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 Object Boundary and Shape Representations - I

Welcome  to  NPTEL  MOOCs  course  on  Computer  Vision  And  Image  Processing  -

Fundamentals And Applications. I have been discussing about image features, I have already

discussed about edges, textures and color, which are image features. Today I am going to

discuss about object  boundary and object shape information that I can consider as image

features. So, what is object boundary and how to represent object boundary I will discuss

now. 
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So,  in  this  case  you  can  see  the  image  representation  and  the  descriptions.  So,  how to

represent a particular image, that is to represent and describe information embedded in an

image in other forms that are more suitable than the image itself. So, that is the main concept.

So, how to describe and how to represent information embedded in an image. So, instead of

storing the entire image in the memory, I can store only the descriptors corresponding to that

particular image. 

So, what are the advantages, you can see easier to understand and require fewer memory,

faster to be processed. That is, instead of storing or instead of processing the entire image, I

can only consider the descriptors corresponding to a particular image. So, I can consider the

descriptor for the texture, descriptor for the color, descriptor for the boundary, descriptor for

the shape that I can consider and that I can store in the memory and that also I can process. 



And what other information present in an image. So, other information maybe the boundary,

the shape of the object I can consider, region information, how many regions are present in an

image  that  I  can  consider,  texture  information  I  can  consider,  color  information  I  can

consider,  the  relationship  between  the  regions  present  in  an  image.  So,  these  are  the

information present in an image. So, already I have discussed about the texture and the color

and also I have discussed the concept of the edge detection. So, now, I will discuss about how

to describe boundary and the shape. 
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So, first one is the 2D and the 3D structure representation. So, what is the 3D structure? 3D is

a representation of a set of the 2D representation from various angles. So, if I consider the 2D

representation from various angles, then in this case I can get the 3D representations. This 2D

structure can be represented by considering the boundary and also by considering a region.

So, that means, I am considering 2 image features, one is the boundary another one is shape. 
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So, for boundary descriptors, I can consider  information like this length of the boundary I

can consider, the size of the smallest circle or box that can totally enclosing the object, that

also I can consider as a descriptor for the boundary. If I consider these descriptors like the

shape number I  can consider,  the Fourier descriptor is very easy very good descriptor  to

represent  a  particular  boundary,  statistical  moments  also  I  can  consider,  a  B  spline

representation for boundary representation that is also very important,  that I am going to

discuss the B spline representations. 

And one is MPEG 7 contour shape descriptors. So, by using these descriptors, I can represent

a particular boundary present in an image. So, by using these descriptors, the shape number

Fourier  descriptors,  the  B  spline,  MPEG 7  contour  shape  descriptors,  I  can  represent  a

boundary. 
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So, first one is the shape representation by using chain codes. So, in this case, you can see

what is the chain code here. The chain code represents an object boundary by a connected

sequence of straight line segments of specified length and direction. So, in this case in the

first figure you can see I am considering 4 directions and direction is this 0, 1, 2,3. So, I am

only considering 4 directions and from this I can determine 4 directional chain code. 

In  the  second  figure  I  am  considering  8  directional  chain  code.  So,  in  that  case  I  am

considering 8 directions 0, 1, 2, 3, 4, 5, 6, 7 like this I am considering So, that means, I am

considering 8 directions for chain code. So, suppose I have a motion trajectory, suppose I

have a trajectory suppose these type of trajectory, this trajectory I can represent by using the

chain code because in this case you can define the direction, suppose corresponding to this

segment  I  have 1 direction that  direction I can see from the chain code,  I  can use the 8

directional chain code. 

So, if you see this direction this is I can consider as 1 and suppose if I considered from this

segment to this segment this portion I can consider as the direction 7 corresponding to this 8

directional chain code. And similarly, if I consider this direction also from this point to this

point,  I  can find a  particular  direction  from the 8 directional  chain  code or  I  can  use 4

directional chain code. So, this is one application of the chain code So, representation of a

motion trajectory by using the chain code. 



So, for example, suppose, a gesture I am doing, gesture recognition and hand is moving in the

space and in this case, I am getting the trajectory of the hand movements. So, this trajectory I

can represent by using the chain code. 
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And in this case, I have shown how to determine the chain code. Here I am considering 8

directional chain code. So, I have 8 directions 0, 1, 2, 3, 4, 5, 6, 7. So, I have 8 directions and

I am considering one arbitrary boundary. So, what I have to do, start at any boundary pixels

suppose, if I considered a pixel is suppose A. Start at any boundary pixels I am considering

and suppose if I considered the first segment. So first segment is from this to this. 

Corresponding to this if you see the direction the direction is 7 after this I am considering the

next direction that direction is this. So, corresponding to this direction, if I see the value in the

left  figure  that  is  the  chain  code  it  will  be  6  and  again  if  I  consider  this  segment

corresponding to that segment my direction will be 0 and corresponding to this direction, my

direction will be 1, like this I can consider all the directions. So, corresponding to this if you

see,  so,  I  have these directions,  the directions  are  7,  6,  0,  1,  0,  6,  5,  5,  4,  3,  2,  4,  2,  1

corresponding to their particular boundary. 

And after this number I can represent in the binary form. So, starting point is the A, now,

corresponding to 7 I have 111, 6 is 110 that is represented in the binary form that I can

represent in the binary form that is the chain code. So, you can understand the concept of the

chain  code,  I  can  consider  4  directional  chain  code,  but  if  I  want  to  get  more  accurate



boundary representation, then in this case you have to consider 8 directional chain code or

maybe 18 directional chain code like this you can consider the possible directions. 
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And in this case, I am considering a generalized chain coding. So, in this case you can see I

am considering the angle theta and the perimeter I am considering the perimeter is t. So, what

I have to consider the encode Theta, t. So, for different angles you can see, I can determine

theta t and in this case this curve I am showing a theta versus t, t is the perimeter and theta is

the angle. So, this is the generalize chain coding thus I am plotting theta vs t. 
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And in this case I am giving one example how to determine the chain code for a boundary.

So, in this case I am considering one object boundary and I am doing the resampling, the

resampling  of  the  object  boundary.  So,  after  resampling  you  can  see  I  am  getting  the

boundary vertices. So, these are the vertices I am getting after resampling. So, these are the

boundary vertices I am getting. After this, if you consider the segment by segment you can

see if I consider a 4 directional chain code, can see the directions. 

The direction is 00 333 like this  and again 2, 3 221 like this, I am getting the boundary

directions, all the directions I am getting. And if I consider 8 directionals chain codes, then

you can see the directions  all  directions  076666 and 5,  5 3 3 like this,  I  am getting  the

directions. And based on this I am getting the chain code. The chain code can be converted

into binary numbers. 

(Refer Slide Time: 10:35)

 

So,  now,  the  problem of  a  chain  code.  The problem of  the  chain  code  is  a  chain  code

sequence depends on the starting point. In my last example. I have considered a starting point

as the A, A is the starting point, where the chain code sequence depends on the starting point.

So, that is why I can consider the chain code as a circular sequence and redefine the starting

point, so that the resulting sequence of numbers forms an integer of minimum magnitude, that

I can consider. 

So, for this I have to consider and quantity, the quantity is the first difference of a chain code.

So here in this case, I am considering the 4 directional chain code and how to determine the

first  difference.  So  first  difference  is  determined  like  this.  The  counting  the  number  of



direction change in anti clockwise direction, that is the counterclockwise direction, between 2

adjacent element of the code. 

Suppose in this example, I am considering the transition from 0 to 1 the direction is 0, and it

is transition from 0 to 1. So, I have to see in the counterclockwise direction, from 0 to 1, the

first difference will be 1 because only 1direction change from 0 to 2, how many directions

change the first one is 0 to 1 and after this from 1 to 2, that means 2 directions change that is

the first difference.  And again from 0 to 3, if you see it  should be in the anti  clockwise

direction. 

So, first one is 0 to 1 and after this 1 to 2, and after this 2 to 3. So, if I consider the direction

change from 0 to  3,  then  the  first  difference  will  be 3.  Similarly,  from 2 to  3,  the  first

difference will be 1, from 2 to 0, it will be 2 from 2 to 1, it will be the first difference will be

3. So, in this case, you can see corresponding to this chain code the chain code is suppose 101

03322. So I am considering a chain code. And from this, I can determine the first difference.

The first difference I am determining like this, so from 1 to 0, so how many directions change

1 to 0, the 3. 

Next one is from 0 to 1, 0 to 1, how many directions change, one. So I am considering one

next 1 to 0, so how many directions change 1 to 0? So directions in this 3, that is the first

difference from 0 to 3, we have the first difference is 3 next from 3 to 3, the directions change

is 0 and from 3 to 2 the directions change is 3 and from 2 to 2 the first difference will be 0.

So, like this, I am calculating the first difference. After this the chain code is treated as a

circular sequence and we get the first difference like this. 

So,  if  I  consider this  as a circular  sequence,  then in this  case,  if  I  consider the direction

change from 2 to 1, so direction since from 2 to 1 will be 3. So, that I am considering here.

The direction change from 2 to 1, it will be 3 that I am considering, because I am considering

the chain code as a circular sequence and the first difference is rotational invariant. So, in this

example, I have shown, so from the chain code, how to determine the first difference and

after this what we have to consider. 

The chain code is treated as a circular sequence. And from this, we can determine that the

first difference so circular sequence means you can see from 2 to 1 that is from 2, this to 1 I

have to again consider how many direction change so 2 to 1 how many direction change it is



3. So there I am considering here, so that is the first difference of the chain code. The first

difference is rotational invariant. 
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After this there is another definition, that definition is the shape number. The shape number

of the boundary, how to determine. This is the first difference of the smallest magnitude that

is the definition of shape number, the first difference of smallest magnitude. So, for this what

I  have to  consider,  first  I  have to  determine  the  first  difference  and after  this  I  have  to

consider the first difference of smallest magnitude I have to consider. So, corresponding to

this case you can see, I am considering the chain code the chain code is 0321. 

So,  corresponding  to  that  boundary  I  am  considering  the  order  is  4  suppose  and

corresponding to this I can determine the first difference, the first difference will be 3333,

this  is  the  first  difference.  And  what  will  be  the  smallest  magnitude?  In  this  case

corresponding to this number the smallest magnitude will be the same the 3 3 3 3. In the

second case, if I consider order 6, that 003221, that is a good I am getting corresponding to

this order 6, that boundary I am considering. 

And after this I can determine the first difference I can determine. And corresponding to this

first difference what is the smallest magnitude of the first difference, the smallest magnitude

will be 033 033 that is the smallest magnitude I am considering, that is the step number. So,

this is my step number. So, in this case, I have explained how to determine the Shape number

corresponding to a particular boundary. 
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Here I have given another example. So, already I have shown this example that is the order 4

and that boundary is considered and from this I can determine the Shape number. Similarly,

corresponding  to  order  6  I  can  also  determine  the  Shape  number.  And  if  you  see  here

corresponding to this boundary my chain code is, this is my chain code 00 33 22 11 and from

this I can determine the first difference and after this I can determine the Shape number. 

Similarly, in the next example, you can see the chain code, you can see the order is 8 and you

can see the first difference I can consider and after this I can determine the Shape number.

So, for the last boundary also I can determine the chain code, there is the order is 8 and also I

can determine the first difference and from the first difference I can determine the shape

number. 
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So, suppose if I consider one boundary, one arbitrary boundary, so how to determine the

shape  number.  So,  first  I  am  considering  one  original  boundary,  that  boundary  I  am

considering. After this find the smallest rectangle that fits the shape. So, I am finding one

smallest rectangle and that fits the shape. And after this what I am considering, I am creating

the grid. So, you can see the, you can see the third figure. I am creating the grid for n is equal

to 18 subdivision of basic rectangle is 3 cross 8. 

That means, I am considering 3 columns and 8 rows and chain code directions are aligned in

the direction of the grids. So, we can determine the chain code from the grids direction. So,

corresponding to this one, if you see, I can find the chain code because you can see the chain

code directions are aligned in the direction of the grid and I am considering this is the chain

code the 4 directional chain code I am considering 0123. 

And corresponding to this case, I am getting the chain code the chain code will be this. This

is the chain code corresponding to that boundary. So, this is the approximated boundary I am

considering, this is the approximated boundary and after this it is very easy to determine the

first difference I can determine and the from the first difference I can determine the shape

number.  So,  by using the shape number I  can represent a particular  boundary that is  the

boundary representation by using shape number. 
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There is another method and that also we can use for representation of a particular boundary.

The polygon approximation, represent an object boundary by a polygon. So, you can see the

object boundary, so this is the object boundary. You can see this is the boundary and after

this I am considering the polygons you can see I am considering the polygons like this. So,

how to represent the boundary by polygon. So, minimum perimeter polygon consists of the

line segments that minimize the distance between the boundary pixels. 

So, in this case you can see that boundary is represented by the polygon. So, corresponding to

this you see the boundary points I am representing. So, in this case what I have to consider

the minimum perimeter  polygon I am considering,  it  consists of a line segment,  so I  am

considering the line segment that minimize the distance between the boundary pixels. So,

corresponding to this boundary, if you see these 2 points, what will be the minimum distance

between  the  boundary  pixels,  the  minimum  distance  will  be  this.  This  is  the  minimum

distance. 

Similarly, corresponding to these 2 points, suppose this point and at this point what will be

the minimum distance between the boundary pixels, the minimum distance of the boundary

pixels  will  be  this.  So,  from  this  I  am  getting  this  one,  that  is  the  object  boundary

representation by a polygon and I am considering the minimum perimeter polygon which

consists of line segment that minimize distance between the boundary pixels. 
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And  in  this  case,  you  can  see  how  to  represent  the  object  boundary  by  polygon

approximation.  So, here you can see I  am considering one arbitrary boundary,  the object

boundary and in this case you can see, find a line joining 2 extreme points. So, these lines if

you see,  the  line  connecting  a  and b  and also  I  can  determine,  this  distance  also  I  can

determine these distance also I can determine. So, that is I can determine the line between

point A and B, find the line joining 2 extreme points I can determine that is the line AB.

After this I can find out this distance I can find, find the furthest point from the line, that is

this distance I can determine. So, by using this information, I can represent the boundary.

And  here  you  can  see  the  boundaries  approximated  by  a  polygon.  So,  if  you  see  the

boundary,  the  boundary  is  approximated  by  a  polygon.  So,  like  this  I  can  represent  a

particular boundary. 
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And another one is the distance versus angle signature. So, how to represent a 2D boundary

in terms of 1d function.  The 1d function is  the radial  distance with respect  to theta.  So,

corresponding to the first boundary that is the circle, I am considering the radial distance and

also angle theta. So, corresponding to this you can see corresponding to a circle the radial

distance will be always constant, that is the value is always a. So, the radial distance is always

a corresponding to all the angles starting from 0 degree pi by 4, pi by 2, 3 pi by 4, pi. 

For all the angles the radial distances fixed that is constant, that is A corresponding to the

boundary  the  boundary  of  the  circle,  corresponding  to  this.  And if  I  consider  a  square,

corresponding to square, if I considered a radial distance with respect to theta, then in this

case you will be getting the 1d function like this. So, corresponding to these distance if I

considered a diagonal this distance, the distance would be root 2a and for all other points, the

distance is a, radial distance is A. 

So, this distance is a, but corresponding to the diagonal points, the distance will be root 2A,

root 2A, root 2A, root 2A. So, I have 4 diagonal points that is 1, 2, 3, 4. So, corresponding to

4 diagonal points, the radial distance is root 2 A and for other points the radial distance will

be only A, so that I am considering. So, that means, by considering 1d function of radial

distance with respect to theta, I can represent a particular boundary. 
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And also another method that by using the statistical moments I can represent a particular

boundary. So, in this case, this is the definition of nth moment. So, first moment is called the

mean you know and this  one,  the second moment  is  called the variance.  So, what  I  can

consider suppose I have the boundary, the boundary segment is given. The boundary segment

I can convert into 1 D graph. So, you can see the conversion, the boundary is considered as

1d graph and that can be considered as the PDF, the probability density function. 

And from the PDF I can determine all the moments, I can determine the first moment that is

the mean I can determine, I can determine the second moment, third moment I can determine.

So, by using these moments, I can represent the boundary. So, I am repeating this how to

represent  the  boundary  by  using  the  statistical  moments.  So,  boundary  segment  I  am

considering and this boundary segment I can consider is 1d graph and that I can consider as a

PDF, the probability density function. 

And  after  this  from the  PDF  I  can  determine  statistical  moments.  So,  all  the  statistical

moments  I  can  determine,  the  first  order  moment  and  the  second  order  moment  I  can

determine. And by using these moments I can represent a particular boundary. 



(Refer Slide Time: 26:07)

 

And this is also a very important technique that is I can represent a boundary by convex hull,

by a convex hull. So, first I have to define what is a convex hull. So, a convex hull I can

represent as H suppose, a convex hull H of an arbitrary set S suppose, is a smallest convex set

containing S. So, I am writing here the definition of the convex hull. A convex hull H I am

considering of an arbitrary set S is the smallest convex set containing S. 

So, in this case I am considering the set, you can see the set here this is the set S and I have

shown the object boundary, you can see the object boundary. And if you see that gray color,

that is nothing but the convex hull, H is the convex hull of an arbitrary set S is the smallest

convex set containing S. So, I am considering H and within this H, the set S is contained.

After this the H minus S  that is the convex hull minus S, this is called convex deficiency, the

convex deficiency I can consider as D. 

Now, in this case for partitioning the boundary. So, what is the procedure, I am writing the

procedure for partitioning what we have to consider follow the contour of S, S is the arbitrary

set, one arbitrary set I am considering. Follow the contour of S and marking the points at

which a transition is made into or out of a component of the convex deficiency. So, I have to

mark the points, that is how to partition the boundary. 

So, for partitioning the boundary follow the contour of S and marking the points I am doing

the marking, the marking of the points these points I am marking. Based on what, as to who

is  a  transition  is  made  into  or  out  of  a  component  of  the  convex  deficiency.  So,  for



partitioning the boundary I have to identify these points. So, I have to identify these points.

So, and based on these points I can represent a particular boundary. 

So, that means this is the procedure, that follow the contour of S and marking the points at

which the transition is made into or out of a component of the convex deficiency. So, one

practical example is suppose in the human eye suppose the cornea suppose the cornea shape

something like this. So, how to represent this cornea, by using the convex hull. So, in this

case I have to identify these points, I have to identify these points based on this concept of the

convex hull. 

So, I have to partition the boundary and this concept I can apply the concept of the convex

hull I can apply to find this at the boundary points that is I am partitioning the boundary. So,

like  this  in  practical  examples,  the  practical  applications  we can  use  the  convex  hull  to

partition a particular boundary.
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The next important point is the Fourier descriptors. So, by using the Fourier descriptors we

can represent a particular boundary. So, in this case you can see, a view the coordinate x y is

a complex number. So, x y is the boundary point and I can consider as a complex number. So,

x is the real part and y is the imaginary part. So, in this case, I am considering the boundary is

like this x k plus j yk that is a complex number. And in this case, I am considering the

boundary, boundary is SK, SK be the coordinate of the boundary point K. 

And I  am considering x coordinate  and the y coordinate,  x  is  the real  part  and y is  the

imaginary part. So, I am getting the complex number. So, this is my complex number. And in



this figure you can see, I have shown the boundary points and I have shown the x coordinate

and the y coordinate. So, x coordinate is the real part and y coordinate is the imaginary part.

So, how to represent the boundary by using the x coordinate and the y coordinate you can see

here. 

So, corresponding to this point, the x coordinate is x1 and the y coordinate is y1. So, x1 is the

real part of the complex number and y1 is the imaginary part of the complex number. So, for

this  complex  number  I  can  determine  that  Fourier  transform,  that  is  called  the  Fourier

descriptors. So, what is the Fourier descriptor, just I am taking the Fourier transform of SK

that  is  the  DFT I  am taking,  SK e  to  the  power  minus  twice  pi  ul  divided  by k,  I  am

determining the polar dress from I am considering. 

And by this  I  can represent  the boundary the boundary is  SK and corresponding to  this

boundary I have the Fourier descriptor Fourier descriptor is au. So, that means the boundary

is  represented  by the polar  coefficients.  So,  I  have the coefficients  a u.  So,  you can see

instead of storing the entire boundary, I have to consider only the Fourier coefficients. And

also by using this inverse Fourier transform, I can reconstruct the original boundary that is the

reconstruction formula. 

So, you can see s k is equal to 1 by K and summation I am taking from k is equal to k minus

1, k number of points and au is the Fourier coefficients e to the power twice pi u k divided by

k that I am considering. That is the reconstruction formula. 
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So, in this example, I have shown, one boundary I have shown the boundary you can see the

original  boundary I  am considering  that  is  a  square  boundary,  I  want  to  reconstruct  this

boundary from the Fourier coefficients. So, original boundary, you can see the 64 points K is

equal  to  64.  So,  64  points  are  available  and  by  applying  the  inverse  Fourier  test  from

principal  I  want  to  reconstruct  the  original  boundary.  So,  first  I  am considering  only  2

coefficients p is equal to 2 and by using 2 coefficients, here you can see in this reconstruction

formula I am considering p is equal to 2 this is p. 

So, only by considering 2 coefficients, I want to reconstruct the boundary. So, this is my

reconstructed boundary. And again if I consider p is equal to 4, that will be my reconstructed

boundary. Next I am considering p is equal to 8, that is my reconstructed boundary. Next I

am considering p is equal to 16 and that is my reconstructed boundary. Next I am considering

p is equal to 24 like this, I have the reconstructed boundary. And if I consider p is equal to 61

that is my reconstructed boundary. 

And if I consider p equal to 62 then you can see I can perfectly reconstruct my original

boundary.  So,  you  can  see  how  to  reconstruct  the  original  boundary  from  the  Fourier

coefficients. So, this is about the Fourier descriptors. Now, main concept is instead of storing

the boundary pixels, I can only store the polar coefficients to represent a particular boundary.

We need to store all the pixels corresponding to the boundary. So, for this what I can do, I

can determine the Fourier descriptors and what I have to store, I have to store the Fourier

coefficients in the memory. 
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And some of the properties of the Fourier descriptors  you can see.  Corresponding to the

boundary  SK,  my Fourier  descriptor  is  au  and the  next  properties  I  am considering  the

rotation. So, rotation of the boundary by an angle theta. The rotation of the boundary by an

angle theta causes a constant phase shift of theta in the Fourier descriptors. So, that means the

Fourier descriptor is multiplied by again e to the power t theta, that is a constant phase shift

of Theta in the Fourier descriptors. 

Next, I am considering the translation, the translation by amount delta x y. So translation is

delta x y is mainly, delta x y is nothing but in x direction that translation is x naught and in y

direction, this translation is y naught, that I am considering. If the boundary is translated by

delta x y that is in the x direction it is x naught in y direction it is y naught, then the new

Fourier descriptor remains same except at point u is equal to 0, because in this case, I am

considering the Dirac delta function. 

So, corresponding to u is equal to 0 here, so, I will be getting one, for other values it will be

0. So, that is why if the boundaries Translated by x naught in the x direction and the y naught

in the y direction, the new Fourier descriptors remain same except at u is equal to 0. The next

one is I am considering the scaling,  the scaling of the boundary.  This is nothing but the

shrinking or the expanding the boundary alpha into S x, that is nothing but what I am doing,

this is the shrinking or expanding the boundary, that I am considering this the scaling. 

So,  what  is  happening if  I  do the  scaling,  that  is  nothing but  the  scaling  of  the  Fourier

descriptors,  because  the  Fourier  descriptor  is  multiplied  with  alpha.  And if  I  considered

changing the starting point here you can see I am changing the starting point, changing the

starting point in tracing the boundary what will happen, that means, in this case what I am

considering? Changing the starting point in tracing the boundary. 

So,  what  is  happening  here?  It  corresponds  to  the  modulation  of  the  Fourier  descriptors

because au is multiplied with exponential function, that is nothing but the modulation of au.

So, these properties I am considering, one is the rotation, so if I consider rotation, what is

happening, if I do the rotation of the boundary by an angle theta that corresponds to the

constant  phase  shift  of  Theta  in  Fourier  descriptors.  And  if  I  considered  a  boundary  is

translated. 

So, except at the point u is equal to 0, it will not since. And also we have considered the

concept of the scaling, if I do the scaling the Fourier descriptors will be multiplied by the



scale  factor  and  if  I  change  the  starting  point,  then  in  this  case  it  is  nothing  but  the

modulation. So, these are the properties of the Fourier descriptors. 

(Refer Slide Time: 39:28)

 

Now, I will discuss the boundary representation by B spline curve. So, I have shown the

figure a I have shown that one boundary. The B spline are piecewise polynomial functions

that  can  provide  local  approximation  of  contours  of  shapes  using  a  small  number  of

parameters. So, because of this B spline, the B spline representation results in compression of

the boundary data. So, instead of storing the entire boundary pixels what I can consider, I

cannot consider some parameters. 

And by using these parameters  I  can represent  a boundary.  So, that  is  why the B spline

representation results in compression of boundary data. And in the figure a shows a B spline

curve of degree 3, I am considering the B spline curve of degree 3. And it is defined by 8

contour points. So, I have shown the 8 contour points here 1, 2, 3, 4, 5, 6, 7, 8. So, 8 contour

points are considered to represent the boundary. These little dots divide the B spline curve

into number of curved segments. So, in this case I am getting the number of curve segments

you can see this is one segment, this is one segment like this I have the segments. 

The subdivision of the curve can also be modified. So, that is why the B spline curve have a

higher degree of freedom for curve design. So, based on the contour points, I can represent

the object boundary. And as seen in the bigger B, if you see the figure B, to design a B spline

curve what actually we need, we need a set of control points. So, you can see we need set of



control points, the control points are P0, P1, P2, P3, P4, P5, P6. So, these are the control

points. 

So, for B spline we need the set of control points and also we need a set of knots. So, what

are the things we need one is the control points you need control points we need for B spline

representation. Also we need a set of knots. So, here I have shown the knots T1, T 2, T3 like

this, I have shown the knots T 3, T 4 like this, these are the knots. Number 3 also we need a

set of coefficients,  effect of coefficients one for each control points, one for each control

points. So, I need this information, one is the control points after this I need a set of knots, I

need a set of coefficients one for each control points.

And all the curve segments because you can see that we have the curve segments, these are

the segments if you see the segments. All the curved segments are joined together satisfying

certain  continuity  conditions.  So,  I  have  to  define  some continuity  conditions  and  these

segments  can  be  joined  by  considering,  by  satisfying  certain  continuity  conditions.  The

degree of the B spline curve or the degree of the B spline polynomial can be adjusted to

preserve smoothness of the curve to be approximated. 

So, I can consider the degree of the B spline polynomial, maybe I can consider it a second

degree,  third  degree  like  this  I  can  consider.  The  curve  is  approximated  by  these  line

segments connected between the control  points and in this  case the degree of a B spline

polynomial I can adjust to preserve smoothness of the curve to be approximated. And the B

spline  allow  the  local  control  over  the  shape  obey  spline  curve.  So,  based  on  these

parameters, the control points, the set of knots and a set of coefficients and also the degree of

the B spline polynomial I can represent a particular boundary. 

So,  this  concept  I  am  going  to  discuss  in  my  next  class,  the  concept  of  the  boundary

representation by B spline curve. So, in this class I discussed the boundary representation

concepts. So, first I discussed the concept of the chain code and the chain code depends on

the starting point. So, that is why we considered the first difference of the chain code I have

considered.  After  this  I  defined the  shape number.  So,  by using  the  same number  I  can

represent a particular boundary. 

After this  I discussed one important  representation that is  the Fourier  descriptors.  So,  by

using the Fourier descriptors I can represent a particular boundary. So, instead of storing all

the  pixels  of  the  boundary,  I  can  only  store  the  Fourier  descriptors,  that  is  the  Fourier



coefficients.  And  by  using  these  polar  coefficients,  I  can  represent  the  boundary.  I  can

reconstruct  the original  boundary by considering these Fourier descriptors.  So,  this  is the

advantage of the Fourier descriptors. 

And also I discussed about the properties of the Fourier descriptors. Next, I have introduced

the concept of the B spline curve. So, by using the B spline curve, I can represent a particular

boundary. So, how to represent a boundary by using the B spline, that concept I will discuss

in my next class. So, let me stop here today. Thank you. 


