion function, that is J (w) can be expressed in terms of the
between-class scatter matrix and the within-class scatter matrix, that can be represented like this.
So, J (w) is nothing but w * S s w divided by w * S w w. So, it can be represented like this. So, J
(w) is the major of the difference between-class means, that is encoded in the between-class
scatter matrix normalized by a measure of within-class scatter matrix. So, here you can see. So, it
is the between-class scatter matrix and it is normalized by a measure of the within-class scatter

matrix. So, we did as the S .
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LDA ... Two Classes

* To find the maximum of J(#), we differentiate and equate to
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And I have to maximize this criterion function J (w), so that is why I am taking the
differentiation with respect to w. So, w is the projection vector. So, I have to maximize J (w),
with respect to w. So, that is why I am doing the differentiation. You can see this mathematics.
So, how to do the differentiation, by using the chain rule. So, you can do the differentiation by
using the chain rule, and since I have to find the maximum value; so that is why, | am equating it

to 0.

So, I have to find the maximum of J (w). After doing all this mathematics, I will be getting this
one. So, you see this mathematics, mainly just I am applying the differentiation, applying the

chain rule and just equating it to 0, because I have to find the maximum of J (w).
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LDA ... Two Classes

* Solving the generalized eigen value problem
S,S;w=Aw  where A=J(w)=scalar
yields

w'S

w’ =argmax J(w) = argmax( TSEW ] =8 (- p,) /
: v \W

)
— W W

* Thus 1s known as Fisher’s Linear Discminant, although it is not a
discrunmant but rather a specific choice of duection for the projection
of the data down to one dimension.

Using the same notation as PCA, the solution will be the eigen
vector(s) of Sj. = S;S 3

‘______'__—‘
So, it is nothing but, the solving the generalized eigenvalue problem. So, S,, ', that is the inverse
of the within-class scatter matrix, into S g, the between-class scatter matrix, and w is the
projection vector, A w. So, A is the eigenvalues. So, A is the scalar. So, corresponding to this, if I
consider this eigenvalue problem, I can determine the vector w. That I can determine, that is the

projection vector; I can determine. So, this w star, I can determine that is nothing but

Sy (p,—p,)- So, here you can see I am determining the best projection direction, the optimum

projection direction w star. So, this is known as Fisher’s Linear Discriminant.

And if I consider the same notation as PCA, the solution will be the eigenvectors of S x, because

in case of the PCA also, we determine the eigenvectors of the covariance matrix. So, similarly
the solution will be the eigenvectors of the S x. So, that is nothing but S, " into S g. So, this is
the very similar to the PCA, the Principal Component Analysis. In PCA, we consider the
eigenvectors of the covariance matrix. In this case you can see, I am considering S,,”' into S 5.

Also, one is the within-class scatter matrix, another one is the between-class scatter matrix.
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LDA ... Two Classes - Example

* Compute the Linear Discimmnant projection for the following two-
dimensional dataset.

= Samples for class w, : X;=(x;,%)={(4.2),2,4),2,3),(3,6),(4,4)} ‘/

— Sample for class o, : X,=(x,,%)={(9,10),(6,8),(9,5),(8,7),(10.8)} /

samples for class 1

X=|

awoRE

2
A
3
6
A

samples for class 2
X2 = [9,10;

A Tutralon ata Reductin - Liner Discrininnt Anayss (LDA), Al & Feag Shice Y. Eaian, VP Lab Unversty o Louisle
So, I am considering one numerical example. So, how to apply the LDA for 2 classes. So, I am
considering samples of the class wl. So, I am considering 2 classes, wl and w2, and I am
considering the samples for the class wl. So, these are the samples. The samples are 2-
dimensional. And, similarly I am considering the samples of the class w2. That is also 2-
dimensional, and I am showing the Matlab code for this. And, I am considering the samples X1

and X2 corresponding to the classes w1 and w2 respectively.

And you can see the, you can plot the samples corresponding to these 2 classes. One is the green

sample; you can see the green colored sample. And another one is the blue colored samples.
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LDA ... Two Classes - Example

* The classes mean ase :

1 1/(4) (2
=— [ =— +
% 5“2 [4

1 xE0

GG -
e MR R

class means
Mul = mean(X1)';
Mu2 = mean(X2)';

After this, this, the class means I can determine by using this expression. So, corresponding to
the class wl, I can determine the mean of the samples. And similarly, corresponding to the
second class also I can determine the class mean. So, that I can determine. And in the Matlab you
can write like this. You can determine the mean of X1, and also the mean of X2 you can

determine.
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LDA ... Two Classes - Example

* Covariance matrix of the first class:

g T
+FJ1£:8JJ22]H;][:S}H[i][:gﬂ

s covariance matrix of the first class
81 = cov(Xl); /

After this, the covariance matrix of the first class also, you can determine. That is nothing but S1.

So, S1 you can determine, that is nothing but the covariance matrix of the first class. And in a



Matlab, you have to right simply the covariance of X1. So, you can write like this. So, you can

determine S1.
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LDA ... Two Classes - Example

+ Covatiance mateix of the second class:

g P
*F}_ﬁ@j;]ﬂﬂ£i2ﬂ'+ﬂ*:uizﬂ'

covariance matrix of the first class
52 = cov(x2);

And similarly, you can determine the covariance matrix of the second class. So, S2 is the
covariance matrix of the second class, you can determine. And in the Matlab S2 is equal to

covariance as X2 that you can determine.
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LDA ... Two Classes - Example

* Within-class scatter matsix:

L 00sE s o0
S "
g o g o

33 -03
(—0.3 5.5} s

s within-class scatter matrix
Sw=51+82;




And from this S1 and S2, you can determine within-class scatter matrix S W, you can determine.
That is the within-class scatter matrix, you can determine from S1 and S2. So, you will be getting

this.
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LDA ... Two Classes - Example

* Between-class scatter matsix:

8= (‘“1 —H, X/“l _ﬂz)r /

(3) (84\[(3) (84
1138) 76)]138) 76
-54
=| " |-54 -38)
-38 i
(9.6 2052
2052 1444) | tmtomconionar; o

And after this, you can also determine the between-class scatter matrix from these 2 means,
because already you have calculated p; and p,. So, from you p; and p, you can determine
between-class scatter matrix. So, you can see. So, I am computing the between-class scatter

matrix, and even in the Matlab also it is very simple. So, you can determine between-class scatter

matrix.
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LDA ... Two Classes - Example

* The LDA projection is then obtained as the solution of the generalized eigen

value problem S;.l b
_—-——1"'
=[5,5,-1|=0
33 -03)'(2.16 2052 S0
= - =(
-03 55) 12052 1444 0 1

03045 00166Y29.16 20.52) (1 0
0.0166 0.1327120.52 14.44]"“[0 1}
9013-4 6489
{4.2339 2.9794-,1]
=(9.2213- 2)2.9794- 1)~ 6.489x4.2339 =0
= £ -1220074=0= A(A-12.2007)=0
=4=0,4,=122000

=

After this, the problem is the eigenvalue problem, that you have to solve. So, the eigenvalue
problem is this. So, lambda is the eigenvalue. So, this eigenvalue problem, you can solve like
this. And I will be getting the, I will be getting 2 eigenvalues, A; and A,. So, A; is 0 and A, is
12.2007. So, you will be getting 2 eigenvalues. This is nothing but the solution of the generalized

eigenvalue problem. So, you can solve this problem.
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LDA ... Two Classes - Example

« computing the LDA projection
inv8w = inv (Sw); /
e invSw_by SB = invSw * SB;
922 B 6489 W = “i : getting the projection vector
42339 2979 1 o, [V,D] = eig(invSw_by SB)
and ¢ the projection vector
W=V(:,1);
92213 6.489 W
w, 512.2007
433 297%) " 5w,
Thus;
-0.5755
W= and
- (08178

And after this, I can determine the vector w. So, you can determine wl and w2; you can

determine. So, we can compute the LDA projection. So, it is nothing but, in the Matlab you can



do like this. So, you have to find the inverse of S w and, I will be getting the projection vector; w
is the projection vector. So, I will be getting wl and w2. And which one is the optimum
projection direction corresponding to LDA? That is the, w2 is the optimum projection direction
that I can determine; which gives maximum J (w). So, this w2 is the optimum projection vector,

that I can determine, because it gives maximum J (w).
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LDA ... Two Classes - Example

O directly;

cestenr(2 WA

(03045 0.0166Y-54
“l0.0166 0.1827)\-3.8

. {0.9033

0_4173] v

Or maybe directly, we can compute like this. The optimum projection direction order vector; |
can determine like this. So, SW_l, that is nothing but the inverse of the within-class scatter
matrix, H;— H,. So, from this you can determine the optimum projection vector that you can

determine. So, this is one example. This LDA you can apply for C number of classes. So, in the

book you can get this information, how to apply the LDA for C number of classes.

But, in my discussion I only considered 2 classes. So, how to apply the LDA for 2 classes. For
this, you have to determine S w and S p; one is the within-class scatter matrix, another one is the

between-class scatter matrix.



(Refer Slide Time: 33:52)

LDA - Projection

The projection vector

CO[[ESPOlldiﬂg to the

smallest eigen value

LDA projec ifhs vector widh the ocher eigen value = 6 3818015

Using this vector leads to
bad separability
between the two classes

X,
4

And here you can see, I am showing one projection direction corresponding to smallest
eigenvalue. So, smallest eigenvalue I am considering, and I am showing the projection direction.
And in this case, if I considered the PDF of the classes, they are not well separated. That means,
that there is no discrimination between the classes, corresponding to this projection direction. In

case of the PCA also, we considered the eigenvalues and the corresponding eigenvectors.

So, in case of the PCA, we consider the highest eigenvalue and corresponding eigenvectors, that
we considered. And if I consider, the smallest eigenvalue that corresponds to the redundant
information, or maybe the noise; that we can neglect in case of the PCA. Here in case of LDA,
what I am considering, the smallest eigenvalue, I am considering. And corresponding to this, I

can determine the projection direction.

And here you can see, corresponding to the smallest eigenvalue, the separation between the 2
classes is not maximum. It is overlapping; overlapping of the PDF of the classes, that is the bad

separability.
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LDA - Projection
04,
The projection vector
corresponding to the . /
highest cigen value o /
0.251
LDA projection vecton wich Yo bighest sigen vahus = 122007
\ i 02}
\ o
\!
0]
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N
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1~
L] Using this vector leads to
% good separability
between the two classes
1

But if I consider, the highest eigenvalue; and corresponding to this, I can determine the
projection direction. In this case, you can get the good separability between the classes. So, you
can see, I am showing the PDF of the classes, and you can find the good separability between the

classes corresponding to the highest eigenvalue, you can see.
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Face Recognition using LDA

l' =09571" 019450 1 '"!_ +0045='" 00586'

Now in case of the PCA, we have seen how to recognize a particular face. The face recognition
using PCA, that concept already I have explained. That means, any face can be expressed as a

linear combination of eigenfaces. So, you can see, I am considering the eigenfaces like this. So,



in my class, I have explained how to determine the eigenfaces. And the any face can be

represented by a linear combination of the eigenfaces.

Similarly, in case of the LDA, any face can be represented by a linear combination of
Fisherfaces. In case of the PCA, we consider the eigenfaces. But in this LDA, we are considering
Fisherfaces. So, that means, the any face can be represented by linear combination of

Fisherfaces. So, that concept I am going to explain now.
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* Methodology

- Suppose there are C classes

- Let fg; be the mean vector of class i,i = 1,2,..,C
- Let M; be the number of samples within class i, = 1,2,..,C,
C
-Let M = ¥ M; be the total number of samples. and
=0
Within-class scatter matrix:
s
= ¥ i T
Se=Z 10— M)y - ) s/

-

Between-class scatter matrix:
c
o= X0 - -/
=

(9
#=1/CE g (mean of entire data set)
=1

So, how to recognize a particular face? Suppose, we have C number of classes. This p;, I can
determine; that is the mean vector of the class, I can determine. So, I have C number of classes.
So, also I am considering M; number of samples for the classes, within a particular class. So,
from this, I can determine that, what is the total number of samples. The total number of sample
i1s M, is equal to summation over 0 to C M. So, M; be the number of samples within class 1; that |

am considering.

And from this, I can determine total number of samples, I can determine. And I have already
explained, I can determine the within-class scatter matrix, and also I can determine the between-

class scatter matrix from the input samples.
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- LDA computes a transformation that maximizes the between-class
scatter while minimizing the within-class scatter:

det(Sp)
det(S,)

maximize

=~ Such a transformation should retain class separability while
reducing the variation due to sources other than identity (e.g.,
illumination).

- The linear transformation is given by a matrix U whose columns are
the eigenvectors of S, S, (called Fisherfaces).

S,_‘,] Sptg = Al

e 1
1
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T
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T
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After this, I am considering the criterion function; that function I am considering. So, what is the
condition? I have to maximize the between-class scatter, but I have to minimize the within-class
scatter, that is the condition. Because, I have to find the best projection direction, I have to find.
So for this, what I have to do? I have to maximize the between-class scatter, and also I have to

minimize the within-class scatter.

So, such a transformation should retain class separability, while reducing the variation due to
source other than the identity. So, maybe the variation, maybe the illumination variation; [ may
consider. But, the main important point is the class separability. So, we have to find the class
separability; that it is a maximum discrimination between the classes, I have to find. And
already, I have explained that is nothing but the eigenvalue problem. So, this solution is

something like this.

And, I will be getting the Fisherfaces, I will be getting. If I consider the eigenvectors of Swf1 into
S g. So, I will be getting the eigenvectors, that is nothing but the Fisherfaces. That means, you
can see the projected data can be represented by a linear combination of the Fisherfaces. So here,
you can see, | am considering, the U is the transform matrix and how it is obtained. It is nothing
but the eigenvectors, I am considering. The eigenvectors of S, " into S 5. So, eigenvectors I am

considering.



And based on this eigenvector, I can construct the transformation matrix. So, x is the input data
minus mu; that is the mean is subtracted from the input data, that means the input data is
normalized. And after this, I am considering the transformation. The transformation is the b is
equal to U T x minus mu. So, suppose in case of the KL transformation, what I have considered

Y is equal to A x minus mu X, I considered like this.
Similarly in this case, I am considering the U is the transformation matrix Y is this, and x minus
mu x, like this; [ am considering. So, this U is the transformation matrix. And this transformation

matrix, | can obtain from the eigenvectors of qu; that is the inverse of the within-class scatter
matrix into S , So, I can get this one, this one U. That means any face can be represented by a

linear combination of the Fisherfaces.
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- Given an unknown face image I (centered and of the same size like the training
faces) follow these steps
Step I: nomalize [: =T - v =1 P
&~ 5
Step 2: project on the Fisherfa:e_/ U w8
b3 ¢
-,‘E| willy N & *
@ :
Wy
Step 3 represent 4 as: {) =
wx
Step 4: find ¢, = min; |2 —“‘H
S T
Step 3:if e, < T, then ["is recognized as face / from the training set.
e —

So, the procedure for the face recognition is very similar to the face recognition by PCA. First, |
have to do the normalization of the input data, that means from the original face the mean face is
subtracted. After this, I have to determine the Fisherface, I have to determine. That means, I am
considering the weights. The weights are w1, w2, w3, like this; that I have already explained in

the PCA.

So, that means any unknown face can be represented by a linear combination of Fisherfaces. And
suppose, a new face is coming. So, a new face can be also represented by a linear combination of

Fisherfaces. After this, what I have to do for recognition? Just I have to compare the weights. So



just, I have to compare the weights. I have to compare the weights. One is the weight
corresponding to the training, and another one is the weights corresponding to the input test face.
So, I have to compare the weights. And based on this comparison, if it is less than a particular

threshold; so based on this condition I can recognize a particular face.

So, this concept is very much similar to the face recognition by PCA. But in this case, what [ am
considering? I am considering the Fisherface, I am considering. Corresponding to this, I am

determining the transformation matrix. The transformation matrix is U, that is obtained from the

eigenvectors. The eigenvectors of S, ™" into S .

In case of the PCA, we consider the transformation matrix A. The transformation matrix is
obtained from the eigenvectors of the covariance matrix of the input data. So, C x is the
covariance matrix of the input data. And I am determining the eigenvectors. And from the

eigenvectors, I can determine the transformation matrix.

In case of the LDA, what I am considering? I am again considering the eigenvectors of this, S,, ™'
into S g. And from this, I can determine the transformation matrix, the transformation matrix is
U. So, these 2 concepts are very similar. The face recognition by PCA and the face recognition

by LDA. Now next, [ will discuss the concept of the Support Vector Machine.
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An Introduction of

Support Vector Machine



Now, I will discuss the concept of Support Vector Machine. An introduction of Support Vector
Machine. So briefly, I will explain the concept of the Support Vector Machine. So, what is
Support Vector Machine?
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Suppott Vector Machine (SVM)

u A classifier derived from statistical learning
theory.

» SVM became famous when, using images
as input, it gave accuracy comparable to
neural-network ~ with  hand-designed
features in a handwriting recognition task

= Currently, SVM is widely used in object
detection & recognition, content-based
image retrieval, text recognition, biometrics,
speech recognition, etc.

So, Support Vector Machine is a classifier derived from statistical learning theory. And already, I
have explained, it is the discriminative model. Because in this case, I do not need the information
of class conditional density. So, I have to determine the best decision boundary between 2
classes. So, if I consider more number of classes, I have to find the best decision boundaries
between the classes. So, that is why, it is called a discriminative classifier; because, I do not need

the information of that class conditional density.

And, Support Vector Machine, we can consider different applications; like handwriting character
recognition, that is one applications. And there are many other applications, like object detection,
and recognition, content-based image retrieval, text recognition, biometrics, speech recognition.
So, there are many applications of Support Vector Machine, which can be used for classification

and recognition.

So for this, we may consider hand-crafted features for classification. So, like this already I have
explained some hand-crafted features; like color feature, texture features, or maybe the HOG,
SIFT, I can consider. And based on these hand-crafted features, I can do the classification by
Support Vector Machine.
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Disctiminant Function

» The classifier is said to assign a feature vector x to class w; if

g(x)>g,x) - forall j#i

c 9,08
» Fortwo-category case, g(x)=g,(x)-g,(x) =° RS

_—

Decide ¢ if g(x) > 0; otherwise decide @,

—_—

= An example we've leamed before:
a Minimum-Eror-Rate Classifier

g(x)= p(ay [x)- p(e, |x)

—

So, you know this condition, that is the discriminate function, you know. So, already I have
explained about the discriminate function. Now, this feature vector x can be assigned to a
particular class, the particular class is w i. Based on this condition, that condition is, if g ; (x) is
greater than g ; (x), and j is not equal to 1. So, corresponding to this, I can assign a feature vector
X to the class, the class is w ;. This is based on the discriminate function. And if I consider 2

classes, that is the 2-category case.

So, I can determine g;x and also I can determine g,x. So, g;x minus gX, that is nothing but gx.
Suppose g x is equal to 0, that corresponds to the decision boundary, that already I have
explained. So, g x is equal to 0 means, it is the decision boundary. In the decision boundary, gx
is equal to g>x. So, x is the feature vector. So, based on g x, I can take a classification decision.
So, I can consider or I can decide the class wl, if g x is greater than 0. Otherwise, I have to

consider the class, the class is w2.

And, for the Minimum-Error-Rate Classifier, and that already I have explained. So, g x can be
presented like this. So, g x is nothing but g,x minus g,x. So, what is g;x? That is nothing but p
the probability of wl given x, that is posterior probability. And similarly, for g,x the probability,
the posterior probabilities, probability of w2 given x. So, for each and every class I have to
determine g x, and I have to find a maximum discriminant function, and based on this I can take

a classification decision.
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Disctiminant Function

» It can be arbitrary functions of x, such as:

Nearest Decision Linear Nonlinear
Neighbor Tree Functions Functions
__/
g(x)=w'x+b

And here, | have shown some decision boundaries; you can see. First time, I am considering the
nearest neighbor classification. So, you may get a decision boundary like this. So, this is the
decision boundary between 2 classes. And in case of the decision tree, this is nothing but the
binary decision, either yes or no. So, that type of decision I can consider by considering the
decision tree, and corresponding to this I may get the decision boundary like this. That is the

binary classification type, classifier.

And if T consider the g x is a linear function. So suppose, g x is equal to w T that is the transpose
x plus b. So, w is the weight vector and x is the input feature vector plus b is the bias. So,
corresponding to this, if I consider a linear function; then in this case, I will be getting a linear

decision boundary, like this.

And also, I may get the nonlinear decision boundary between the classes. So, that last example is
the nonlinear function, that is the nonlinear decision boundary, I can get. So, this is about that
decision boundaries. So, I am now considering the discriminate function. The discriminate

function is g x, that is equal to w " x plus b.
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Lineat Discriminant Function

= g(x)is a linear function: ¥

wix+bh>0

g(x)=w'x+b

= Ahyper-plane in the
feature space

» (Unit-length) normal vector
of the hyper-plane:

W
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b

wix+bh<(0 X

So, now g x is a linear function, that is the linear discriminant function, I am considering. So, g x

" x plus b. And I am considering a hyperplane, that is the decision boundary

is equal to w
between 2 classes. You can see, here I am considering a 2-dimensional feature space, you can
see x1 and x2 that is the 2-dimensional feature space, I am considering. And, you can see, this is
the decision boundary. So, I am considering the decision boundary like this; decision boundary

between the classes.

So, itis w T x plus b is equal to 0. So, that is the equation of the decision boundary. And suppose,
w ' x plus b is greater than 0, that corresponds to the class; suppose the class is w1, this class.
And if w T x plus b less than 0, that we have considered the class, the class is w2. So, these 2
class, I can consider; one is the w1, another one is the w2. This w is different, this is the weight

vector. So, wl and w2, I am considering as classes, 2 classes | am considering.

And unit normal; that is the unit-length normal vector of the hyperplane, also I can determine.
So. if you see this vector, this vector is the unit vector, that is the unit-length normal vector of the
hyperplane, I can determine, that is nothing but w divided by the norm of w. So, that is unit

vector, also you can determine.
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Linear Discriminant Function

@ denotes +1
0O denotes -1

= How would you classify X,
these points using a linear
discriminant function in order
to minimize the error rate?

= Infinite number of answers! _,

e

= Which one is the best?

Now, how will you classify at these sample points using a linear discriminate function, in order
to minimize the error rate? So, that is the concept. So, I am considering 2 classes. So, the first
class is denoted by plus 1, and second class is denoted by minus 1. And, it is a 2-dimensional
feature space, I am considering. So, infinite number of answers. Because I have to minimize the

error rate. And you can see, I am showing the decision boundary between these 2 classes.

Again I may consider another decision boundary between these 2 classes; or maybe, I may
consider another decision boundary between these 2 classes; or I may consider this decision
boundary between these classes. So, [ may get the number of decision boundaries. But which one
is the best decision boundary; that I have to determine in the Support Vector Machine. So, which
one is the best decision boundary between these 2 classes; that I have to determine by

considering some optimization criterion, that I am going to explain in my next slide.
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Large Margin Linear Classifter

@ denotes +1
0 denotes -1

The linear discriminant Xy
function (classifier) with the “safe zone'
maximum margin is the best

Margin

Margin is defined as the
width that the boundary
could be increased by before
hitting a data point

Why itis the best?

o Robust to outliners and thus 0]
strong generalization ability X

So, the linear discriminant function, or the classifier with the maximum margin is the best. So,
this is the definition of the best decision boundary. So, what is the definition of the margin, that
you can see here? So, margin is defined as the width, that the boundary could be increase by
before hitting a data point. So, you can see, I am considering the boundary like this, and I am
increasing the width of the boundary. And so that, it will just touch the sample points. That
means the, you can see the vector these are the sample points. So, before hitting the data points, I

can stop.

So based on this, I can define the margin. The margin of this, the hyperplane. So, this is the
definition of the margin. So, beyond this, I cannot increase the width, because it will touch the
data points. So, just before the hitting the data points, I have to stop. And corresponding to this,
if I consider, this is the width of the decision boundary; suppose that corresponds to the margin.

So, which is the best decision boundary, I want to determine?

Because in my previous slide, I have shown, I can draw number of decision boundaries between
these 2 classes. But, which one is the best, that I can determine based on the margin. If the
margin is more, then that will be good. That means, for a good decision boundary, the margin
should be more, or the margin should be high. So, that based on this margin condition, I can find

the best decision boundary between the classes.



The best decision boundary means, it is robust to outliers, and thus strong generalization ability.
So here, you can see I am considering the safe zone. Because beyond this, I cannot increase the
margin, because it will touch the data points. So, that corresponds to the safe zone. So, this is the

safe zone, [ am getting based on the margin.
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So, how to determine the best decision boundary, that means how to maximize the margin

X

between the classes. So, suppose the large margin linear classifier, that [ want to design; that
means, the margin should be the maximum. And already, I have mentioned. So, I have 2 classes;
one is the plus, another one is, plus 1; another one is minus 1. So, given the data points, I have
the data points; x;, y;, like this; i is equal to 1 to n. And for the class, that is y; is equal to plus 1.
So, corresponding to this, w T x; plus b should be greater than 0. And similarly for the second

class, y; is equal to minus 1; w T xi plus b should be less 0. So, these are the conditions.

And after this, I can do some scale transformation, for both w and the b, and corresponding to
this, these 2 equations will be equivalent to this. So, y; is equal to plus 1, that corresponds to w *
X; plus b greater than equal to 1. And for y; is equal to minus 1 w " x; plus b should be less than
equal to minus 1. So, I will be getting these 2 new conditions. So, these 2 new conditions, I am

obtaining after the scale transformation on both w and b.
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So you can see in this figure, I am considering the data points. So, if you see in the next figure
here, you can see, I am considering x plus, x plus and x minus. So, this is the x plus, this is the x
plus, and this is the x minus. That means, the margin is about to touch the data points. So, in one
side, it is x plus; in another side, it is x minus. So, this x plus and the x minus, they are called the
support vectors. Because this margin is about to touch the data points. Beyond this, I cannot

increase the width of the margin.

And what is the objective? My objective is to get the large margin linear classifier. So, I have to
get the maximum width of the margin. So, that is my objective; that is my goal. And based on
this, I am defining the support vectors. The support vectors are x plus and the x minus. So, x
plus, corresponding to the class w1, suppose. And another one is x minus, corresponding to the
class w2. So, I have these support vectors. So, with the help of this support vectors, I can define
the margin. So here, you can see, these are the support vectors, x plus and the x minus. These are

the support vectors.

So, we know this condition, the w " x plus b is equal to 1, corresponding to the first class. So, I
am now considering the support vector. So in this equation, w ' x plus; x plus is the support
vector, I am considering; plus b is equal to 1, that I am considering. And again, | am considering
w T x minus. So, that X minus support vector, I am considering; plus b is equal to minus 1. So,

these 2 equations, I am considering for 2 classes. The classes are wl and w2.



And now, I want to determine the width of the margin. So, the margin width can be determined
like this M is equal to x plus minus x minus. So, this is one support vector, and X minus is
another support vector. And I am considering the normal to the hyperplane. So, you get the, this
unit normal to the hyperplane, I am considering. So, this unit normal already I have determined.
So, this is the unit normal, that is the n. And this is nothing but it is equal to 2 divided by w

norm. So, I am just determining the norm of w. w is the weight vector.
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Now, for the large margin linear classifier, what I am considering? I am considering the

formulation, that I have to maximize the margin. So, the width of the margin is 2 divided by w



norm. So, | have to maximize this. And, that is the goal of a large margin linear classifier in the
Support Vector Machine. And based on this, what are the conditions? The condition is y ; is
equal to plus 1. For this condition, the condition is w ' x ; plus b greater than equal to 1. And
what is another class? Another class is y ; is equal to minus 1. That is another class; and this

condition is w T x ; plus b less than equal to minus 1.

And again the formulation, I have to maximize 2 divided by w norm; that is equivalent to
minimizing 1 divided 2 w norm whole square. So, this is actually equivalent to this. The
maximizing 2 divided by w norm is equivalent to minimizing 1 by 2 w norm whole square. Such
that these 2 conditions, I have to consider. So, formulation is this. So, minimize 1 by 2 w norm

whole square, that I have to minimize and condition is this.
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So, here I am considering this optimization problem. So, I have to minimize these, subject to the
condition; the condition is this. So, this a optimization problem. So, how to solve this
optimization problem? So, for solving the optimization problem, I can consider Lagrangian
function. So, in mathematical optimization, Lagrange's multiplier method is used, you know that
condition. So, you have to see the mathematics book. In mathematical optimization, Lagrange's
multiplier method is used. And it is used to find local maxima and the minima of a function,
subject to some constraints. That means, subject to the condition that one or more equation have

to be satisfied exactly by the chosen value of the variables.



So, I am repeating this. It is used to find the local maxima and the minima of a function, subject
to some constraints. That means, subject to the conditions, that one or more equations have to be
satisfied exactly by the chosen value of the variables. In order to find the maxima, or the minima
of the function. Suppose the function is f x. So, I want to find the maxima or the minima of the
function f x, subject to the equating constraint. So, constraint is suppose g x is equal to 0. So, this

constraint I am considering.

Then this Lagrangian function, I can write like this. This is a Lagrangian function, x, A. So,
lambda is the Lagrange's multiplier, is equal to f x—Agx. So, I can write like this. So, for more
details you have to see the mathematics books. So, how to do the optimization by considering the
Lagrange's function. So, this is the Lagrange's function, and I have to minimize this one. So, q;

is the Lagrange's multiplier. So, this is the Lagrange's multiplier.
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So again, I am writing this. So, I have to minimize this function, the Lagrangian function and
subject to the condition, the condition is, &; should be greater than equal to 0. So, a; is the
Lagrange’s multiplier. And for this, I am just taking the derivative of L p with respect to the
weight vector, the weight vector is w. And similarly, the del L p divided by del b should be equal
to 0. So, based on these differentiations, I want to find the maximum or the minimum conditions.

So, based on this the partial derivative, I want to find the value of w and this.
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And this is nothing but the Lagrangian Dual Problem. That means you can see, because my
objective is to minimize this function the Lagrangian function, subject to condition. This
condition is important, that is equivalent to maximizing this. That is equivalent to maximizing
this subject to this, these 2 conditions. And this is called the Lagrangian Dual Problem. So, you
see that mathematics. Again, I am repeating this, you see the mathematics, how to solve the

optimization problem using the Lagrange’s function.
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And now I am considering, the KKT condition. What is the KKT condition? So, I am
considering. So, from the KKT condition, the KKT condition is nothing but, the KKT means
Karush-Kuhn-Tucker condition, that also you have to see. This is called the KKT. It is used in
mathematical optimization. It is nothing but the first derivative test. It is also called the first order
necessary condition for a solution in a nonlinear programming to be optimal, provided that some

regularity conditions are satisfied.

So, this is the briefly, what is the KKT. So, it is used in mathematical optimization and it is
nothing but the first derivative test. And it is also called the first order necessary conditions for a
solution in a nonlinear programming to be optimal, provided that some regularity conditions
should be satisfied. So, by considering this KKT, I am considering this one, that is «, into y; and

after this, I am considering w " x; plus b minus 1 is equal to 0.

That I am considering; and thus, only for the support vector that is a;is not equal to 0, that is only
support vector have this condition. That is a;is not equal to 0. So, the solution will be like this.
So, I will be getting the solution of this. So, I will be getting the value of w and also, I have to
consider this one to get b from this. So, I can get b from this equation. And in this case xi is the

support vector. So, I am considering xi is the support vector.

And in the figure also, I have shown the support vectors, and you can see this is the margin I am
considering. So, x plus and the x minus, these are the support vectors. And based on this, you can
see, based on this Lagrangian’s multiplier function, Lagrange’s function, I am getting the
solution. And you can apply the KKT, this condition, and I will be getting the value of w, and

also, I can get the value of b, the b also I can determine from this.



(Refer Slide Time: 63:27)

Solving the Optimization Problem

» The linear discriminant function is:

g(x)=w'x+b= Zaﬁxfﬁb

e EEe s
= Notice it relies on a dot product between the test point x

and the support vectors x;

= Also keep in mind that solving the optimization problem
involved computing the dot products x;7x; between all pairs
of training points

And finally, the linear discriminant function I will be getting like this, w " into x plus b is nothing
but, I will be getting this one. And only I am considering the support vectors, 1 is mainly the
support vector, I am considering. So, alpha i is nothing but, it is the Lagrange’s multiplier. So, i
is nothing but the support vector. So, you can see in this expression, in the g x expression, that is
the discriminate function, the linear discriminate function. So, it is nothing but the dot product
between the test point. So, test point is X, and the support vectors are xi. So, first I have to
determine the dot product between the test point x and the support vectors xi, and based on this I

can determine g x.

So, suppose the new test vector is coming, suppose the new test vector is coming. So, for this one
I have to do, I have to find out the dot product between the test point x and the support vector xi.
And from this, I can determine the discriminate function, the discriminate function is g x. Also,
keep in mind that solving the optimization problem involve computing the dot product between x
i Tand x j between all pairs of the training points. So, for all pairs of the training points I have to
find the dot products, that is the condition. So, based on this, this discriminate function I can do

the classification by considering that support vectors.
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And suppose if I consider, if the data is not linear, linearly separable. So, suppose if I consider
the noisy data points or the outliers. And again here, I am showing 2 classes, one is the plus
green, and another one is the white that is the minus, 2 classes I am considering. And I am
considering the noisy data points and outliers. So, for this what is the formulation? The
formulation is I have to consider slack variables. So, slack variable I am considering. So, it can
be added to allow misclassification of difficult or the noisy data points. These slack variables are

introduced to allow certain constraints to be violated.

So, slack variables are defined to transform an inequality expression into an equality expression,
that is the mathematics, you can see. That is the slack variables, we can define to transform an
inequality expression into an equality expression. So, that is the objective of the slack variables.
And you can see, I am showing this equations w T x plus b is equal to 1 corresponding to this,
this is the line; w ' x plus b is equal to 0, that is the decision boundary; w ' x plus b is equal to

minus 1, that is the line. And you can see the margin here. I am showing the margin here.
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And corresponding to this slack variable problem, the formulation will be something like this, 1
by 2 w norm whole square and after this, plus C. So, C parameter I am considering and this is the
slack variable. So, &; is the slack variable. So, the conditions are like this. So, I have to consider
these 2 conditions, and this parameter C can be viewed as a way to control overfitting. That
means, the parameter C tells the optimization, how much you want to avoid misclassification by,
is training examples. So, that means I have to avoid the misclassification and this parameter C
controls the overfitting. So, that information I am giving with the help of the parameter, that

parameter is C. So, this is the concept of the large margin linear classifier.

So, briefly I have explained the large margin linear classifier, and also their nonlinear Support
Vector Machines. Suppose, if I consider many noisy points or the outliers. So, for this I can
consider nonlinear Support Vector Machine and, in this case, I can consider the projection of the
low dimensional data into high dimensional space. That means, I can do the projection of the low
dimensional space into high dimensional space, and I can consider the nonlinear Support Vector
Machine. I am not explaining the concept of the nonlinear Support Vector Machine. Briefly, I
have explained the concept of the Support Vector Machine, that is the large margin linear

classifier.

In this class, I discussed the basic concept of the LDA, and the Support Vector Machine. In case
of the LDA, I have to find the best direction of the projection. So, which one is the best



projection direction I have to find? And for this I have considered 1 criterion function, and for
this I considered between-class scatter matrix and the within-class scatter matrix. So, based on

this, I can find the best prediction direction; I can find.

In case of the Support Vector Machine, I determine the best decision boundary between 2
classes. So, that means I have to maximize the margin and between the 2 classes. And in this
case based on this, the margin, the width of the margin, I can define the support vectors. And
based on these support vectors, I can determine the discriminate function g x; and after this, I can

do the classification.

The Support Vector Machine is a discriminative classifier, because I do not need the information
of class conditional density. So, these concepts, 2 concepts; one is the LDA, another one is the
Support Vector Machine, briefly I have explained in this class. So, let me stop here today. Thank

you.



