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Introduction to Machine Learning

Welcome to NPTEL MOOCs course on Computer Vision and Image Processing- Fundamentals

and Applications. I have been discussing about the concept of Machine Learning. Today I am

going to continue the same class that is the concept of Machine Learning. So, first I will discuss

the concept of Regression and after this I will discuss the concept of Bayesian Decision Theory. 
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So, what is the fundamental concept of Regression I will explain now. Linear regression is a

statistical method that allows us to model the relationship between the scalar response that is the

dependent variable and one or more independent variables. So, that means, I want to find the

relationship between a scalar variable that is the scalar response, dependent variable and one or

more independent variables. 

This is done by fitting a linear equation to the observed data, the dependent variable I can say as

a  response  or  outcome  and  the  independent  variable  is  called  as  Predictor  or  maybe  the

Regressor. Suppose, if we have only one independent variable, this is called a Simple Linear



Regression. And suppose, if I consider two or more independent variables, then in this case it is

the Multiple Regression.

So, this method looks for the statistical  relationship between the Dependent Variable and the

Independent Variable. For example, given a temperature in degree Celsius, we can find the exact

value of Fahrenheit. Let us now consider the simplest case that is the Simple Linear Regression.

So, where we are having only one dependent and one independent variable and simple linear

regression boils down to the problem of line fitting on a 2D x-y plane. 

So, suppose the given a set of points in x-y plane, x and y coordinates I am considering the linear

regression attempts to find a line in 2D which is best fits the points. So, there is a concept of the

linear regression. The most popular method of fitting a line is the method of least square. So, we

can consider  that  method that  is  the method of Least  squares,  as  the name suggests,  at  this

method minimizes the sum of the squares of vertical distances from each data point to the line. 

Now, the question is how to find a baseline and that is the objective of regression. Suppose, that

the slope and the intercept of the required line are a and b. So, I am considering the slope is a and

the b is the intercept of the line,  then the equation of the line will be  y i=a x i+b that is the

equation of the line. And the error between the actual point and the line it can be determined. So,

I am determining the error in this figure these two figures I am showing the concept of the

Polynomial fitting.

So, you can see observed data, you can see the sample points the observed data you can see, and

I am fitting a curve between these observed sample points observed data and same concept I am

showing in a second figure also that is the Polynomial fitting. So, mainly we want to reduce the

error. So, these are my observed data you can, you can see and this is the curve, I am fitting

between the observed data points. So, the objective is to minimize the error.

So, that is the objective of regression. So, you can see that I can determine the error like this

e i= yi− ŷ i that I can determine.
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And the concept of regression is I have to minimize the error. So, you can see I can compute the

error like this E =
1
n

. So, n number of sample points suppose,  y i− ŷ i
2 that I am considering the

average error I am determining and this is the expression for E. So, the objective is to find the

slope a and the intercept b which gives minimum error so, already I have defined a line and we

have the slope the slope is a and the intercept is b.

So, objective is to we have to minimize the error and corresponding to this we have to determine

the slope a and the intercept b. So, to find the required values of a and b, we have to consider the

partial derivative of E with respect to a and b. So, that is the partial derivative of E with respect

to a that should be equal to 0 and partial derivative of E with respect to b that should be equal to

0. So, objective is to find a slope a and intercept b which gives minimum error E that is the

objective.
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And after this you can see if I consider this equation that is the 
δE
δa

=0. So, based on this I can get

this equation, you can do the differentiation after doing the differentiation I will be getting this 1

and similarly, if I do that 
δE
δb

=0then I will be getting this equation.

So, I will be getting these two equations and this equation this equation if I consider suppose

equation number 1 and equation number 2, so, I am getting two equations. So, this equation 1

and 2 are linear equations in two variables. Hence, they can be easily solved to find the values of

a and b now, a means the slope and intercept is b. So, by solving these two equations, I can

determine  the value of  a  and b,  a  is  the slope of  the  line  and b is  the  intercept  that  I  can

determine.

So, in this case, I have shown only the simple case of Linear Regression. So, if you want to see

the Polynomial fittings, so, you have to see the books, so, how to go for polynomial fittings

between  the  observed  data  points  that  you  have  to  see.  So,  in  my  discussion  only  I  have

considered  the  simplest  regression  model  in  which  I  have  only  1  dependent  variable  and 1

independent variable. So, this is the fundamental concept of regression after this I will consider,
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The Bayesian decision theory. So, already I have explained the concept of the Bayes Theorem.

So, here you can see this posterior density you can see these the posterior density is equal to

likelihood into prior divided by evidence and if I considered two classes, then the P(x) will be

like this. And in this the Bayesian decision theory, this P(x) is the normalizing factor. So, it has

no role in classification, so, that we can neglect. So, P(x) is the normalizing factor that is the

evidence.

So, it has no role in classification. So, only we have to consider the likelihood and the prior. So,

for a particular Feature vector, the Feature vector is x, we have to determine the class. So, the

probability of obtaining a particular class given the Feature vector, the Feature vector is x. So,

that we have to determine that is the objective of Bayes Decision Making.
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And you can see the Decision theory will be like this. So, x is the Feature vector suppose, so, if I

consider  two  classes  that  classes  suppose  w1  and  w2  two  classes  I  am considering.  If  the

P (w1∨x)>P (w2∨x),  then  in  this  case,  I  have  to  consider  the  class  that  class  is  w1  and

similarly, if I consider the P (w 1|x )<P (w2∨x), then in this case the corresponding class will be

w2.

So, based on this principle I can do the classification. Suppose, if I have suppose this condition,

the probability 1, P (w 1|x )=P(w2∨x ). Then in this case, we have to see the prior probabilities.

Suppose,  this  is  a  condition  the  P (w 1|x )=P(w2∨x ),  then  in  this  case,  we have  to  see the

probability there is a prior probability we have to see P(w1) and the P(w2) we have to see and

based on this we can take a classification decision.

So, how to do the classification now? So, you can see, suppose, I have the Feature vector, the

Feature vector is x suppose, that is the input and I can determine this values P (w1)P (x∨w 1),

P (w 2)P(x∨w 2), P (wc)P(x∨wc ). So, I am determining this and I will be getting P (w1∨x), I

will be getting P (w 2∨x), P (wc∨x),  I will be getting. I have to pick the largest one.

So, out of these, what I have to do pick the largest. So, out of this I have to pick the largest. So,

based on this I can do the classification. So, my input is x so, I can draw the x here suppose, so,



my input is x and I have to determine these values the probability of  P (w1∨x), the probability

of P (w 2∨x) like this I have to determine and out of this I have to pick the largest and based on

this I can do the classification decision.

And also I can determine the probability of error for a given Feature vector. So, the what is the

probability of error? P (error∨x )=P (w 1∨x) that is, if we decide the class, the class is w2. So,

if  I  decide  the  class  w2  then  that  is  the  P (error∨x )=P (w 1∨x).  And  the

P (error∨x )=P (w 2∨x), if we decide the class the class is w1. So, like this I can define the

probability of error.
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So, we have to minimize the probability of error. So, how to minimize this decide the class w1 if

P (w1∨x)>P (w2∨x) otherwise,  I  have to  decide the class the class is  w2. So, we have to

minimize the probability of error and based on this principle, I can minimize the probability of

error I have to minimize the error. So, I have to select the appropriate class, that class you can

select by these probabilities the P (w1 given x) and P (w2 given x).
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And you can see the average probability of error I can determine like this. So, for all the feature

vectors, I can determine the average probability of error and we have to minimize this error. the

probability of error we have to minimize. So, how to minimize this error. So, this probability of

it will be P(w1|x) if x is assigned to this particular class. This is the Probability of Error. The

probability of error is equal to probability of P(w1| x) if x is assigned to this particular class is

equal to probability of P(w2| x) if x is assigned to that class, that class is w1.

So, we have to minimize this probability of error. So, we want probability of error given x to be

as small as possible for every value of x. So, for all the feature vectors, we have to minimize this

error, I can show here. So, suppose this is my x, x is a feature vector and I am considering the

probability of P (x |wi). I am considering. So, this is suppose the probability of P (x| wi) or

maybe I can consider suppose two classes if I consider it will be w1 and suppose this is the

probability of P (X| w2). So, this portion if you see, this is the area of, area of probability error.

This is the area of Probability Error. So, this is the concept of the Probability of Error. So, based

on the probability of error, we can take a classification decision.
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And  suppose  I  have  C  number  of  classes.  So,  I  am  considering  C  number  of  classes

w 1 , w2 ,…wc and assume that we have the d dimensional feature vector. So, I am considering

the d dimensional feature vector I am considering and if you consider this is the Bayes rule,

P (wj∨x ) , x is the feature vector that is a d dimensional feature vector is equal to P (x∨wj) that

is the likelihood into P (wj) that is the prior probability divided by P(x) that is the evidence.

So, we have to compute the posterior probability corresponding to the feature vector, the feature

vector x and for a decision making what do we have to do so, we assigned a pattern to the class

for which the posterior probability is the greatest, that we can determine.
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So,  you  can  see  the  same  thing  I  am  showing  here.  So,  w test=argmax P (w j∨x) and  I  am

considering this is the posterior probability is equal to this and evidence already I have explained

it is nothing but the normalization factor. So, it is same for all the classes. So, that means, it has

no role in classification. So, how to do the classification? So, w test is the class for which the

posterior probability is the highest.

So,  based  on  this  we  can  do  the  classification,  that  means,  the  pattern  is  assigned  to  this

particular class. So, we can determine the posterior probability and we have to determine the

highest value the highest posterior probability we have to determine and based on this we can

take a classification decision. The pattern is assigned to this particular class.
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After this another technique of decision making is by considering the Risks. So, by considering

the risks, we can also take a classification decision. Suppose, I have C number of classes. So, I

am considering  the  classes  w1,  w2 like  this  wc number  of  classes.  I  am considering  some

actions, I am considering the actions are α 1 ,α2 like this, I have number of actions and based on

this I can consider the definition of loss.

So, what is the loss? I will explain, suppose x is the feature vector and x may belongs to the

particular class I am considering the classes like this, suppose w1 suppose w2. So, w2 is the true

class, true state of nature. So, the feature vector x may be assigned to the class, the class is w1 or

maybe w2 like this and corresponding to this x belongs to w1, I am taking some actions some

actions I am taking.

So, what are my actions? Action is α i I am taking the action α iI am taking and corresponding to

this  I  can  determine  the  loss.  So,  what  is  my  loss?  Loss  is  equal  toλ (α i∨w j) then  I  can

determine.  The  loss  is  λ (α i∨w j).  So,  particular  action  is  considered  the  action  is  α i

corresponding to the class the class is wj. So, there is a loss I can define like this.

So, loss is nothing but λ ij that means, action α i is considered for a class that class is wj. So, I can

show this again suppose, I have the classes w1, w2 like this, I suppose wk, So, K number of



classes, and I am taking the actions like this α0 ,α1 ,…, α k I am taking. So, these are my classes

and I am taking some actions, actions are like this α0 ,α1 like this.

So, corresponding to w1 I can take the action  α0and similarly, corresponding to w1 I can take

this action also. So, action is α k
'. So, corresponding to this what will be my loss the loss will be

λk
'1 that is the loss I can determine. So, this suppose action is the reject option suppose, this

action is the suppose reject option. So, in patent classification reject option is very important that

means a particular feature vector may not be assigned to any 1 of the classes, then I can consider

the option, the option is the reject option.

Suppose, in alphabet recognition, so, alphabet suppose A B C D like this, suppose, I am writing

one alphabet something like this English alphabet. So, that means, I have to consider the option

the option is the reject option I have to consider, because it does not belong to any of the classes

that means, the alphabets. So, this is the concept of the loss. So, I can define the loss like this. So,

action α i is the considered for the class, the classes wj and corresponding to this the loss is λ ij.

So, you can see.
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And from this you can determine the expected loss and also the conditional risk also we can

determine that is the actual α i I am considering a for a feature vector, but feature vector is x and



that is nothing but the R(α i∨x ¿ that I am considering that is the risks I am determining this is λ ¿

α i∨w jP (w j∨x). So, this is nothing but λ ijthis is nothing but λ ij.

At every x a decision is made and we have to minimize the expected loss, that concept is we

have to minimize the expected loss. So, final goal is to minimize the total risks for all the feature

vectors. So, we have to minimize these risks that is the objective of the risk minimization. So, by

considering this, we can do the classification.
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So, for Two category classification, what we can consider suppose, I am considering the action

α1  corresponding to the class the class is w1 and α2  I am considering, corresponding to the class

w2 and based on this I can define the loss function. So, loss function isλ ij so, that means, action

α iI am considering for a class, the class is wj. And from this we can determine the conditional

risk.

So, you can see pictorially I can show you like this suppose w1, w2 these are the classes and I

am considering the actions α 1,α2 like this and I am taking the actions like this I am determining

the actions. So, what is λ11, λ11, is nothing but λ α1 action I am taking corresponding to the class

w1. And similarly, I can consider λ1 to λ21  and λ22, I can consider like this. So, I can determine

this, after this we can determine the condition risks.
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After this we have to minimize the risks. So, what will be our decision rule? So, if the risks

α1∨x is less than risks α2∨xthat is a conditional risk, then in this case, we have to consider the

action the actionα1 I have to consider that means, we have to consider the class the class w1 we

have to decide, and this is equivalent to this is equivalent to this because, from this just you can

put these values you will be getting this one.

So, we can decide that class w1 if this condition is satisfied, so, this is the condition. So, we can

decide the class w1 if this condition is satisfied, otherwise, we have to consider the class w2. So,

that is my Decision Rule.
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So, this the previous rule is equivalent to the following rule. So, that means, we can consider this

one. So, from the previous equation you will be getting this one the ratio 
P(x∨w1)

P(x∨w2)
that ratio we

have to determine. If it is greater than this one. So, that means, you pay consider this one then

based on this, we can take a classification decision.

If this condition is satisfied, then we have to consider the actual α1 and what is the corresponding

class? The corresponding classes w1. Otherwise we have to take the action, the action is α 2and

what is the corresponding class? The class will be w2. So, based on this decision rule, we can do

the classification. So, we can select either w1 or w2.
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And we can also consider this ratio. So, this ratio is called the Likelihood Ratio, this is called the

Likelihood Ratio we can determine. So, from a previous slide you can see, so, I am considering

suppose this is equal to θk and if the likelihood ratio is greater than this threshold the threshold is

suppose θk then based on this we can take a classification decision. So, if the likelihood ratio is

greater than a particular threshold, then in this case we have to consider w1 otherwise, we have

to consider w2.

So, you can see this likelihood ratio is independent of the feature vector that it is likelihood ratio

is independent of x. So, we can determine the likelihood ratio and based on this likelihood ratio

we can take a classification decision. So, you can see that based on these risks, we can take a

classification decision.
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Now, I am defining one function that is called the Zero-one loss function. So, suppose actions

are decision on classes, so, we are taking some actions for decision making. So, suppose if action

α iis taken and the true state of nature is wj, then the decision is correct, if i is equal to j and the

decision is not correct, if it is not equal to j, we have to consider this zero to one loss function

and  based  on  this  we  can  take  a  classification  decision.  So,  objective  is  to  minimize  the

probability of error that is the objective. So, we have to minimize the probability of error.
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Now, I am defining the Zero-one loss function. So, λ ¿ α i∨w j¿ I am considering that is equal to

0 if i is equal to j so, that means, the loss will be 0 if i is equal to j. Otherwise, if i is not equal to

j,  then the zero-one loss function will be 1. So, I am defining this function zero to one loss

function I am defining. After this I am considering the conditional risks, so, conditional leaks

already you know, so, this is the, the formula for the conditional risk and from this you can see, I

am getting this one, but you can see at this point that j is not equal to i, because, when j is not

equal to i, the value of zero-one loss function is 1.

So, that is why this value will be 1, if j is not equal to i or if i is not equal to j, then value will be

equal to 1 and corresponding to this it is nothing but 1 minus probability of wi given x. So, that is

the meaning of this. So, to minimize the risks, what I have to consider, I have to select maximum

probability of wi given x that is the posterior probability I have to select the maximum value of

this I have to select, that means the decision rule will be like this.

So, decide wi if probability of wi given x is greater than probability of wj, given x for i is not

equal to j. So, this is my decision rule. And this classification technique is called the Minimum

Error rate classification, because I have to minimize the error. So, this is called the Minimum

Error rate classification technique.
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So, for minimization of the risks, we have to maximize this probability since the conditional risk

is equal to 1 minus probability of wi given x and I have to minimize the error. So, what is my

classification rule? Decide wi if probability of wi given x is greater than probability of wj given

x.  So,  that  is  my  classification  rule  and  this  is  the  concept  of  the  Minimum  Error  rate

classification.
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And based on the Discriminant function, I can see the different types of decision surfaces. So,

this concept I am going to explain so, what is the Discriminant function and from this how to



determine their decision boundaries, the decision surfaces. So, let us consider the multi category

case.  So,  multiple  clusters  I  am considering  and for  this  I  am considering  the  discriminant

function that discriminant function is gi (x) I am considering and for each and every class, I have

to determine that discriminate function.

So, I have to determine g1(x), g2(x), g3(x) like this for all the classes I have to determine the

discriminant function. The classifier assigns a feature vector x to a particular class that class is

supposed wi if gi (x) is greater than gj (x) for j is not equal to i. So, based on the discriminant

function, I can take a classification decision that means, if gi (x) is greater than gj (x), then based

on this I can decide the class the class is wi that means, the feature vector x will be assigned to

the class the classes wi.
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And here you can see I am considering the input feature vector the input feature vector is the D

dimensional  feature  vector.  So,  this  is  my  x  that  is  the  feature  vector.  So,  this  is  the  D

dimensional  feature  vector  I  am considering  that  means,  x1,  x2  like  this.  So,  this  is  the  D

dimensional feature vector I am considering and after this you can see I am determining the

discriminant function for all the classes.

So, I am considering C number of classes. So, I am determining g1 (x), g2 (x) like this I am

determining  and  for  classification  what  we  have  to  consider  I  have  to  find  a  maximum

discriminant function I have to determine. So, out of this g1 (x), g2 (x), gc (x) which one is the

maximum I have to determine for classification. So, you can see so, I am determining the cost

that  means,  I have to find a maximum discriminant  function and based on this  I  can take a

classification decision.

So, what is the function of the discriminant function? It divides the features space into C decision

regions that decision regions are R1, R2 like this, these are the decision regions Rc and if g i(x) is

greater than g(x) for i is not equal to j then x is in the region x is in the region Ri that means, the

meaning is x is assigned to the class that class is wi. So, that is the decision rule and what is the

decision boundary?



The decision boundary is nothing but gi (x) is equal to gj (x). So, that is the equation of the

decision boundary. So, for C number of classes we have to determine C number of discriminant

functions.
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So,  you can  see  I  have  to  determine  the  maximum value  of  the  discriminant  function  that

corresponds to the minimum risks. So, maximum discriminant function corresponds to minimum

risks. So, that means, for minimum error rate gi (x) should be equal to P (wi| x) that is the

posterior  probability.  So,  that  means,  the  maximum  discriminant  function  corresponds  to

maximum posterior probability.

So, I am repeating this the maximum discriminant function corresponds to maximum posterior

probability and what is the posterior probability if you see? This is nothing but it is equal to P (x|

wi), P(wi), P(x) and that I can write like this. So, promise I can write like this, because, the

evidence has no role in classification. So, I can write like this, after this I can take the natural

logarithm, because the multiplication is converted into addition by considering the logarithm. So,

I have that this discriminant function gi (x) is equal to this.
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So, discriminant function does not change the decision when scale by some positive constant. So,

if it is scaled by some positive constant, the discriminant function does not change the decision.

The decision is not affected when a constant is added to all the discriminant function. So, that is

a concept of the discriminant function. So, if I consider two classes suppose, so, for first class

suppose the discriminant function is g1 (x).

For  the  second  class  suppose  the  discriminant  function  is  g2  (x),  then  what  will  be  my

classification rule if g1 (x) is greater than g2 (x) that means their meaning is x will be assigned to

the class the class is w1. And what will be my decision boundary? The decision boundary will be

g1 (x) is equal to g2 (x) so, that is the equation of the decision boundary. So, this is my decision

boundary.

So, this equation that means, g1(x )−g2 (x)=0 that is the equation of the decision boundary. So,

I can write like this that means g(x) is equal to 0. So, that is the equation of the curve that is the

equation of the curve. So, if I consider these two classes, so, if I consider this the feature space

so, I have two regions. The region is R1 another region is R2 and what will be the equation of the

decision boundary?

The equation of the decision boundary is g(x) equal to 0 and that is the equation of the curve or

maybe in this case I am considering the line that is the decision boundary I am considering the



line I am considering two regions R1 and R2 and in the region R1 g(x) is greater than 0 and in

the region R2 g(x) is less than 0. So, g(x) is greater than 0 means, I am considering the class w1

and g(x) is less than 0 that means, I am considering the class w2.
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The feature space is divided into c number of regions, c decision regions and if gi (x) is greater

than gj (x) for j is not equal to i then x is in Ri that means the feature vector will be in the region

Ri that means, the feature vector x will be assigned to the class that class is wi and for two

category case that is  for two classes I  have to determine g(1) and g(2) and g(x) is equal  to

g1(x )−g2 (x) and we can take a classification decision based on this condition. So, decide w1 if

g(x) is greater than 0 otherwise decide w2 that we have to consider.
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And, and this gi (x) already I have this equation the equation of the discriminant function and

corresponding to this you can see this g(x) is nothing but P (w1∨x)−P(w2∨x )that is the g(x).

g(x) is nothing but g1(x )−g2 (x). And from this if you can put this value because this what is P

(w1| x) what is P (w1) given x that is nothing but P (x| w1) and P(w1) and the evidence is

suppose P(x). So, if I put these below in this equation, then you will be getting this one so, you

can get this one. 

So, we have to determine g(x) and similarly also you have another 1 P (w2| x). So, P (w2) also x

we can determine. So, if I put these two values you will be getting g(x) so, the g(x) is nothing but

g1(x )−g2 (x). So, this is nothing but g1(x )−g2 (x).
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Now, I will discuss the concept of Normal Distribution. So, already you know what is a Normal

Distribution. So, here you see I am showing the density function corresponding to the normal

distribution P(x)=
1

√2π σ2
e

−1
2

¿¿

. So, that is the normal distribution and corresponding to this you

can see I have the bell-shaped distribution.

So,  this  is  the  bell-shaped  distribution  corresponding  to  that  PDF  that  PDF  is  P(x)  and

corresponding  to  this  I  have  the,  the  probability  density  function  and  this  is  the  normal

distribution with mean 0. So, here you can see the mean is 0 and from this you can determine the

expected value or the mean value of x. So, I can determine the mean of this random variable. So,

E[x] I can determine also I can determine the variance of x.

So,  in  this  case  I  am  considering  suppose  these  variances  suppose  σ 1
2 and  suppose  I  am

considering another Gaussian function something like this then in this case suppose the variance

is σ 2
2 . So, in this case the σ 1 is, σ 1

2
>σ 2

2. So, you can see that the variance determines the spread

of the Gaussian function. So, this is about the normal and the Gaussian distribution.
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Now, let us consider the Multivariate Gaussian Distribution. So, I am considering the vector,

vector is the D dimensional vector so, x is the D dimensional vector x1, x 2 like this. So, this is

the D dimensional vector corresponding to this I can define the density function, the density

function is Px and this is for the Multivariate Gaussian distribution. So, in this case I have two

parameters one is the Mean vector and another one is the Covariance matrix.

So, I have two parameters one is the mean vector another one is the covariance. I can determine

the mean vector from the input vector the input vector is x. So, the mean vector is nothing but μ=

μ1 , μ2 , μ3 ,… and since I am considering the D dimensional vector, so, this is the mean vector that

means, I can determine the that means, I can determine the expected value x1, x 2 like this I can

determine.

So, mean vector I can determine and also, I can determine the covariance matrix so, this is my

covariance matrix. So, this is expected below E (x−μ)(x−μ)'. So, you can see I can determine

the covariance matrix and if I consider the dimension is suppose 1. So, suppose the dimension of

the feature vector is 1 then in this case I will be getting the Univariate density.

So, what is the Univariate density that is already I have defined. The univariate density is twice

by sigma so, I have, I will get the univariate density corresponding to D is equal to 1. So, in this



case I have two parameters one is the mean another one is the variance. So, for univariate case I

have two parameters one is the mean another one is variance. So, in this case you can see I am

considering the D dimensional feature vector and from this I can determine the mean vector and

also, I can determine the d by d covariance matrix.

(Refer Slide Time: 43:30)

So, in this slide you can see how to determine the covariance matrix. So, the covariance matrix

you can see expected below of this expected below E [( x i−μi ) ( x j−μ j )]  that I can determine. So,

that means the covariance between xi and xj I can determine. So, this is my covariance matrix

and the diagonal elements σ ij are the variants of their respective xi. So, if I see that that if I see

the diagonal elements that is nothing but the variance of respective xi.

So, that means, σ 1
2 that corresponds to the variance variances of respective xi and if I consider

the off-diagonal elements that means, these off diagonal elements so, off diagonal elements are

σ ij. So, these are the covariance, covariance between covariance between xi and xj. So, that is a

covariance  between  xi  and  xj  and if  I  considered  suppose,  if  xi  and the  xj  are  statistically

independent, what is the meaning of this?

That  means  σ ij is  equal  to  0 that  is  the  covariance  is  equal  to  0  that  means,  xi  and xj  are

statistically independent then corresponding to this, this P(x) that already I have defined that will



be the univariate density, univariate, univariate normal density. So, that will be the univariate

normal density.  So, that means,  if  xi  and xj are statistically  independent  that corresponds to

sigma ij is equal to 0 and that corresponds to P(x) will be the univariate normal density.

Now, I can define a distance. So, what is the distance you can see, I am considering the distance

(x−μ¿¿
' so, I have this distance R square is equal to (x−μ¿¿

' Σ−1
(x−μ). So, in this case you

can see this corresponds to the determinant and this corresponds to the inverse, inverse of the

covariance matrix.

So, this corresponds to inverse of the covariance matrix so, I am defining a distance that is R

square is equal to (x−μ¿¿
' Σ−1

(x−μ) that is the inverse of the covariance matrix x minus mu

and that distance is called that is a very important distance this is called the Squared Mahalanobis

Distance. The Mahalanobis distance, Squared Mahalanobis distance, already you know that what

is the Euclidean distance. 

The Euclidean distance is nothing but the distance between the vector x and mu i suppose, so,

this is the Euclidean norm. So, this is the equilibrium norm and I have shown that this is the

Mahalanobis distance. So, in case of the multivariate density the center that means, in this case if

I  consider a cluster suppose if  I consider a cluster suppose a cluster  I  am considering some

sample points I am considering.

So, these are the, these the cluster the center of the cluster is determined by the mean vector and

the shape of the cluster, the shape of the cluster is determined by the covariance matrix. So, that

is the importance of the mean and the covariance. So, if I consider a cluster I am considering

some sample points. So, the center of the cluster is determined by the mean vector and the scope

of the cluster is determined by the covariance matrix. Now, I am discussing the concept of the

Bayesian classification for normal distribution.
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So, let us discuss about the concept of the Bayesian classification, Bayesian classification for

Normal Distribution. So, let us discuss about this concept that Bayesian classification for normal

distribution. So, in case of the Bayes classifier, so, I have to determine this. So, this is nothing

but P (wj| x) is equal to P(x| wj), P (wj) and P(x). So, this is the Bayes law. So, for determining

the probability of wj given x, I have to consider this, that is the likelihood or the class conditional

density I have to consider.

Suppose,  the  class  conditional  density  follows  the  normal  distribution.  So,  that  means  the

likelihood function wi which with respect to x in L dimensional feature space follow the general

multivariate  normal  density.  So,  that  means  the probability  of  (x |wj),  I  am considering  the

density is  suppose the normal density  and in this  case I am considering multivariate  normal

density. So, that means the probability of x given wj is a multivariate normal distribution and I

am considering the feature vector that is the L dimensional feature vector. 

So, L dimensional feature vector I am considering.  So, twice by to the power l by 2 sigma i to

the  power half  an  exponential  minus  half  x  minus  mu i  transpose so,  I  am considering  the

multivariate normal distribution and I am considering c number of classes. So, that covariance

matrix for a particular class, so, that means, I am considering the covariance matrix for class i.



So, that is the dimension is l by l covariance matrix I will be getting also I can determine the

mean vector. So, mu i also I can determine that is the mean vector I can determine that is nothing

but the expected value of x i can determine. Now, you know the discriminant function gi x is

equal to log you know this. So, in this case I think I better I should write wi that is x given wi I

am writing in place of wj I am writing just wi. So, this is a Discriminant function.

So, if I consider this multivariate normal distribution so, just I have to put this below here. So, I

will be getting minus half x minus mu i transpose the covariance matrix for a class i plus ci. So,

suppose this equation number 1. The ci is a constant to what is the value of this constant? l

divided by 2 ln twice pi minus half ln so, this is ci so, I can expand gi (x) that is a discriminant

function.

So, if I expand gi (x) it will be something like this minus half x transpose mu i T just I am

expanding suppose this is the equation number 2. This is the equation number 2. So, I am getting

the, the expression for a discriminant function. And in this case, what I am considering I am

considering the probability of x given wi that follows the multivariate normal distribution. So,

based on this, I am calculating the discriminant function, the discriminant function is gi (x).

What will be my decision boundary? So, my decision boundary or decision curves the decision

curves will be gi (x) is minus gj (x) is equal to 0. So, that is the Decision Boundary. So, the

decision boundary maybe the quadric decision boundary because this is the quadratic equation.

So, if you see this one, so, this is a quadratic equation. So, that is why this is called a Quadric

classifier.

Bayesian classifier is also called Quadric classifier because it is a Quadric equation. So, decision

boundary  will  be  quadrics.  So,  decision  boundary  may  be  like  this  Ellipsoid  or  maybe  the

Parabolas, Parabolas or maybe the Hyper Parabolas or maybe the pairs of lines I can consider

like this, I have the Quadrics Decision boundary. So, this equation number 2 is the quadratic

equation.

So, that is why the Bayesian classifier, the Bayesian classifier, the Bayesian classifier is also

called the Quadric classifier. So, if I considered the 2-dimensional case, so, decision boundaries

maybe something like this. So, this will be one class and this will be another class or maybe the



nonlinear maybe the decision boundary is maybe something like this. So, the suppose w1, w2

and w1 so, the x1 and x2.

So, 2-dimensional feature vector I am considering and for this I may have this type of decision

boundaries. So, if I consider high dimensional case, then in this case I will be getting hyper

ellipsoid, hyper parabolas like this I will be getting.

(Refer Slide Time: 58:19)

Now, what about the Decision Hyper planes So, if I consider the equation number 2, you can see

the equation  number 2 in equation  number 2 you will  be having this  term  xT Σi
−1 x  this  in

equation number 2, it is same for all the discriminant function it is same for all the discriminant

function. So, that means, it has no role in classification. So, that means I can neglect this one.

And  suppose  if  I  consider  this  case  that  covariance  matrix  is  same for  all  the  classes,  the

covariance matrix is same for all the classes, but it is arbitrary. So, that I am considering now.

So, this, this quadratic term is same for all the classes, same for all the classes. So, that means, I

can neglect this one it has no role in classification. And I am considering this case that is the

covariance matrix is same for all the classes, but it is arbitrary. So, that is why I can write the

discriminant function something like this gi (x) is equal to w i
T x+w i0.



So, this wi is this is called the Weight vector. This is called the Weight vector and this is I can

consider as a Bias or Threshold. So, Bias or Threshold I can consider like this. So, what do what

is that weight vector? wi is equal to sigma to the power minus 1 mu i. So, that is the weight

vector and what is the bias? The bias is nothing but w i 0 that is equal to logP (wi)−¿ 
1
2
μ i

T Σi
−1μi.

So, here you can see if  I see this expression if  I see this expression that is the discriminant

function gi (x) is a linear function of x and in this case the decision surfaces will be hyper planes.

so, I am repeating this, that is the discriminant function gi (x) is a linear function of x, x is the

input feature vector and corresponding to this the decision surfaces will be hyper planes. Now,

let us consider two cases. Case number 1, I am considering the covariance matrix is same for all

the classes and it is a diagonal covariance matrix. 

So, that means, what I am considering the diagonal covariance matrix with equal elements. So,

what  is  the meaning of  this  the feature  vector  is  mutually  uncorrelated  and of and of some

variance. So, that means, I am considering a diagonal covariance matrix with equal elements the

meaning is feature vector is mutually uncorrelated and of same variance. And in this case, you

can see what is the I? I is the identity matrix. So, it is the l dimensional, l dimensional identity

matrix.

So, I is the l dimensional identity matrix and suppose this equation is suppose I am considering

the equation is 3 suppose. So, from 3 equation number 3 what I will be getting now, gi (x) will

be equal to  
1

σ 2
μ i

T x+wi, so, I will be getting w i 0 that is the bias. And in this case what is  σ−1?

That is the inverse of the covariance matrix 1 by sigma square I. I is the identity matrix.

So, what will be the decision hyper planes? Decision hyper planes, decision hyper planes will be

gij (x)is equal to gi ( x )−g j (x). So, that is nothing but wT x−x0. This you can verify this you can

verify like this suppose wT x1+w0 is equal to wT x2+w0. So, corresponding to this what I will be

getting, what I will be getting wT x1−x2 is equal to 0. So, like this you can verify that one.



So, this is the equation and that is the equation what is the equation of the decision hyper planes?

gij (x) is equal to  wT  that is the weight vector  x−x0. So, this is the equation of the Decision

Hyper Planes and in this case what is the weight vector? The weight vector is nothing but μi−μ j

that is the weight vector, μi−μ j. And the x0is equal to 
1
2
(μi+μ j)−σ 2. So, that is x0.

So, the decision surface is a hyper plane which will pass through the point, the point is x0. So, I

am repeating this in this case the decision surface is a hyper plane passing through the point the

point is x naught. And suppose, if I consider if the probability of wi suppose, the probability of

wi is  equal  to  probability  of  wj then  in  this  case  corresponding to  this,  the point  x0will  be

1
2
[μ i+μ j].

So, that is the decision surface and the point will be  x0 is equal to  
1
2
[μ i+μ j]. That means, the

hyper plane passes through the mean ofμi∧μ j So, in this case if the probability of a particular

class that class is wi is equal to probability of the another class and the class is wj and in this case

i is not equal to j then x0 is equal to 
1
2
[μ i+μ j]. So, that means, the hyper plane will pass through

the mean of μi∧μ j.

And also the hyper plane will be orthogonal to the vector, the vector is w is equal to mu i minus

mu j, so, that I will show pictorially. And suppose, if the probability of wi is less than probability

of wj then what will happen? The hyper plane will be located closer to mu i that is the hyper

plane  will  be  located  a  closer  to  the  mean  vector  the  mean  vector  is  mu i  and also  if  the

probability of wi is greater than probability of wj, then what will happen in this case the hyper

plane will be located closer to mu j that is the mean wj.

So, this is the case and if the variance, variance is sigma square is small. The variance is small

with respect to, with respect to the difference in the mean. So, I am just finding the Euclidean

distance between these two means. The location of the hyper plane is rather insensitive to the

values of P (wi) and P (wj). So, I am repeating this if the variance is small with respect to the



difference  in  the  mean,  the  location  of  the  hyper  plane  is  insensitive  to  the  values  of  the

probability, the probabilities probability of wi and the probability of wj. So, this condition I will

be showing pictorially, so, what will be my decision boundary?
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So, I  can show the decision boundary like this.  So, suppose if  I  considered a 2-dimensional

feature space x1 and x2. So, suppose this is my mean vector suppose this mean vector is μi and,

and this is μ jsuppose this vector. And I can find the vector μi−μ jthat is nothing but that weight

vector that is nothing but that weight vector. And also, you can see, I can determine the point the

point is nothing but x0 I can determine.

So, from that equations you can determine the point x0. So, that means, the hyper plane will pass

through the point the point is x0and if I consider the probability of wi is equal to probability of wj

then x naught is equal to 
1
2
[μ i+μ j] that already I have calculated. So, that means, the hyper plane

will pass through the mean of μi∧μ j. and also the hyper plane is orthogonal to the vector w.

So, that means up consider hyper plane so, hyperplane is this suppose, so, this is my hyper plane

So,  that  will  be  orthogonal.  So,  maybe  I  can  consider  some  another  color  that  you  can

understand. So, this is my hyper plane so, hyper plane is orthogonal so, it is orthogonal to the

vector the vector is w. The hyper plane will be orthogonal to the vector μi−μ j. So, this is μi−μ j.

And in this case what I am considering the sigma is equal to sigma square I that means, the

covariance I am considering the diagonal covariance matrix with equal elements. So, diagonal



covariance matrix I am considering and if I consider these two cases, one is the high variance

another one is the low variance the small variance. So, what will happen you can see so, this is

mean of the cluster suppose if I consider this the cluster so, the mean of the cluster is mu i and

another cluster I am considering.

So, this is another cluster so, this is music and from this you can see already I have shown you

so, you can determine the vector the vector is μi−μ j that you can determine that is nothing but

the weight vector level with vector and after this you can draw a decision boundary. So, this is

my decision boundary you can draw that is orthogonal to the vector w, w and it will pass through

the point x naught.

So, in this case, I am considering the compact case this is a compact, compact compactness that

means, I am considering the samples with high probability, the samples with high probability

samples with high probability I can consider another case that is a non-compact case. So, in a

non-compact case also I can draw the decision boundary. So, in case of a non-compact case

again like the previous case, I can draw the mean vector μi and the μ j and if I consider this is a

cluster suppose, the μ j is something like this.

So, this is mu j and you can determine mu i minus mu j and in this case also you can determine

the  decision  boundary.  So,  you can find  a  decision  boundary so,  decision boundary  will  be

something like this. So, this is the non-compact case that means, sigma square is large in the

previous case the sigma square is small with respect to μi−μ j. So, that means, in the second case,

the location of the decision hyper plane is much more critical as compared to the, the first case,

the first case is the compact case.

So, in the compact case you can easily draw the decision boundary between these two clusters.

But in case of the non-compact case, so non compact case I am showing in the second case, so, it

is very difficult to draw the decision boundary. So, location of the decision hyper plane is much

more critical as compared to first case, this is about the representation of the decision boundary.
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Now,  I  am considering  the  case  number  2  case  2.  So,  I  am considering  the  non-diagonal

covariance  matrix.  So,  I  am considering  the  non-diagonal  covariance  matrix  these  are  case

number 2 that means the Σi is equal to Σ. The covariance matrix is same for all the classes, in

case of a case number 1 what I am considering diagonal covariance matrix, but in this case, I am

considering the non-diagonal covariance matrix.

So, corresponding to these the decision boundary, the decision boundary will be gi (x) is equal to

wT
(x−x0) is equal to 0 and what will be my weight vector? The weight vector will be σ−1 that is

the inverse of the covariance matrix μi−μ jand the x0 the decision boundary will pass through the

point the point is x0
1
2
[μ i+μ j ] minus ln so, decision boundary I can find like this.

So, I can calculate the weight vector and also, I can determine the point the point is x naught. So,

the decision boundary will pass through the point x0, but in this case the hyper plane is no longer

orthogonal to the vector w that is the case for a non-diagonal covariance matrix. Now, let us

consider the concept  of the minimum distance classifier.  So, what is the Minimum Distance

Classifier?  



Minimum Distance Classifier let us consider So, what is the Minimum Distance Classifier? So,

from the equation number 1 you have seen that  the discriminant  function is  equal  to minus

−1
2

−μ i
T x  and  σ−1that  is  the  inverse  of  the  covariance  matrix.  So,  you notice  so,  suppose,

suppose the case like this, So, sigma is equal to sigma square into I so, I use the identity matrix.

So, in this case I have to determine the maximum discriminant function. So, for c number of

classes I have c number of discriminant function and I have to take the decision based on this so,

I  have  to  find  the  maximum  discriminant  function  and  based  on  this  I  have  to  take  the

classification  decision.  So,  that  means  the  maximum discriminant  function  means  minimum

Euclidean distance between the respective mean points.

So, what is the Euclidean distance, the Euclidean distance dE I can write like this, the Euclidean

distance between the vector x and the mean mu i so, that I have to find? So, that means the

maximum discriminant function corresponds to Minimum Euclidean distance. So, I have to find

a  Euclidean  distance  and  what  is  the,  what  is  the  classification  decision?  I  have  to  find  a

maximum  discriminant  function  that  corresponds  to  minimum  Euclidean  distance  from  the

respective mean points.

And suppose, if I consider the Euclidean distance is equal to constant and then in this case I will

be getting the curves of the circle I will be getting so, maybe I can get the curves of the circle in

case of a 2 dimensional case and if I consider the high dimensional case I will be getting hyper

sphere. So, that is the Euclidean, Euclidean distance contour I can determine. So, corresponding

to this I can draw this.

So, these are my contours that means, contour of equal Euclidean distance. So, two classes I can

consider the contour of equal Euclidean distance and you can see these vector is the weight

vector. So, suppose these is a class, class 1 and this is a class 2 and I can draw the decision

boundary.  So,  these  are  decision  boundary  between  these  two  classes,  this  is  the  decision

boundary.

So, if I consider the 2-dimensional case then in this case I will be getting the curves of circle and

if I consider the high dimensional case then I will be getting the hyper sphere. So, these are



nothing but the contours of equal Euclidean distance, the Euclidean distances dE the contours of

equal Euclidean distance. The second case what I am considering the second case is non diagonal

covariance matrix, I am considering the non-diagonal covariance matrix.

So, that means, in this case also I have to maximize the discriminant function. So, maximizing

the  discriminant  function  is  equivalent  to  minimizing  the  covariance  matrix  norm.  So,  that

means, I have to maximize the discriminant function gi (x) that corresponds to the minimization

of  sigma  to  the  power  minus  1  that  I  have  to  minimize.  So,  for  this  I  can  determine  the

Mahalanobis distance.

So,  already I  have defined a  Mahalanobis  distance,  so,  x−μi
T x−1

2
,  so,  I  can determine  the

Mahalanobis  distance.  So,  the  minimum distance  corresponds  to  the  maximum discriminant

function and if I consider dm is equal to c, then in this case, I will be getting the contours. So,

maybe I can get the curves of ellipse. So, for the high dimensional case, I can consider the hyper

ellipsoid and for the 2-dimensional case I will be getting the ellipse the contour of the ellipse. So,

maybe something like this I will be getting.

In the previous case I, I have the curves of the circles. Now, I will be getting the curves of the

ellipse, the ellipse will be like this, this is for the clusters 1 and similarly, for the cluster 2 also I

will be getting the curves of the ellipse and this is the vector μi−μ j  because I have to determine

that this mu i and mu j. So, this is  μi and  μ jand in this case already I have defined that your

decision boundary, the decision boundary will not be orthogonal it will not be orthogonal to this

vector, this vector is nothing but μi−μ j, this vector is μi−μ j .

So, you can see, I have considered the minimum distance classifier based on these two distances

one is the Euclidean distance another one is the Mahalanobis distance. In this class I discussed

the concept of the Bayesian classification first I discussed the concept of Probability of Error and

after this I discussed the Concept of Risks. So, by considering the probability of error, I can take

a classification decision.

Similarly, by considering their risks, I can also take a classification decision after this I discussed

the  concept  of  Discriminant  Function.  So,  for  c  number  of  classes,  I  have  c  number  of



discriminant  functions  and  based  on  these  discriminant  function,  I  can  take  a  classification

decision. After this I consider the Normal Distribution one is the Univariate Distribution another

one is the Multivariate Normal Distribution. 

After this I determine the discriminant function, the discriminant function is gi (x) and after this I

consider  two cases one is the Diagonal Covariance Matrix and another one is the Non Diagonal

Covariance  Matrix,  for  this  I  determined  the  decision  boundary  in  one  case  the  decision

boundary will be orthogonal to the vector w that is a Weight vector. 

And in the second case, the decision boundary is not orthogonal to the weight vector, the weight

vector is w the weight vector is μi−μ j. And after this I discussed the concept of the Minimum

Distance Classifier. So, let me stop here today. Thank you.


