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Welcome to NPTEL MOOC's course on Computer vision and Image Processing- Fundamental

and  Applications.  In  my  image  transformation  class,  I  discussed  the  concept  of  PCA,  the

Principle Component Analysis. So, how to reduce the dimension of the input vector. If I consider

the feature vector, suppose X; I can reduce the dimension of the feature vector, by neglecting the

redundant  information  by  PCA;  the  Principal  Component  Analysis.  PCA  finds  the  greatest

variance of data. 

But one problem with the PCA is that, it does not consider the class information. Suppose I have

number of classes, and the discrimination between the classes, that information is not considered

by the PCA. So, for this, I will consider another method, that is called the Linear Discriminate

Analysis. So, in case of Linear Discriminate Analysis, I can reduce the dimension of the input

vector. Also, I can find the separation between the classes; that is the discrimination between the

classes, I can do. So, that concept I am going to discuss today. 

And also, I discuss the concept of the Bayesian decision making; the Bayesian classifier. That is

nothing but the generative model. So, what is the concept of generative model? That means, I

have the information of the class conditional density. The probability of X given w, z. So, that

information is available, and with that information I can do the classification. So, I can determine

the posterior density; the density is probability of w, z given X; I can determine. 

There is another classifier that is called discriminative classifier. So, in this case, the information

of  the  class  conditional  density  is  not  important.  So,  I  can  find  the  best  decision  boundary

between the classes.  Suppose,  if  I  consider  2  classes,  I  can find the best decision boundary

between these 2 classes. So, for this  I will discuss one algorithm that is the Support Vector

Machine. 

So, today's class I will discuss these 2 concepts; one is the Linear Discriminant Analysis, and

another one is the Support Vector Machine. So first, let us consider the concept of the LDA.

And, what are the problems with the PCA?  That concept I am going to explain. 



(Refer Slide Time: 03:00)

So, in case of the PCA, if you know, that I discuss in the image transformation class; I can

reduce  the  dimension  of  the  feature  vector  or  the  input  vector.  But  in  this  case,  I  am not

considering that discrimination between the classes, that information is not available in the PCA.

So,  in  this  figure,  you  can  see  I  am  considering  n  number  of  feature  vectors.  And,  I  am

considering the m-dimensional vector, that I am considering. So that means, the dataset matrix X

has a dimension of m × n. 

And for this PCA, the method is like this. First, I have to subtract the mean from the original

data. So that, I will be getting a zero-mean dataset. So, I will be getting a zero-mean dataset. And

after this, I have to compute the covariance matrix. The covariance is matrix, I can compute like

this. And, from the covariance matrix, I can determine the transformation matrix. So, for this, I

have  to  determine  the eigenvectors,  and also I  have  the corresponding eigenvalues.  So,  this

transformation  matrix  for  the  principal  component  analysis,  I  can  determine  from  the

eigenvectors of the covariance matrix. 

So, you can see, I can determine the eigenvalues, and the eigenvectors I can determine from the

covariance matrix. And from this, I can determine the transformation matrix. That is the basis

vector,  I will be getting.  And, I can consider the highest eigenvalue,  I can consider;  and the

corresponding eigenvectors, I can consider. So, that concept already I have explained in my PCA

class, that is in the image transformation. 



But one problem of the PCA, that already I have highlighted, that is the class discrimination

information is not available. That is only I can reduce the dimension of the input vector, the input

data, or the input feature vector. 

(Refer Slide Time: 05:00)

So in case, of the LDA, the Linear Discriminant analysis, I can reduce the dimension of the data,

the input data. So, reduce the dimensionality of a data set, by finding a new set of variables,

smaller than the original set of variables. So, I can do this. And also, I can retain most of the

sample's  information.  So,  redundant  information  I  can  neglect,  but  I  can  retain  most  of  the

sample's information. 

So, unlike PCA, LDA uses the class information. So, that information is available in case of the

Linear Discriminant Analysis. And, I have to find a set of vectors, that maximize the between-

class scatter, while minimizing the within-class scatter matrix. So, that concept I am going to

explain. Because, in case of the Linear Discriminant Analysis, I have the class information, and I

have to find a set of vectors, that maximize the between-class scatter, and I can also minimize the

within-class scatter. So, this mathematical concept I am going to explain in case of the LDA, the

Linear Discriminant Analysis.
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So, LDA finds the new axis based on these 2 criteria.  So, one is the maximize the distance

between the means of the classes. So, I can consider, suppose 2 classes. So, I can maximize the

distance between these classes. So, that means, I can find the maximum distance between the

means of the classes, and also the minimize the variation within the class; that I can consider. So,

one is the maximize the distance between means of the classes, and also, I can minimize the

variation within the class. 

So, I can consider this one, that means I have to minimize the variation within the class, and also,

I have to maximize the distance between that means of the classes. So, this quantity I have to

maximize.
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Now, the question is; is PCA a good criterion for classification? Now in case of the PCA, the

PCA finds direction of greatest variance. Data variation determines the projection direction, but

in case of the PCA, the class information is missing. We do not have the class information, but

how  actually  we  consider.  We  consider  the  eigenvectors,  that  means  we  want  to  find  the

directions of greatest variation, that means we can find the eigenvectors of the covariance matrix.

But the class information is missing in case of the PCA.
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So, let us consider, what is the projection? In case of the PCA, we consider the eigenvectors, that

is the direction of the projection. Now let us consider, what is the good projection. Here, in this

figure, you can see I am considering 2 classes. You can see, one is the, this class, another one is

the,  this  class,  the  2  classes.  And  I  want  to  find  the  good  projection.  In  case  of  the  blue

projection,  if I consider the blue projection line, there may be overlapping of the samples of

different  classes.  But,  if  I  consider  this  projection,  that  means,  these  2  classes  will  be  well

separated. 

In the first projection, if I consider the first projection, that is the, the blue projection, then in this

case, these 2 classes are not well separated. But, in the second case, if I consider, the second

projection, if I consider this projection, the 2 classes are separated. So, that means in case of the

LDA, I have to see this condition, that is the separation between the classes.
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So, for this, this information is important; one is the between-class distance. So here, again I am

showing 2 classes, you can see. So, this is the centroid of suppose class i, and this is the centroid

of another class  m j; that is the mean. Now, in this case the between-class distance should be

maximum. So, you can see between these 2 means; one is  mi, another one is m j. So, one is mi,

and another one is m j. These 2 means I am considering. For 2 classes, the distance between the

centroid of different classes should be maximum. That is between-class distance. 

After this, I am considering another information, and that is within-class distance. So that means,

it is the accumulated distance of an instance to the centroid of its class. So, that means, if I

consider, this is a centroid,  the centroid is  miand  m j. And you can see, I am considering the

sample  points,  corresponding  to  the  centroid  mi.  So,  this  within-class  distance  should  be

minimum.

So,  suppose  distance  between  these  samples  and  the  centroid,  I  can  determine,  and  I  can

determine the accumulated distance. So, that should be minimum, that corresponds to within-

class distance. So, that means for the LDA, this is important; one is the between-class distance

that is important, distance between the centroid of different classes that should be maximum.

And within-class distance, that means accumulated distance of an instance to the centroid of its

class. So, that should be a minimum. So, these 2 conditions, one is the within-class distance,

another one is the between-class distance corresponding to LDA and that is very important. 
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So, in case of the Linear Discriminant Analysis;  LDA finds most discriminant  projection by

maximizing between-class distance and minimizing within-class distance. So, here I am showing

these 2 cases. First you can see, I am considering; this is the projection direction, that is the blue

is the projection direction. And you can see, the classes, the samples of the classes, 2 classes are

overlapping, that is the discrimination between these 2 classes is minimum. But, if I consider the

second projection  direction,  that  is  the yellow,  the discrimination between these 2 classes is

maximum. 



So, you can see, the discrimination between these 2 classes is maximum. So, I have to find that

direction, in which direction, the discrimination between these classes will be maximum. So, that

direction I have to estimate. So, for this I have to consider these 2 cases; one is the within-class

distance, another one is the between-class distance, I have to consider. So that means, I have to

maximize between-class distance, and I have to minimize within-class distance. 

So, based on this, I have to find the projection direction. And based on this projection direction, I

can find maximum separability between these 2 classes. Now, I am considering 2 classes. It may

be applicable for more than 2 classes also. So, if I consider C number of classes. So this concept

is also applicable. But in this example, I am only considering 2 classes.

(Refer Slide Time: 12:26)

So, what is the mathematics behind LDA, that I want to explain. So, let us consider a pattern

classification problem, and for this, I am considering C number of classes, I am considering. So,

maybe the classes, maybe the fishes; like the, seabass, tuna, salmon, like this I can consider

number of classes, the C number of classes I can consider. And each class has N i samples. So,

m-dimensional  samples  are available.  And how many samples  are available?  N i  number of

samples for each of the classes. And we have a set of m-dimensional samples.

So, we have a set of m-dimensional samples. So, corresponding to the class, the class is  w i. I

have the samples x1, x2 like this. So, we have Ni number of samples, and it is the m-dimensional

samples. And from this, I can get a matrix, the matrix is X. That is stacking these samples from



different classes into 1 matrix, that matrix is the X. And this is column of matrix represent 1

sample. So, I will be getting a matrix, the matrix is X, from all the samples of different classes.

Now, I want to find a transformation of X to Y; X is a input data vector, suppose. So, I want to

find a transformation of X to Y through projecting the samples in X onto a hyperplane with the

dimension C minus 1. So, I have to find the projection direction, that new data will be Y, after

the projection, and the objective is to get the maximum discrimination between the classes. So, I

have to find the best projection direction, I have to find.

(Refer Slide Time: 14:27)

For simplicity, I am now considering only 2 classes suppose. So, this principle can be extended

for C number of classes. So first, I am considering 2 classes. So, we have the m-dimensional

samples. So, we have the m-dimensional samples, and we have the N number of samples. So, the

N 1 number of samples belong to the first class; the first class is w1. And N 2 number of samples

belonging to another class, another class is w2. 

And, we seek to obtain a scalar y by projecting the samples x onto a line. So, in this case, we

have we are considering 2 number of classes, that means C is equal to 2. So that means, C minus

1 means, it is 2 minus 1; it is 1. So, dimension is reduced to 1. And what I am getting? I am just

doing the projection w T x; that is actually the dot product, if I consider the vector form. So, it

will be the dot product. So, y will be the scalar. So, w T. x. So, w is the projection vector, and x is



the input vector, that I am considering. So, if I take the dot product between w T and x.  So, I will

be getting the scalar, the scalar is y.

In  the  figure,  you  can  see,  I  am showing  a  projection  direction,  the  direction  is  this,  one

projection direction you can see. And in this case, also I am considering 2 classes, and here I am

considering 2-dimensional samples. Because I am considering x1 and x2. This is 2-dimensional

samples. So, corresponding to this you can see the separation between the classes is minimum.

Because there is an overlapping between the samples of the classes, the 2 classes.

But, if I consider, in the second figure, I am considering a projection direction; you can see, I am

getting the separation between the classes, between the samples of the 2 classes. So, that means

the second projection direction is better as compared to the first projection direction. So, I have

to find, which one is the best projection direction. So, that is the objective of the LDA. 

(Refer Slide Time: 16:40)

So, in order to find a good projection vector, we need to define a measure of separation between

the projections. Because, I am getting the projection. The projection is nothing but y. That is

nothing but w T . x. So, I am getting the scalar y. So, first the mean vector of each class in x and y

feature space, I can determine. So, μi, I can determine; because I have Ni number of samples. So,

I can determine the mean of x corresponding to a particular class. And you can see I can also

determine the mean of the projected data. So, y is the projected data. 



So, ~μi, that I can determine. So, it will be something like this,  
1
N i

∑ xT x. So, it is, ~μi, I can also

determine. So, you can see it is 
1
N i

 w T x. And after this, just you do this mathematics so I can

determine the mean of the projected data. Now, I am considering the objective function. The

objective function is J w, and the main objective, or the main goal is to find a maximum distance

between the projected means. So that, I will be getting maximum separation between the classes. 

So, objective function J w, I am considering, and this is μ1 is the projected mean for the class 1.

And μ2 is the projected mean, for the class 2. So, I am considering ~μ1and ~μ2 , that is the projected

mean. So, from this you can determine this. From the previous equation, you can determine this. 
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Now in this  case,  you can see the distance  between the projected  mean is  not a  very good

measure. Because, it does not take into account the standard deviation within the class. So, that

information  is  not  considered in  this  case.  Because we considered  the  distance  between the

projected  mean,  and  that  may  not  be  a  good  measure.  Because  in  this  case,  we  are  not

considering the standard deviation within the class. So, that information we are not considering.

So, pictorially that concept I am showing here. Here you can see, the axis has a larger distance

between the means, in the first case. But in this case, it is not a good separability. There may be

some overlapping between the classes. But if I consider the second case; this axis gives better



class separability. So, you can see if I consider this axis, that is, this projection direction, then I

will be getting maximum separability between the classes. But, in the first case, I will be getting

the  larger  distance  between  the  mean.  But  in  this  case,  the  separability  is  not  good.  The

separability between the classes is not good as compared to the second case. In the second case, I

am getting better class separability.
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So, that is the solution of the, this problem is given by Fisher. So that is why, this method is

called  Fisher  Linear  Discriminant  Analysis.  So  what  is  the  solution  of  these  problem?  The

solution of this problem is to maximize a function that represents, the difference between the

means, normalized by a measure of within-class variability. So, that means, I am considering the

information or the measure of the within-class variability; and I can consider as a scatter. For

each class, we define the scatter and equivalent to the variance. 

So, I can consider a, this is the scatter, and it is equivalent of the variance. That is the sum of

square differences between the projected samples and their class mean. So, that I am considering.

The  sum  of  square  differences  between  the  projected  samples  and  their  class  mean,  I  am

considering. So, 
~
si
2 measures the variability within the class w i. After projecting it onto the y-

space. So, y-space means it is the projected space. So, 
~
si
2 means, it is a measure of the variability

within the class, the class is w i. 



So, that means if I consider this one, 
~
s1
2+
~
s2
2 , that gives the measure of the variability within the

2 classes after the projection. So, that is called the within-class scatter of the projected sample.

That means, I am considering 
~
s1
2+
~
s2
2; that measures the variability within the 2 classes after the

projection, and it is called the within-class scatter of the projected samples.
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So, in case of the Fisher Linear Discriminant Function, we define a linear function, the linear

function  is  w  T x  that  maximize  the  criterion  function.  What  is  the  criterion  function?  The

distance between the projected means normalized by the within-class scatter  of the projected

samples.  So,  I  am considering  this,  the  criterion  function  J  (w),  I  am considering.  So,  the

objective is to maximize the criterion function, I have to maximize this. That means the distance

between the projected means normalized by the within-class scatter of the projected samples, I

have to maximize.

So, that is the criterion function, I am considering in case of the Fisher Linear Discriminant. That

means, in case of the LDA, what actually we are considering? We are looking for a projection,

where the samples of the same class are projected very close to each other, and at the same time

the projected means are further apart as far as possible. So, that is I am considering. So, one is

within-class distance, another one is the between-class distance; that is I am considering. And

based on this, I am determining that projection direction. So, this concept I am showing here



again. So, that means, the maximum separation between the classes, but samples from the same

class are projected very close to each other. So, that I am also considering.
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In order to find the optimum projection w star, we need to express J (w) as an explicit function of

w. So, I have to find the J (w), that is the criterion function.  So, for this  we are defining a

measure of the scatter in multivariate feature space x, which is denoted as scatter matrix. So, I

am considering S  i. So, S  i is the covariance matrix of class w i  and S  W is called within-class

scatter matrix. So, I can determine the within-class scatter matrix from S1 and S2. So, S1 is the

covariance matrix of the class 1, and S2 is the covariance matrix of the class 2. So, from this I

can  determine  S  W,  that  is  nothing  but  within-class  scatter  matrix.  This  is  important  for

considering these criterion function. So, J (w) I am considering.



(Refer Slide Time: 24:17)

Now, the scatter of the projection y can be expressed as a function of the scatter matrix in feature

space x. So, here you can see, I am considering the projected data. So, 
~
si
2, that I can determine.

So,  y  is  the  projected  data.  And  you  know,  what  is  ~μi;  you  know.  So,  from this  you  can

determine this one, just you can see this one. And similarly, you can also determine the S2. S1

and S2, that is the 
~
s1
2and 

~
s2
2 , that you can determine. And that is nothing but S W. So, ~SW  is the

within-class scatter matrix of the projected sample y. So, you can see the mathematics, and this

derivation you can see. So this is a very simple derivation.
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And based on this you can see, because I am considering the projected means, the projected

mean is  ~μ1and the  ~μ2 . So, the separation between these 2 means, that is the projected mean

should be maximum. So, just I am determining this w  T μ1, that corresponds to  ~μ1 , and  ~μ2  is

nothing but w T μ2. So, you know this expression, and from this you can see, I am getting ~SB . 

So, S  B is nothing but the between-class scatter matrix. So, you can see how to determine the

within-class scatter matrix S W and also, we can determine the between-class scatter matrix S B.

So, S B is the between-class scatter of the original samples. And what is ~SB , that is the between-

class scatter of the projected sample y, that you can determine.
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And after  this,  this  Fisher  criterion  function,  that  is  J  (w) can be expressed in  terms of the

between-class scatter matrix and the within-class scatter matrix, that can be represented like this.

So, J (w) is nothing but w T S B w divided by w T S W w . So, it can be represented like this. So, J

(w) is the major of the difference between-class means, that is encoded in the between-class

scatter matrix normalized by a measure of within-class scatter matrix. So, here you can see. So, it

is the between-class scatter matrix and it is normalized by a measure of the within-class scatter

matrix. So, we did as the S W. 



(Refer Slide Time: 26:46)

And  I  have  to  maximize  this  criterion  function  J  (w),  so  that  is  why  I  am  taking  the

differentiation with respect to w. So, w is the projection vector. So, I have to maximize J (w),

with respect to w. So, that is why I am doing the differentiation. You can see this mathematics.

So, how to do the differentiation, by using the chain rule. So, you can do the differentiation by

using the chain rule, and since I have to find the maximum value; so that is why, I am equating it

to 0. 

So, I have to find the maximum of J (w). After doing all this mathematics, I will be getting this

one. So, you see this mathematics, mainly just I am applying the differentiation, applying the

chain rule and just equating it to 0, because I have to find the maximum of J (w). 



(Refer Slide Time: 27:38)

So, it is nothing but, the solving the generalized eigenvalue problem. So, SW
−1, that is the inverse

of  the  within-class  scatter  matrix,  into  S  B,  the  between-class  scatter  matrix,  and  w  is  the

projection vector, λ w. So, λ is the eigenvalues. So, λ is the scalar. So, corresponding to this, if I

consider this eigenvalue problem, I can determine the vector w. That I can determine, that is the

projection  vector;  I  can  determine.  So,  this  w  star,  I  can  determine  that  is  nothing  but

SW
−1

(μ1−μ2). So, here you can see I am determining the best projection direction, the optimum

projection direction w star. So, this is known as Fisher’s Linear Discriminant.

And if I consider the same notation as PCA, the solution will be the eigenvectors of S X, because

in case of the PCA also, we determine the eigenvectors of the covariance matrix. So, similarly

the solution will be the eigenvectors of the S X. So, that is nothing but SW
−1 into S B. So, this is

the  very  similar  to  the  PCA,  the  Principal  Component  Analysis.  In  PCA,  we  consider  the

eigenvectors of the covariance matrix. In this case you can see, I am considering SW
−1 into S B.

Also, one is the within-class scatter matrix, another one is the between-class scatter matrix. 
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So, I am considering one numerical example. So, how to apply the LDA for 2 classes. So, I am

considering samples of the class w1. So, I  am considering 2 classes,  w1 and w2, and I  am

considering  the  samples  for  the  class  w1.  So,  these  are  the  samples.  The  samples  are  2-

dimensional.  And,  similarly  I  am considering  the  samples  of  the  class  w2.  That  is  also  2-

dimensional, and I am showing the Matlab code for this. And, I am considering the samples X1

and X2 corresponding to the classes w1 and w2 respectively. 

And you can see the, you can plot the samples corresponding to these 2 classes. One is the green

sample; you can see the green colored sample. And another one is the blue colored samples.
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After this, this, the class means I can determine by using this expression. So, corresponding to

the class w1, I  can determine the mean of the samples.  And similarly,  corresponding to the

second class also I can determine the class mean. So, that I can determine. And in the Matlab you

can write  like  this.  You can determine  the  mean of  X1,  and also the mean of  X2 you can

determine.

(Refer Slide Time: 30:31)

After this, the covariance matrix of the first class also, you can determine. That is nothing but S1.

So, S1 you can determine, that is nothing but the covariance matrix of the first class. And in a



Matlab, you have to right simply the covariance of X1. So, you can write like this. So, you can

determine S1.

(Refer Slide Time: 30:50)

And similarly,  you can  determine  the  covariance  matrix  of  the  second class.  So,  S2 is  the

covariance matrix of the second class, you can determine.  And in the Matlab S2 is equal to

covariance as X2 that you can determine.
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And from this S1 and S2, you can determine within-class scatter matrix S W, you can determine.

That is the within-class scatter matrix, you can determine from S1 and S2. So, you will be getting

this.

(Refer Slide Time: 31:17)

And after this, you can also determine the between-class scatter  matrix from these 2 means,

because already you have calculated  μ1 and  μ2.  So,  from you  μ1 and  μ2 you can determine

between-class scatter  matrix.  So, you can see. So,  I am computing the between-class scatter

matrix, and even in the Matlab also it is very simple. So, you can determine between-class scatter

matrix.
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After this, the problem is the eigenvalue problem, that you have to solve. So, the eigenvalue

problem is this. So, lambda is the eigenvalue. So, this eigenvalue problem, you can solve like

this. And I will be getting the, I will be getting 2 eigenvalues,  λ1 and  λ2. So,  λ1 is 0 and λ2 is

12.2007. So, you will be getting 2 eigenvalues. This is nothing but the solution of the generalized

eigenvalue problem. So, you can solve this problem.
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And after  this,  I  can  determine  the  vector  w.  So,  you  can  determine  w1  and  w2;  you  can

determine. So, we can compute the LDA projection. So, it is nothing but, in the Matlab you can



do like this. So, you have to find the inverse of S W and, I will be getting the projection vector; w

is  the  projection  vector.  So,  I  will  be  getting  w1  and  w2.  And  which  one  is  the  optimum

projection direction corresponding to LDA? That is the, w2 is the optimum projection direction

that I can determine; which gives maximum J (w). So, this w2 is the optimum projection vector,

that I can determine, because it gives maximum J (w).
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Or maybe directly, we can compute like this. The optimum projection direction order vector; I

can  determine  like this.  So,  SW
−1,  that  is  nothing but  the inverse of  the  within-class  scatter

matrix,  μ1−μ2.  So, from this  you can determine the optimum projection vector that you can

determine. So, this is one example. This LDA you can apply for C number of classes. So, in the

book you can get this information, how to apply the LDA for C number of classes. 

But, in my discussion I only considered 2 classes. So, how to apply the LDA for 2 classes. For

this, you have to determine S W and S B; one is the within-class scatter matrix, another one is the

between-class scatter matrix.
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And  here  you  can  see,  I  am  showing  one  projection  direction  corresponding  to  smallest

eigenvalue. So, smallest eigenvalue I am considering, and I am showing the projection direction.

And in this case, if I considered the PDF of the classes, they are not well separated. That means,

that there is no discrimination between the classes, corresponding to this projection direction. In

case of the PCA also, we considered the eigenvalues and the corresponding eigenvectors. 

So, in case of the PCA, we consider the highest eigenvalue and corresponding eigenvectors, that

we considered.  And if  I  consider,  the  smallest  eigenvalue  that  corresponds to  the redundant

information, or maybe the noise; that we can neglect in case of the PCA. Here in case of LDA,

what I am considering, the smallest eigenvalue, I am considering. And corresponding to this, I

can determine the projection direction. 

And here you can see, corresponding to the smallest eigenvalue, the separation between the 2

classes is not maximum. It is overlapping; overlapping of the PDF of the classes, that is the bad

separability. 
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But  if  I  consider,  the  highest  eigenvalue;  and  corresponding  to  this,  I  can  determine  the

projection direction. In this case, you can get the good separability between the classes. So, you

can see, I am showing the PDF of the classes, and you can find the good separability between the

classes corresponding to the highest eigenvalue, you can see.
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Now in case of the PCA, we have seen how to recognize a particular face. The face recognition

using PCA, that concept already I have explained. That means, any face can be expressed as a

linear combination of eigenfaces. So, you can see, I am considering the eigenfaces like this. So,



in  my  class,  I  have  explained  how  to  determine  the  eigenfaces.  And  the  any  face  can  be

represented by a linear combination of the eigenfaces.

Similarly,  in  case  of  the  LDA,  any  face  can  be  represented  by  a  linear  combination  of

Fisherfaces. In case of the PCA, we consider the eigenfaces. But in this LDA, we are considering

Fisherfaces.  So,  that  means,  the  any  face  can  be  represented  by  linear  combination  of

Fisherfaces. So, that concept I am going to explain now. 
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So, how to recognize a particular face? Suppose, we have C number of classes. This  μi, I can

determine; that is the mean vector of the class, I can determine. So, I have C number of classes.

So, also I am considering Mi number of samples for the classes, within a particular class. So,

from this, I can determine that, what is the total number of samples. The total number of sample

is M, is equal to summation over 0 to C Mi. So, Mi be the number of samples within class i; that I

am considering. 

And from this, I can determine total number of samples, I can determine. And I have already

explained, I can determine the within-class scatter matrix, and also I can determine the between-

class scatter matrix from the input samples. 
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After this, I am considering the criterion function; that function I am considering. So, what is the

condition? I have to maximize the between-class scatter, but I have to minimize the within-class

scatter, that is the condition. Because, I have to find the best projection direction, I have to find.

So for this, what I have to do? I have to maximize the between-class scatter, and also I have to

minimize the within-class scatter. 

So, such a transformation should retain class separability, while reducing the variation due to

source other than the identity. So, maybe the variation, maybe the illumination variation; I may

consider. But, the main important point is the class separability. So, we have to find the class

separability;  that  it  is  a  maximum  discrimination  between  the  classes,  I  have  to  find.  And

already,  I  have  explained  that  is  nothing  but  the  eigenvalue  problem.  So,  this  solution  is

something like this.

And, I will be getting the Fisherfaces, I will be getting. If I consider the eigenvectors of SW
−1 into

S B. So, I will be getting the eigenvectors, that is nothing but the Fisherfaces. That means, you

can see the projected data can be represented by a linear combination of the Fisherfaces. So here,

you can see, I am considering, the U is the transform matrix and how it is obtained. It is nothing

but the eigenvectors, I am considering. The eigenvectors of SW
−1 into S B. So, eigenvectors I am

considering. 



And based on this eigenvector, I can construct the transformation matrix. So, x is the input data

minus  mu;  that  is  the  mean  is  subtracted  from the  input  data,  that  means  the  input  data  is

normalized. And after this, I am considering the transformation. The transformation is the b is

equal to U T x minus mu. So, suppose in case of the KL transformation, what I have considered

Y is equal to A x minus mu x, I considered like this. 

Similarly in this case, I am considering the U is the transformation matrix Y is this, and x minus

mu x, like this; I am considering. So, this U is the transformation matrix. And this transformation

matrix, I can obtain from the eigenvectors of SW
−1; that is the inverse of the within-class scatter

matrix into S b. So, I can get this one, this one U. That means any face can be represented by a

linear combination of the Fisherfaces.
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So, the procedure for the face recognition is very similar to the face recognition by PCA. First, I

have to do the normalization of the input data, that means from the original face the mean face is

subtracted. After this, I have to determine the Fisherface, I have to determine. That means, I am

considering the weights. The weights are w1, w2, w3, like this; that I have already explained in

the PCA.

So, that means any unknown face can be represented by a linear combination of Fisherfaces. And

suppose, a new face is coming. So, a new face can be also represented by a linear combination of

Fisherfaces. After this, what I have to do for recognition? Just I have to compare the weights. So



just,  I  have  to  compare  the  weights.  I  have  to  compare  the  weights.  One  is  the  weight

corresponding to the training, and another one is the weights corresponding to the input test face.

So, I have to compare the weights. And based on this comparison, if it is less than a particular

threshold; so based on this condition I can recognize a particular face.

So, this concept is very much similar to the face recognition by PCA. But in this case, what I am

considering? I am considering the Fisherface,  I  am considering.  Corresponding to this, I  am

determining the transformation matrix. The transformation matrix is U, that is obtained from the

eigenvectors. The eigenvectors of SW
−1 into S B. 

In  case of the PCA, we consider  the transformation  matrix  A.  The transformation  matrix  is

obtained  from  the  eigenvectors  of  the  covariance  matrix  of  the  input  data.  So,  C  X is  the

covariance  matrix  of  the  input  data.  And I  am determining  the  eigenvectors.  And from the

eigenvectors, I can determine the transformation matrix.

In case of the LDA, what I am considering? I am again considering the eigenvectors of this, SW
−1

into S B. And from this, I can determine the transformation matrix, the transformation matrix is

U. So, these 2 concepts are very similar. The face recognition by PCA and the face recognition

by LDA. Now next, I will discuss the concept of the Support Vector Machine.
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Now, I will discuss the concept of Support Vector Machine. An introduction of Support Vector

Machine.  So briefly,  I  will  explain  the concept  of the Support Vector Machine.  So, what is

Support Vector Machine? 

(Refer Slide Time: 42:31)

So, Support Vector Machine is a classifier derived from statistical learning theory. And already, I

have explained, it is the discriminative model. Because in this case, I do not need the information

of  class  conditional  density.  So,  I  have  to  determine  the  best  decision  boundary  between 2

classes. So, if I consider more number of classes, I have to find the best decision boundaries

between the classes. So, that is why, it is called a discriminative classifier; because, I do not need

the information of that class conditional density.

And, Support Vector Machine, we can consider different applications; like handwriting character

recognition, that is one applications. And there are many other applications, like object detection,

and recognition, content-based image retrieval, text recognition, biometrics, speech recognition.

So, there are many applications of Support Vector Machine, which can be used for classification

and recognition. 

So for this, we may consider hand-crafted features for classification. So, like this already I have

explained some hand-crafted features; like color feature, texture features, or maybe the HOG,

SIFT, I can consider. And based on these hand-crafted features, I can do the classification by

Support Vector Machine.
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So, you know this condition,  that is the discriminate function, you know. So, already I have

explained  about  the  discriminate  function.  Now,  this  feature  vector  x  can  be  assigned  to  a

particular class, the particular class is w i. Based on this condition, that condition is, if g i  (x) is

greater than g j (x), and j is not equal to i. So, corresponding to this, I can assign a feature vector

x to the class, the class is w i. This is based on the discriminate function. And if I consider 2

classes, that is the 2-category case. 

So, I can determine g1x and also I can determine g2x. So, g1x minus g2x, that is nothing but gx.

Suppose  g  x  is  equal  to  0,  that  corresponds  to  the  decision  boundary,  that  already  I  have

explained. So, g x is equal to 0 means, it is the decision boundary. In the decision boundary, g1x

is equal to g2x. So, x is the feature vector. So, based on g x, I can take a classification decision.

So, I can consider or I can decide the class w1, if g x is greater than 0. Otherwise, I have to

consider the class, the class is w2. 

And, for the Minimum-Error-Rate Classifier, and that already I have explained. So, g x can be

presented like this. So, g x is nothing but g1x minus g2x. So, what is g1x? That is nothing but p

the probability of w1 given x, that is posterior probability. And similarly, for g2x the probability,

the posterior probabilities,  probability of w2 given x. So, for each and every class I have to

determine g x, and I have to find a maximum discriminant function, and based on this I can take

a classification decision. 
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And here, I have shown some decision boundaries; you can see. First time, I am considering the

nearest neighbor classification. So, you may get a decision boundary like this. So, this is the

decision boundary between 2 classes. And in case of the decision tree, this is nothing but the

binary decision, either yes or no. So, that type of decision I can consider by considering the

decision tree, and corresponding to this I may get the decision boundary like this. That is the

binary classification type, classifier. 

And if I consider the g x is a linear function. So suppose, g x is equal to w T that is the transpose

x plus b. So, w is the weight vector and x is the input feature vector plus b is the bias. So,

corresponding to this, if I consider a linear function; then in this case, I will be getting a linear

decision boundary, like this. 

And also, I may get the nonlinear decision boundary between the classes. So, that last example is

the nonlinear function, that is the nonlinear decision boundary, I can get. So, this is about that

decision  boundaries.  So,  I  am  now  considering  the  discriminate  function.  The  discriminate

function is g x, that is equal to w T x plus b. 
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So, now g x is a linear function, that is the linear discriminant function, I am considering. So, g x

is  equal  to w  T x plus b.  And I  am considering a  hyperplane,  that  is  the decision boundary

between 2 classes. You can see, here I am considering a 2-dimensional feature space, you can

see x1 and x2 that is the 2-dimensional feature space, I am considering. And, you can see, this is

the decision boundary. So, I am considering the decision boundary like this; decision boundary

between the classes.

So, it is w T x plus b is equal to 0. So, that is the equation of the decision boundary. And suppose,

w T x plus b is greater than 0, that corresponds to the class; suppose the class is w1, this class.

And if w T x plus b less than 0, that we have considered the class, the class is w2. So, these 2

class, I can consider; one is the w1, another one is the w2. This w is different, this is the weight

vector. So, w1 and w2, I am considering as classes, 2 classes I am considering. 

And unit normal; that is the unit-length normal vector of the hyperplane, also I can determine.

So. if you see this vector, this vector is the unit vector, that is the unit-length normal vector of the

hyperplane, I can determine, that is nothing but w divided by the norm of w. So, that is unit

vector, also you can determine.
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Now, how will you classify at these sample points using a linear discriminate function, in order

to minimize the error rate? So, that is the concept. So, I am considering 2 classes. So, the first

class is denoted by plus 1, and second class is denoted by minus 1. And, it is a 2-dimensional

feature space, I am considering. So, infinite number of answers. Because I have to minimize the

error rate. And you can see, I am showing the decision boundary between these 2 classes. 

Again I  may consider  another  decision boundary between these 2 classes;  or maybe,  I  may

consider another decision boundary between these 2 classes;  or I may consider this  decision

boundary between these classes. So, I may get the number of decision boundaries. But which one

is the best decision boundary; that I have to determine in the Support Vector Machine. So, which

one  is  the  best  decision  boundary  between  these  2  classes;  that  I  have  to  determine  by

considering some optimization criterion, that I am going to explain in my next slide.
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So, the linear discriminant function, or the classifier with the maximum margin is the best. So,

this is the definition of the best decision boundary. So, what is the definition of the margin, that

you can see here? So, margin is defined as the width, that the boundary could be increase by

before hitting a data point. So, you can see, I am considering the boundary like this, and I am

increasing the width of the boundary. And so that,  it  will just touch the sample points. That

means the, you can see the vector these are the sample points. So, before hitting the data points, I

can stop.

So based on this, I can define the margin. The margin of this, the hyperplane. So, this is the

definition of the margin. So, beyond this, I cannot increase the width, because it will touch the

data points. So, just before the hitting the data points, I have to stop. And corresponding to this,

if I consider, this is the width of the decision boundary; suppose that corresponds to the margin.

So, which is the best decision boundary, I want to determine? 

Because in my previous slide, I have shown, I can draw number of decision boundaries between

these 2 classes. But, which one is the best,  that I can determine based on the margin.  If the

margin is more, then that will be good. That means, for a good decision boundary, the margin

should be more, or the margin should be high. So, that based on this margin condition, I can find

the best decision boundary between the classes.



The best decision boundary means, it is robust to outliers, and thus strong generalization ability.

So here, you can see I am considering the safe zone. Because beyond this, I cannot increase the

margin, because it will touch the data points. So, that corresponds to the safe zone. So, this is the

safe zone, I am getting based on the margin.
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So,  how to  determine  the  best  decision  boundary,  that  means  how to  maximize  the  margin

between the classes. So, suppose the large margin linear classifier, that I want to design; that

means, the margin should be the maximum. And already, I have mentioned. So, I have 2 classes;

one is the plus, another one is, plus 1; another one is minus 1. So, given the data points, I have

the data points; xi, yi, like this; i is equal to 1 to n. And for the class, that is y i is equal to plus 1.

So, corresponding to this, w T xi plus b should be greater than 0. And similarly for the second

class, yi is equal to minus 1; w T xi plus b should be less 0. So, these are the conditions. 

And after this, I can do some scale transformation, for both w and the b, and corresponding to

this, these 2 equations will be equivalent to this. So, yi is equal to plus 1, that corresponds to w T

xi plus b greater than equal to 1. And for yi is equal to minus 1 w T xi plus b should be less than

equal to minus 1. So, I will be getting these 2 new conditions. So, these 2 new conditions, I am

obtaining after the scale transformation on both w and b. 
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So you can see in this figure, I am considering the data points. So, if you see in the next figure

here, you can see, I am considering x plus, x plus and x minus. So, this is the x plus, this is the x

plus, and this is the x minus. That means, the margin is about to touch the data points. So, in one

side, it is x plus; in another side, it is x minus. So, this x plus and the x minus, they are called the

support vectors. Because this margin is about to touch the data points. Beyond this, I cannot

increase the width of the margin.

And what is the objective? My objective is to get the large margin linear classifier. So, I have to

get the maximum width of the margin. So, that is my objective; that is my goal. And based on

this, I am defining the support vectors. The support vectors are x plus and the x minus. So, x

plus, corresponding to the class w1, suppose. And another one is x minus, corresponding to the

class w2. So, I have these support vectors. So, with the help of this support vectors, I can define

the margin. So here, you can see, these are the support vectors, x plus and the x minus. These are

the support vectors.

So, we know this condition, the w T x plus b is equal to 1, corresponding to the first class. So, I

am now considering the support vector. So in this equation, w  T x plus; x plus is the support

vector, I am considering; plus b is equal to 1, that I am considering. And again, I am considering

w T x minus. So, that x minus support vector, I am considering; plus b is equal to minus 1. So,

these 2 equations, I am considering for 2 classes. The classes are w1 and w2.



And now, I want to determine the width of the margin. So, the margin width can be determined

like this M is equal to x plus minus x minus. So, this is one support vector, and x minus is

another support vector. And I am considering the normal to the hyperplane. So, you get the, this

unit normal to the hyperplane, I am considering. So, this unit normal already I have determined.

So, this is the unit normal, that is the n. And this is nothing but it is equal to 2 divided by w

norm. So, I am just determining the norm of w. w is the weight vector.
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Now,  for  the  large  margin  linear  classifier,  what  I  am  considering?  I  am  considering  the

formulation, that I have to maximize the margin. So, the width of the margin is 2 divided by w



norm. So, I have to maximize this. And, that is the goal of a large margin linear classifier in the

Support Vector Machine. And based on this, what are the conditions? The condition is y  i is

equal to plus 1. For this condition, the condition is w T x i plus b greater than equal to 1. And

what is another class? Another class is y  i is equal to minus 1. That is another class; and this

condition is w T x i plus b less than equal to minus 1. 

And again  the formulation,  I  have to  maximize  2 divided by w norm;  that  is  equivalent  to

minimizing  1  divided  2  w  norm whole  square.  So,  this  is  actually  equivalent  to  this.  The

maximizing 2 divided by w norm is equivalent to minimizing 1 by 2 w norm whole square. Such

that these 2 conditions, I have to consider. So, formulation is this. So, minimize 1 by 2 w norm

whole square, that I have to minimize and condition is this.
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So, here I am considering this optimization problem. So, I have to minimize these, subject to the

condition;  the  condition  is  this.  So,  this  a  optimization  problem.  So,  how  to  solve  this

optimization  problem? So,  for  solving  the  optimization  problem,  I  can  consider  Lagrangian

function. So, in mathematical optimization, Lagrange's multiplier method is used, you know that

condition. So, you have to see the mathematics book. In mathematical optimization, Lagrange's

multiplier method is used. And it is used to find local maxima and the minima of a function,

subject to some constraints. That means, subject to the condition that one or more equation have

to be satisfied exactly by the chosen value of the variables.



So, I am repeating this. It is used to find the local maxima and the minima of a function, subject

to some constraints. That means, subject to the conditions, that one or more equations have to be

satisfied exactly by the chosen value of the variables. In order to find the maxima, or the minima

of the function. Suppose the function is f x. So, I want to find the maxima or the minima of the

function f x, subject to the equating constraint. So, constraint is suppose g x is equal to 0. So, this

constraint I am considering.

Then this Lagrangian function, I can write like this. This is a Lagrangian function, x, λ. So,

lambda is the Lagrange's multiplier, is equal to f x−λ g x. So, I can write like this. So, for more

details you have to see the mathematics books. So, how to do the optimization by considering the

Lagrange's function. So, this is the Lagrange's function, and I have to minimize this one. So, α i

is the Lagrange's multiplier. So, this is the Lagrange's multiplier.
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So again, I am writing this. So, I have to minimize this function, the Lagrangian function and

subject to the condition, the condition is,  α i  should be greater than equal to 0. So,  α i  is the

Lagrange’s multiplier. And for this, I am just taking the derivative of L p with respect to the

weight vector, the weight vector is w. And similarly, the del L p divided by del b should be equal

to 0. So, based on these differentiations, I want to find the maximum or the minimum conditions.

So, based on this the partial derivative, I want to find the value of w and this.
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And this is nothing but the Lagrangian Dual Problem. That means you can see, because my

objective  is  to  minimize  this  function  the  Lagrangian  function,  subject  to  condition.  This

condition is important, that is equivalent to maximizing this. That is equivalent to maximizing

this subject to this, these 2 conditions. And this is called the Lagrangian Dual Problem. So, you

see that mathematics. Again, I am repeating this, you see the mathematics,  how to solve the

optimization problem using the Lagrange’s function.
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And  now  I  am  considering,  the  KKT  condition.  What  is  the  KKT  condition?  So,  I  am

considering. So, from the KKT condition, the KKT condition is nothing but, the KKT means

Karush-Kuhn-Tucker condition, that also you have to see. This is called the KKT. It is used in

mathematical optimization. It is nothing but the first derivative test. It is also called the first order

necessary condition for a solution in a nonlinear programming to be optimal, provided that some

regularity conditions are satisfied. 

So, this is the briefly, what is the KKT. So, it is used in mathematical optimization and it is

nothing but the first derivative test. And it is also called the first order necessary conditions for a

solution in a nonlinear programming to be optimal,  provided that some regularity  conditions

should be satisfied. So, by considering this KKT, I am considering this one, that is α i into yi and

after this, I am considering w T xi plus b minus 1 is equal to 0. 

That I am considering; and thus, only for the support vector that is α iis not equal to 0, that is only

support vector have this condition. That is α iis not equal to 0. So, the solution will be like this.

So, I will be getting the solution of this. So, I will be getting the value of w and also, I have to

consider this one to get b from this. So, I can get b from this equation. And in this case xi is the

support vector. So, I am considering xi is the support vector.

And in the figure also, I have shown the support vectors, and you can see this is the margin I am

considering. So, x plus and the x minus, these are the support vectors. And based on this, you can

see,  based  on  this  Lagrangian’s  multiplier  function,  Lagrange’s  function,  I  am  getting  the

solution. And you can apply the KKT, this condition, and I will be getting the value of w, and

also, I can get the value of b, the b also I can determine from this.
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And finally, the linear discriminant function I will be getting like this, w T into x plus b is nothing

but, I will be getting this one. And only I am considering the support vectors, i is mainly the

support vector, I am considering. So, alpha i is nothing but, it is the Lagrange’s multiplier. So, i

is nothing but the support vector. So, you can see in this expression, in the g x expression, that is

the discriminate function, the linear discriminate function. So, it is nothing but the dot product

between the test point. So, test point is x, and the support vectors are xi. So, first I have to

determine the dot product between the test point x and the support vectors xi, and based on this I

can determine g x.

So, suppose the new test vector is coming, suppose the new test vector is coming. So, for this one

I have to do, I have to find out the dot product between the test point x and the support vector xi.

And from this, I can determine the discriminate function, the discriminate function is g x. Also,

keep in mind that solving the optimization problem involve computing the dot product between x

i T and x j between all pairs of the training points. So, for all pairs of the training points I have to

find the dot products, that is the condition. So, based on this, this discriminate function I can do

the classification by considering that support vectors.
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And suppose if I consider, if the data is not linear, linearly separable. So, suppose if I consider

the noisy data points or the outliers. And again here, I am showing 2 classes, one is the plus

green, and another one is the white that is the minus, 2 classes I am considering.  And I am

considering  the  noisy  data  points  and  outliers.  So,  for  this  what  is  the  formulation?  The

formulation is I have to consider slack variables. So, slack variable I am considering. So, it can

be added to allow misclassification of difficult or the noisy data points. These slack variables are

introduced to allow certain constraints to be violated.

So, slack variables are defined to transform an inequality expression into an equality expression,

that is the mathematics, you can see. That is the slack variables, we can define to transform an

inequality expression into an equality expression. So, that is the objective of the slack variables.

And you can see, I am showing this equations w T x plus b is equal to 1 corresponding to this,

this is the line; w T x plus b is equal to 0, that is the decision boundary; w T x plus b is equal to

minus 1, that is the line. And you can see the margin here. I am showing the margin here.
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And corresponding to this slack variable problem, the formulation will be something like this, 1

by 2 w norm whole square and after this, plus C. So, C parameter I am considering and this is the

slack variable. So, ξ i is the slack variable. So, the conditions are like this. So, I have to consider

these 2 conditions, and this parameter C can be viewed as a way to control overfitting. That

means, the parameter C tells the optimization, how much you want to avoid misclassification by,

is training examples. So, that means I have to avoid the misclassification and this parameter C

controls the overfitting. So, that information I am giving with the help of the parameter, that

parameter is C. So, this is the concept of the large margin linear classifier.

So, briefly I have explained the large margin linear classifier, and also their nonlinear Support

Vector Machines. Suppose, if I consider many noisy points or the outliers. So, for this I can

consider nonlinear Support Vector Machine and, in this case, I can consider the projection of the

low dimensional data into high dimensional space. That means, I can do the projection of the low

dimensional space into high dimensional space, and I can consider the nonlinear Support Vector

Machine. I am not explaining the concept of the nonlinear Support Vector Machine. Briefly, I

have  explained  the  concept  of  the  Support  Vector  Machine,  that  is  the  large  margin  linear

classifier.

In this class, I discussed the basic concept of the LDA, and the Support Vector Machine. In case

of  the  LDA,  I  have  to  find  the  best  direction  of  the  projection.  So,  which  one  is  the  best



projection direction I have to find? And for this I have considered 1 criterion function, and for

this I considered between-class scatter matrix and the within-class scatter matrix. So, based on

this, I can find the best prediction direction; I can find.

In  case  of  the  Support  Vector  Machine,  I  determine  the  best  decision  boundary  between  2

classes. So, that means I have to maximize the margin and between the 2 classes. And in this

case based on this, the margin, the width of the margin, I can define the support vectors. And

based on these support vectors, I can determine the discriminate function g x; and after this, I can

do the classification. 

The Support Vector Machine is a discriminative classifier, because I do not need the information

of class conditional density. So, these concepts, 2 concepts; one is the LDA, another one is the

Support Vector Machine, briefly I have explained in this class. So, let me stop here today. Thank

you.


