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Welcome  to  NPTEL  MOOCs  course  on  Computer  Vision  and  Image  Processing  -

Fundamentals and Applications. In my last class I discussed the concept of Bayesian decision

theory. In Bayesian decision theory, I have to estimate the probability of wj given x that I

have to determine. So for this I need two information one is the probability of x given wj that

is called likelihood and also the probability of wj that is called a prior. 

So, this information I need the probability of x given wj that is the class conditional density

or the likelihood and suppose, this information is available that means the density of the

likelihood  function  or  the  class  conditional  density  is  available  then  this  is  called  the

parametric  method.  That  means  the  density  form  the  likelihood  function  or  the  class

conditional density is available, but the parameters are not available. 

So, suppose if I consider a Gaussian density, in Gaussian density there are two parameters

one is the mean and other one is the variance and if I consider high dimensional case, then it

is  the mean vector  and the covariance  matrix.  So,  in  case of the parametric  method this

density form is available I know the density of probability of x given wj. So that information

is available but I do not know about the parameters. 

So I have to estimate the parameters. So there are two methods, very popular methods; one is

the maximum likelihood estimation,  another  one is  the Bayesian estimation.  So by using

these  two  techniques  I  can  determine  the  parameters,  the  parameters  are  mean  and  the

covariance. Another case is suppose, the density form is not available, the density form class

conditional  density  is  not  available  that  is  the  probability  of  x  given wj.  So  that  is  not

available we have to estimate the density. 

So there are two popular techniques one is called the Parzen-Window technique and another

one  is  called  a  k  nearest  neighbor  technique.  So  by  using  these  two  techniques  I  can

determine the density, the density of probability of x given wj that is the likelihood. So in this

class  I  will  discuss  the  parametric  methods  first  I  will  discuss  the  maximum  likelihood

estimation and after this I will discuss the Bayesian estimation. After this I will discuss the



non-parametric methods one is the Parzen-Window technique and another one is the k nearest

neighbor technique. So let us discuss about this parametric and non-parametric methods. 
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So the first one is the parameter estimation. So I told you that what is the parametric method

in case of the Bayesian decision theory. So I have to determine this the probability of wj

given x that I have to determine. And that is nothing but the probability of x given wj that is

the likelihood and the probability of wj and j is equal to 1 to c probability of x wj probability

of wj. So in this case what information is available? 

So in this  case if  I  want  to determine  the probability  of wj given x that is  the posterior

probability.  So suppose the density form of the class conditional  density  is  available.  So

suppose the density form available. So density form is suppose, it is the parametric form in

case of the normal density I have two parameters one is the mean vector another one is the

covariance matrix. 

So this parametric form is available. If you see this formula, so for calculating probability of

wj given x, so what information I need? I need the information of probability of x given wj

that  input  information  I  need,  that  is  nothing  but  the  class  conditional  density.  And the

parameters are suppose the mean vector and the covariance matrix. So this information also I

need, the mean vector and the covariance matrix also I need. 

So  that  means  I  have  two  parameters,  the  parameters  are  θi 1 and  θi 2 suppose.  So  two

parameters I need and also I need the information of how many classes. So classes is 1 to c

number of classes. So here you can see this is j, j is equal to 1 to c. So c number of classes, so



this  information  I  need  for  calculating  probability  of  wj  given  x.  So  one  is  the  class

conditional density that is the probability of x given wj that information I need. 

And I have two parameters the one is the mean vector, another one is the covariance matrix

and also I need one another information that is number of classes j is equal to 1 to c. So that

information  I  need to  calculate  the  probability  of  wj given x.  So this  information  is  not

available directly. So for this actually we have the training samples, training samples for all

the classes that is nothing but the supervised training. 

So for  each and every classes we have the training samples.  And after  these from these

training samples, we have to do the estimation, estimation is nothing but we have to estimate

the parameters. So parameters are the mean and the covariance. So we have to estimate the

parameters. And in this case in case of the parametric approach the PDF form is known that

means, I know the PDF of the class conditional density in case of the parametric form. 

So I can write this in parametric approach that is the PDF form known. But the parameters I

have to determine the PDF form is known but the parameters I have to determine I have to

estimate. That is a parametric approach. What is the non-parametric approach? In case of a

non-parametric approach, the PDF form is not available. That means I have to estimate the

density that is nothing but the density estimation. 

So in case of the non-parametric method approach the density form is not available. So we

have to estimate the density. So for this we need the training samples, the training samples for

all the classes. So if I consider the training sample suppose xn that belongs to a particular

class,  suppose  class  is  wj,  that  is  available.  That  is  the  training  samples  are  available

corresponding to a particular class and that is nothing but the supervised learning. 

So for estimating the probability of wj given x that is the posterior probability, I need the

information  of  the  prior,  the  priori  probability,  probability  of  wi  and  also  I  need  the

information of the probability of x given wi that is the class conditional density. So I need

this information and also I need the information of number of classes. So we have c number

of classes. So based on this I have explained two approaches one is the parametric approach

another one is the non-parametric approach. 
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So in this case what I am considering suppose the density form is known that is the class

conditional density. So density form is known but I have to estimate the parameters. So in

this case there are two parameters one is the mean, another one is the covariance. So one is a

mean vector, another one is the covariance. So suppose this is θ1 and this is θ2. 

So for this I can apply two popular techniques one is the maximum likelihood estimation

another one is the Bayesian estimation. In case of a non-parametric method the density form

is not available but I have to estimate the density. 

(Refer Slide Time: 9:46) 

So you can see so for estimation techniques that is the parameter estimation techniques, I may

consider this popular method that is the maximum likelihood estimation.  And also I may



consider the Bayesian estimation. So in both the cases results are nearly identical but the

approaches are different. In case of the Bayesian estimation, the computational complexity is

more as compared to maximum likelihood estimation. 

In case of the Bayesian estimation I have to determine the multi-dimensional integration. So I

will explain this, but in in case of the maximum likelihood estimation I have to determine the

differentiation.  So that  is  why if  I  consider  the  computational  complexity  then  Bayesian

estimation if  I  consider that it  is more computational  complex as compared to maximum

likelihood estimation. 

(Refer Slide Time: 10:43) 

So  in  case  of  the  maximum  likelihood  estimation,  parameters  in  maximum  likelihood

estimation are fixed but  not known. And in this  case what  I  have to consider,  I  have to

maximize the probability of obtaining a given set suppose H is the training sample or maybe I

can consider probability of D, D is the training set given theta. So I have to maximize this

probability of D given theta that theta is fixed. 

So parameter estimation that maximize a likelihood function, that I can consider, maximize

the probability of obtaining the given training set. So I have to maximize this. So maximize

the probability of D given theta in case of the maximum likelihood estimation. That means

maximizing the probability of obtaining the given training set. And in this case the theta is

fixed a theta is the parameter vector. Now let us see the mathematics behind the maximum

likelihood estimation. So what is the maximum likelihood estimation? 
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So in case of the Bayesian decision theory, we have to estimate this the probability of wj

given x we have to estimate. And for this you can see I need the information of this x given

wj that is the class conditional density. And also the priori and if you see the this is the

evidence j is equal to 1 to c probability of x given wj probability of wj. 

So in this case the probability of x given wj so this parametric form, the parametric form that

is  available.  That  is  the suppose if  I  considered a  normal  distribution that  information is

available that is the parametric form available. But the parameters are not available, but the

parameters we have to estimate. So in case of a normal distribution I have two parameters so

one is the mean, another one is the covariance. 

So if you consider this one the θ j that is the parameter vector. So I have two parameters one

is the mean vector and another one is the covariance matrix that I have to determine. So if I

want to show the maximum likelihood estimation. So suppose we have the training samples

the training sets D1, D2, … DC that means we have the training sets and we have the training

algorithm is available. 

And we have to estimate the parameters, we have to estimate the parameter vector and what

information  is  available?  I  know the  density  form that  is  the  class  conditional  densities

available. This dependence on the training set I can write like this, the dependence on the

training set I can write like this the probability of x given wj  θ j that is the dependence on

theta  j.  That  is,  I  am  considering  the  class  conditional  density  and  I  am  showing  the

dependence on θ j. 



So  the  problem  is  to  determine  unknown  parameter  vectors.  So  that  means  I  have  to

determine θ1 ,θ2 from the information of that training dataset. Because we have the training

data set for all the classes and from this training dataset, I have to determine the parameters.

So that is the parameter vector I have to estimate.  And in this case I am considering the

independent data set. 

So what do you mean by independent data set? So suppose I am considering the data set D1

that is for the class w1. Similarly, if I consider another data set that is D2 and that is for the

class w2. Like this if I consider another class suppose, so if I consider the data set suppose the

training data set is Di and suppose I have the samples, the samples are x1, x2 like this. These

are samples and corresponding to these the class is wi. 

And suppose the class is, another class is wj. So this training data set Di is for the class wi.

This is not for class wj, this is not for a class wj. The training data set Di is for class wi, it is

not for the class wj. That is the supervised training,  that is the concept of the supervised

training. So here x1 x2 these are the samples, these are samples of the data set, the data set is

Di and the samples are drawn independently. 

So I have the training data set that is D1 D2 Dc then what is the probability of D given theta

that  is nothing but this  product.  So suppose I  have this  training samples  x1 x2 up to xn

suppose xn, so xn and theta. So I have to maximize the probability of the given theta. So that

I have to maximize. So that is the concept of the maximum likelihood estimation. 
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So that means, again I am writing so I have to maximize the probability of D given theta, the

probability of obtaining a given training set for a parameter vector, the parameter vector is

theta.  Now I am defining  one likelihood function,  the likelihood function  that  is  the log

likelihood function I am considering. So l theta that is the log likelihood function that I am

considering, that is the log likelihood function. And after this what I am considering?

I am considering the differentiation of this likelihood function and suppose I am getting the

approximate value. So I am just doing the differentiation because I have to maximize this

one. So it is equal to 0 because I have to find a maximum of this. So what is this operator? So

if I consider this operator, this is the partial derivative I am considering with respect to θ1 like

this which respect to θ2. 

So suppose I have these parameters θ1, θ2, …θ p like this. So I have to find a global maxima.

Maximum I have to find in the parameter space, parametric space. So global maxima I have

to find in the parametric  space.  So from this equation if I see this equation so from this

equation I can determine the parameters,  the parameters  are like this,  this  is a parameter

vector. So I can determine θ1, I can determine θ2. 

So in case of a normal distribution this is the mean vector and also this is the covariance

matrix I can determine. So what is theta? The theta is nothing but this is the parameter vector

θ1, θ2, …θ ptranspose. So by considering this equation I can determine the parameters. So for

example I can determine the mean of the samples. So it is the mean of the samples you can

determine by this equation. 

So it is the mean is something like this, this is nothing but the arithmetic mean of the samples.

The  arithmetic  mean  of  the  samples.  And also  I  can  consider  the  maximum a  posterior

probability  that  is  the estimation maximum a posterior  estimation that  is  the MAP I can

consider. So MAP is nothing but the likelihood function I am considering that is the theta that

is the likelihood function. 

And  the  priori  information  also  I  am  considering  p  theta.  So  I  have  to  maximize  the

probability of theta x, probability of x theta p theta px. So for flat prior, so if I consider the

flat prior the maximum likelihood estimation will be same as that of the MAP maximum a

posterior  probability  estimation.  So  if  I  consider  a  priori  is  flat,  so  this  is  the  priori

information.  So suppose for the flat prior, the maximum likelihood estimation is equal to

MAP, the MAP estimation. 



So this is the basic concept of maximum likelihood estimation. I am not explaining how to

determine  the  parameters  but  based  on  this  equation,  so  if  you  see  this  equation  I  can

determine the parameters all the parameters. So this is the fundamental concept of maximum

likelihood estimation. 

(Refer Slide Time: 22:27) 

The next one is the Bayesian estimation. In case of the Bayesian estimation we can consider

the parameters as random variable having some known distribution. In case of the Bayesian

learning I am repeating this, what I am considering the parameters are random variable with

some known a priori distribution that is available that the information is available.  These

training samples allows the conversion of the priori information into posterior density. 

So the training samples allows conversion of priori information into a posterior information.

So in  case  of  the  Bayesian  estimation,  in  case  of  the  Bayesian  learning  what  I  have  to

consider I have to maximize the probability of theta given D. So D is the training set and

theta is the parameter vector in this case the theta is random variable. So that means we have

to  determine  the  density  that  approximate  an  impulse.  So  briefly  I  will  explain  the

mathematical formulation of the Bayesian learning. So what is Bayesian learning you can

see. 
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In case of the Bayesian learning, again, I am showing the Bayesian decision theory that is the

Bayes law I am writing, the probability of wi given x ,D; D is the training data set. So that

means I am considering the dependence on the training data set that is the dependence on D is

equal to probability of x /wi, D that is the class conditional density. And I am writing D

because this is the dependence on the training data set i is equal to 1 to c probability of x

given wi, D probability of wi given D.

But in this case the priori information is known, the priori information is known. So I can

write like this now the probability of wi given x D probability of x given wi D the probability

of wi and summation i equal to 1 to c probability of x wj D probability of w probability of wi

and probability of wi. So I can write like this. So in case of the Bayesian estimation I have to

determine, what I have to determine? I have to determine the probability of x given D that I

have to determine. 

So what information is available the information is the probability of x that is not available

this is unknown, that is not that is unknown and a parametric form is known, the parametric

form is known. So that means the probability of x given theta that is known. And also the

probability  of  theta  and  that  is  known.  So  this  the  training  data  set  converts  the  priori

information into the posterior information. 



The P theta is available that is known but the training data set converts the priori information

into the posterior information. So I have to determine the probability of x given D I have to

determine that is nothing but probability of x given theta and probability of theta /D. So this

actually I am obtaining like this the probability of x given D is nothing but probability of x

theta/ D ;D/ theta so that is available. 

So this probability of x theta D is nothing but probability of x theta D probability of theta D I

can write like this. So that means from this actually I am getting this one, from this I am

getting this one probability of x given D. Now because this is the important equation. So

probability of x given D is nothing but probability of x theta probability of theta D D theta

that is available. So I have to maximize the probability of theta D. 

So maximize probability of theta D I have to maximize and in this case the probability of x

given D will be approximately equal to probability of x this is the approximate value of theta

that is the parameter vector approximate value of theta. So that means I am taking average of

probability p x theta. Because in this case I have to maximize this. So that means I have to

maximize this, so it will be a Dirac delta function corresponding to the estimated value of

theta. 

So this is the approximate value of theta. So I have to maximize this probability of theta

given D I have to maximize.  So that  means the probability  of x given D is  nothing but

probability of x given theta. That means I am taking the average of p x given theta. So this

integration, if you see this integration that means I am taking the average and this is a multi-

dimensional integration. So it is very difficult to determine because it is a computationally

complex to determine the multi-dimensional integration. 

So  something  like  the  Monte  Carlo  simulation  technique  I  can  use  to  determine  this

integration. And here you can see with the help of Bayesian estimation I can determine the

probability  of  x  given  D.  So  that  I  can  determine  and  after  this  I  can  determine  the

parameters,  the  parameters  are  theta,  the parameter  vector  are  theta.  So this  is  the basic

concept of the Bayesian estimation. So both the methods the maximum likelihood estimation

and the Bayesian estimation they will give almost similar results. 

So briefly I discussed the concept of the maximum likelihood estimation and the Bayesian

estimation. So for more detail you can see and the book Pattern Classification by Duda and

Hart, that book also you can see for this maximum likelihood estimation and the Bayesian

estimation. 
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Now I will discuss the concept of the non-parametric methods. In case of non-parametric

methods that already I have explained that is the density form is not available but we have to

estimate the density. And there are two techniques one is the Parzen-Window technique and

another one is k nearest neighbor technique, these two techniques I can consider. 
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So in case of generative models, we assume that the data to come from a probability density

function.  That  means  we  have  this  information  the  probability  of  x  given  wj  for  the

generative models. But in this case sometimes this density is not available that information is

not available. So we have to estimate the density. So how to estimate the density? So I will



explain  these  two  techniques  one  is  the  Parzen-Window  technique  another  one  is  the  k

nearest neighbor technique.

(Refer Slide Time: 33:03) 

So in case of the non-parametric procedure what we can consider, we have to estimate the

probability of x given wj that means we have to estimate this. But in case of the k nearest

neighbor  technique  we  can  directly  estimate  this  density.  Because  what  is  the  ultimate

objective? The ultimate objective is we have to determine the probability of wj given x that is

the posterior probability I have to determine. 

(Refer Slide Time: 33:31)



So the basic idea in density estimation is there a vector x will  fall  in a region R with a

probability, that probability I am determining. P is a smooth or average version of the density

function. So density function is px. 
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Suppose  n  samples  are  drawn  independently  and  identically  distributed  that  is  the  i.i.d

according to px that probability px the probability that k of this n the k number of samples out

of  n  number  of  samples  fall  in  the  region  R  is  given  by  this  distribution.  That  is  the

probability of pk I can determine that is nothing but a binomial distribution. 

So what I am considering the probability that the k number of samples out of n fall in the

region R. And from this I can determine the expected value of k. So I can determine expected

value of k E x is equal to n into P. And if I consider the maximum likelihood estimation so by

the maximum likelihood estimation I can determine or I can maximize the probability  of

probability pk for the given theta that I can maximize. 

And corresponding to this I will be getting the probability the probability is nothing but p is

equal to k divided by n. So n is the total number of samples I am considering. So therefore

with large number of samples the ratio k divided by n is a good estimate for the probability P

and hence for the density function the density function is px. So that means this ratio k by n

gives the estimate of the probability the probability is P. So here n is the total number of

samples and k is the number of samples within this particular region that I am considering.

And that this ratio k divided by n it gives the probability the probability is P. 
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And if  I  consider  the px is  continuous and the region is  so small  that  px does not  vary

significantly within it. So I am considering this case that is the px is continuous and that the

region R is very small, very, very small, then in this case the px does not vary significantly

within it. So for this I can write like this. So integration a px dash dx dash is approximately

equal to px into V. 

So I will be getting this and from this expression, from the previous expression because if

you see the previous expression is the probability is nothing but k divided by n. And now I

am getting the this probability that px is nothing but k divided by n divided by V. So by using

this expression I can determine that density, the probability x that is the density is equal to k

divided by n divided by V. 



So V is the volume and close by the region R. So R is the region I am considering and V is

the  volume  enclosed  by  the  region  the  region  is  R.  So  by  using  this  expression  I  can

determine the density the density px I can determine. 
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Now in this case however V cannot become arbitrarily small because we reach a point where

no samples are contained in V. And in this case we will not get the convergence the V cannot

be very, very small. Suppose if I consider the volume is very, very small, then in this case

what will happen it may not enclose any samples. Then in this case you cannot determine that

density. 

So what a process I can consider V cannot be allowed to became small since the number of

samples is always limited. Because we have the limited number of samples. So V should not

be very, very small. Otherwise we cannot expect that, the samples will be available within

this particular volume, the volume is very small. And one another case we have to consider

the certain amount of variance in the ratio k divided by n. 

So we can consider this that means the volume should not be very, very small because we

have  the  limited  number  of  training  samples.  And also  we have  to  consider  the  certain

amount of variance in the ratio, the ratio is k divided by n that we can consider. 
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So you know this expression the probability of x that is the density k divided by n divided by

V. So in case of the Parzen-Window technique fix the volume of the region V and count the

number of samples k out of n number of samples falling in V. So that means the volume is

fixed. And we have to count the number of samples within this particular volume the volume

is V. So k number of samples within this particular volume out of n number of samples. 

So  total  number  of  samples  is  n  and  I  am counting  how many  samples  are  within  this

particular  volume.  So  k  number  of  samples  within  this  particular  volume.  So  from this

information you can see k divided by n divided by V from this information I can determine

the density that is called a Parzen-Window technique. 

In case of the k nearest neighbor technique the volume is not fixed. But I can consider the k

number of samples so suppose it is fixed suppose I am considering 5 number of samples. So I

have to increase the volume so that it encloses the 5 number of samples that means that k

number of samples. So first volume it encloses one sample suppose the second volume it

considered suppose two number of samples and third volume if I consider, it considered, it

encloses two samples. So how many samples total samples 5 number of samples enclosed by

this volume. 

So that means I am increasing the volume, I am growing the volume so that it encloses the k

number of samples. In case of the Parzen-Window technique the volume is not; the volume is

fixed. And I have to count the number of samples k within this particular volume. In case of

the k nearest neighbor technique the volume is not fixed and we have to increase the volume.

So that it  encloses k number of samples.  And from this information I  can determine the



density, the density is px is equal to k divided by n divided by V. So by using this expression

I can determine the density. 
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So for estimating the density  what I  am considering.  So to estimate the density of x we

promise sequence of regions, we can consider a regions R1 R2 like this containing x. The

first region contains one sample, the second contains two samples and like this and Vn be the

volume corresponding to the region Rn. And kn is the number of samples falling in the region

Rn. So I am considering the k number of samples falling in the region Rn. 

And in this case I can determine or I can estimate the probability or the density px. So the pn

X be the nth estimate of the probability the probability is px. So I can determine the density,

the density is nothing but k n divided by n divided by Vn. And if I consider suppose the

unlimited number of samples. So many, many samples if I consider then what convergence I

can get? The pn x converges to px. So if I consider a large number of samples then the pn x

approaches px.
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But in this case, in case of the Parzen-Window technique we have to consider these three

conditions one is the limit lim
n→∞

V n should be equal to 0. So that means what is the meaning of

this the volume may be very, very small because I am considering large number of samples,

because n tends  to  infinity.  Then in this  case you may expect  some samples  within this

particular volume the volume is suppose Vn. 

The volume Vn may be very, very small because I am considering very large number of

samples, large number of samples we are considering. So that means you may expect some of

the  samples  within  this  very  small  volume,  the  small  volume is  Vn.  So this  is  the  first

condition that is the limit n tends to infinity Vn is equal to 0. The second condition is lim
n→∞

K n

is equal to infinity. 

Since we have large number of samples, so that means the kn will be also very large. Since

the N is very large, so that means the kn is also very large. And if I consider a ratio  K n

divided by n, n tends to infinity that is the limit, then in this case this ratio will be 0, tends to

0, because n is very, very high as compared to kn. So that is why this  K ndivided by n that

ratio limit n tends to infinity should be equal to 0. 

And there are some mathematical derivations in the case of the Parzen-Window. So I can

determine the density, the density can be estimated by using this equation. So you can see the

book by Duda and Hart; The Pattern Classification by Duda and Hart and you can see the

derivation of this equation. So by this equation you can determine the density.
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Now let us consider the k nearest neighbor technique. So in this case we have to estimate the

density using the data  points and let  us consider the cell  volume to be a function of the

training data. And in this case the center a cell about x and let it grow until it captures kn

number of samples. So here you can see a cell volume be a function of the training data. 

And what I am considering? I am growing the region, that means I am increasing the volume,

so that it encloses the kn number of samples. So it encloses the kn number of samples. So kn

is a function of n, n the total number of samples. So kn are called the K nearest neighbor of x

that is the kn. 
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And two possibilities can occur the density is high near x therefore the cell will be small

which provide good resolution. So density may be high near the feature vector, the feature

vector is x. And in this case therefore the cell will be small which provide good resolution. In

the second case the density maybe low therefore the cell will grow large and stop until higher

density regions are reached.

So that means I have to increase the volume so that it encloses kn number of samples. So

density is low, therefore the cell will grow large and stop until higher density regions are

obtained. So this is the two conditions of the k nearest neighbor technique. 
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So mathematically you can say, so directly we can estimate this posterior probability Pn wi

given X directly we can determine from the n labeled samples,  n number of samples are

available. And there are labeled samples that means I am considering the supervised training.

Let us place a cell volume V around X and capture k samples. And ki samples amongst k

turned out to be labeled wi. 

So that means I am considering ki number of samples corresponding to the class the class is

wi.  So  total  number  of  samples  are  n  and  I  am  considering  ki  number  of  samples

corresponding to the class, the class is wi. So from this you can determine the density. The

density is  Pn(X ,wi)=ki divided by n divided by V that you can determine. And from this

you can see I can determine the posterior density Pn (wi divided by X) that I can determine.

So if  you see  this  equation,  so  what  I  am determining  already  Pn (X ,  wi)  that  I  have

determined, that is nothing but ki divided n into V. And you can see the summation I am



taking that is the evidence. And I will be getting the ratio, the ratio is ki divided by k. So what

is  the  ki  samples  amongst  k?  So k number  of  samples  I  am considering  but  ki  samples

corresponding to the class the class is wi. And I am considering the total number of samples,

the total number of samples is n. 

So this ratio the ki divided by k that gives the information of the density that is the posterior

density. So it gives the information of this. So we have to determine the ki number of samples

corresponding to the class, the class is wi. So if I can determine the ratio ki divided by k

determine this ratio. Then I can determine the density, the density is Pn wi given x that I can

determine.
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So this process the k nearest  neighbor algorithm that is the classification algorithm I can

show pictorially like this. Suppose I want to classify a new data point, so in new data point is

this.  And I  have  to  classes  the  category  A and category  B and this  is  before  k  nearest

neighbor. And after this based on the minimum distance the new data point is assign to the

class, the class is A. So that is the category 1, category 1 means the class A. So based on this

you can see this new data point is assign to the category 1. So this is the k nearest neighbor

algorithm. 
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Again  I  can  show  what  is  the  k  nearest  neighbor  algorithm.  Here  you  can  see  I  am

considering three classes one is the yellow, one is the green and one is the orange. And I am

considering one new data point so this is the new data point I am considering. And I am

finding  the  distance  between  this  data  point,  the  new data  point  and  the  other  samples

corresponding to different classes.

So one class is the yellow class, another class is the green class, another class is the orange

class or a red class. So you can see I am finding the distance, the distance is 2.1, 2.4 like this I

am determining the distance. So corresponding to this yellow one, you can see the distance is

2.1 that is the first nearest neighbor a distance is minimum. And again corresponding to the

second one, the second data point that is the yellow one, the distance is 2.4 that is the second

nearest neighbor I am getting.

And again if you see this green one. So corresponding to this green one the distance is 3.1

that is the third nearest neighbor. And again you can see the distance between the grey point

and the orange or the red point, so it is 4.5 that is the first fourth nearest neighbor. And in this

case we have to determine the number of votes. 

So corresponding to this yellow how many votes, because two times it is the neighbor. So 2

votes I  am getting,  corresponding to the green I  am getting 1 vote,  corresponding to the

orange I am getting 1 vote. So I can count the number of votes and based on this the new data

point can be assigned to a particular cluster. 
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Again I am showing this one, so this new data point I have to classify and for this you can see

I have to classes the class A and the class B. And based on the minimum distance this new

data point can be assigned to a particular class, the class A and class B. So in this class I

discuss the concept of the Bayesian distance theory and after this, I discuss the concept of the

concept of the parameter estimation.

In the parameter  estimation I  discuss two algorithms very popular  algorithms;  one is  the

maximum  likelihood  estimation,  another  one  is  the  Bayesian  estimation.  So  briefly  I

explained  these  two  concepts,  after  this  I  considered  the  case  of  the  non-parametric

estimation. In case of the non-parametric estimation I have to estimate the density. So for this

I considered two algorithms one is the Parzen-Window technique another one is the k nearest

neighbor technique. 

So briefly I explained the basic concept  of the maximum likelihood estimation,  Bayesian

estimation, the Parzen-Window and the k nearest neighbor technique. For more detail you

can see the book Pattern Classification by Duda and Hart that you can see. So let me stop

here today. Thank you.


