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Welcome  to  NPTEL  MOOCs  course  on  Computer  Vision  And  Image  Processing  -

Fundamentals And Applications. In my last class I discussed the concept of image texture

analysis. So, what is texture? Texture means spatial distribution of gray level intensities, I

discussed 4 research directions one is texture classification, one is texture synthesis, one is

texture segmentation and one is Shape from texture. A particular texture can be represented

or described by 3 techniques I highlighted, one is the structural method, one is the statistical

method and one is the spectral method. 

In case of the structural method, I have to find the placement rule for the texels, texel means

the  basic  unit  of  a  texture,  that  is  the  primitive.  Texel  means  a  group of  pixels  having

homogeneous property and based on this  texel  I  have to  find the  placement  rule  for the

structural representation of a particular texture. The next one is the statistical method. So, I

have to extract some statistical parameters and based on these parameters, I can represent a

particular texture. 

And finally, I discussed the technique is the spectral method. In spectral method, I have to

determine the Fourier transform of the image. And based on the Fourier transform of the

image, I can represent a particular texture. Last class I discuss the statistical  methods for

texture  representation.  So,  for  this  I  can  extract  some  statistical  parameters  like  mean,

standard deviation, third order moment like this I can extract and based on this I can represent

a particular texture. 

After this I discussed the concept of GLCM or gray level co-occurrence matrix. So, today I

am going to discuss some other texture descriptors. So, one is the autocorrelation function

that I am going to discuss today. Another one is very important, that is the Gabor filter based

texture representation. So, I can extract the texture features by Gabor filter and finally, I will

discuss the concept of local binary pattern, LBP. So, how to represent a particular texture by

using LBP. So, let us see the concept of the GLCM that I discussed in my last class. 
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So, you can see in my last class I discussed this, the concept of the GLCM. So, from the input

image, I can determine the GLCM, that is that gray level co-occurrence matrix. And in this

case I am considering 3 gray levels. So, that is why the Pij will be 3 by 3 matrix and for

GLCM I have to define the displacement vector. So, the displacement is 1 and 1. Suppose I

can consider another example of GLCM suppose, my input is 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 2, 2, 0,

0, 2, 2. 

So,  this  is  my input image and, in this  case,  I  will  be getting the 3 by 3 gray level  co-

occurrence matrix. So, suppose my displacement is 1, 0 in x direction it is 1 and in y direction

it is 0. So, corresponding to this d (1, 0) my array the array is P ij the P ij will be there you can

verify this 4 0 2, 2 2 0, 0 0 2. So, this is my array also if I consider the displacement suppose,

and d (0,1)  corresponding to  the  displacement  my P ij will  be  that  is  the  gray  level  co-

occurrence matrix 4 2 0, 0 2 0, 2 0 2, that is for a displacement d (0,1). 

And suppose if I consider a displacement d (1, 1), that is in the x direction it is 1 and in y

direction it is 1. So, corresponding to this displacement, the P ij will be 3 1 1, 1 1 0, 1 0 1. So,

you  can  verify  this.  So,  what  is  the  method,  so,  for  all  the  displacements,  so,  different

displacements, I have to find the GLCM. That is GLCM is computed for several values of d

and the one who is maximize a statistical measure computed from P ij is finally used. So, that

is  the  concept  of  GLCM and  also  in  my  last  class  I  discussed  about  the  normalization

procedure. 



So, we have to do the normalization of the gray level co-occurrence matrix. So, in this case,

in this example, if you consider this example, what I have to consider, these elements, we

have to divided by 16 because 16 pairs of pixels in the image satisfy the spatial separation

condition. So, that is why 0 is divided by 16, 2 is divided by 16 like this I have to consider

corresponding to this co-occurrence matrix. So, I have to do the normalization.
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And from the GLCM I can extract some features, the statistical features, the parameters are

like this. The maximum probability I can determine, the moments I can determine, contrast I

can determine, uniformity and the homogeneity also I can determine from the GLCM and

finally, one important parameter that is the entropy also I can determine. 
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After this I discussed in my last class the concept of the spectral representation of a texture.

So, for this, you can see the texture is nothing but repetitions. So, if I consider a texture, it is

nothing but the repetitions of this texels. So, that is regularity in the texture. So, for this what

I can do, I can determine the Fourier transform of an image. So, suppose Sxy is the Fourier

transform of the image.  So, in the Fourier transform, the prominent  peaks in the Fourier

spectrum give the principal directions of that texture pattern. 

So,  that  is  the  first  point,  that  is  the  prominent  peaks  in  the  Fourier  spectrum give  the

principal directions of that texture pattern and also the location of the peaks in the frequency

plane  gives  the fundamental  spatial  period of  the  patterns.  So,  this  is  the concept  of the

Fourier transformation. This Sxy, there is a Fourier transformation, the 2d Fourier transform of

the  image  that  I  can  represent  in  the  polar  form S (r,  theta).  I  can  convert  to  the  polar

coordinate. 

Last class I discussed about this and I can consider this case S (r, theta) and another one is Sr

theta I can consider. The first case is what is the first case, the theta is fixed and, in this case,

I want to find a behavior of the spectrum along the radial direction. So, this is the theta is

fixed and I want to see the behavior of the spectrum along the radial directions. In the second

case, the r is fixed and I can see the behavior along the circle centered on the origin. 

So, because the theta is variable here, r is fixed, that means, I can see the behavior along a

circle centered on the origin that I can see. And based on this I can compute Sr and the S (r,

theta), can compute. So, some are some all pixels in each area and some all pixel in each area

I  have  to  consider  that  compute  Sr,  I  am determining,  another  one  is  S  (r,  theta)  I  am

determining. 
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And you can see this example corresponding to this original image I am determining the 2D

Fourier transform, there is a 2D Fourier transform I am determining and you can see these 2

spectrums, one is Sr and other one is S (theta) corresponding to this image. And if I consider

another image the textured image corresponding to this image, you can see the spectrum S

(theta) So, S (theta) is different and if you see these 2 spectrums, it is quite different. So, that

means based on Sr and S (theta), I can represent different types of textures. This is about the

Fourier approach for texture representations. 
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Now, next one is the autocorrelation function I can consider. So, in this case, one important

property of textures is the repetitive nature. Repetition is due to the placement of the texture

elements, the texture element is the texels in the image. So, that is the repetition due to the



placement  of texture elements,  Texels  in  the image.  So, in this  case,  this  autocorrelation

function, it is used to identify the amount of regularity of the pixels of the image and it can be

used to estimate the fineness and the coarseness of the texture, that is one important point. 

This  autocorrelation  function  can  be  used to  estimate  fineness  and the  coarseness  of  the

texture.  An  autocorrelation  function  can  be  used  as  a  measure  of  periodicity  of  texture

elements and autocorrelation function is directly related to the power spectrum of the Fourier

transform. This autocorrelation function is defined like this corresponding to the image the

image is  ρ(x, y). So, this is the definition of the autocorrelation function. So, f (k, l) I am

considering f (k + x, l + y) and after this we have to do the normalization this is the f 2 (k ,l ). 

So, this is the definition of the autocorrelation function. This autocorrelation functions drops

off rapidly for fine textures. So, I can write like this autocorrelation function drops off rapidly

for  fine  textures  and for  regular  textures  the  autocorrelation  function  the  autocorrelation

function  has  peaks,  autocorrelation  function  has  peaks  and  valleys.  So  that  means  the

autocorrelation function can be used as a measure of periodicity of texture elements. 

And here I have shown the 2 cases, the autocorrelation function drops off rapidly for fine

texture. So, for fine texture it drops of rapidly and for regular textures, the autocorrelation

function  has  peaks  and valleys.  And also,  the  autocorrelation  function  can  be  used as  a

measure of periodicity of texture elements. 
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Now, suppose if I consider f (u, v) is the Fourier transform, the 2D Fourier transform of the

image and ¿ f (u, v )∨¿
2
¿ is it is called the power spectrum. So, the spectral features can be

extracted by dividing the frequency domain into rings and wedges. So, in the picture you can

see, I am considering some rings, you can see the rings, these are the rings. I am considering

the Fourier transform, the spectral features I can extract by dividing the frequency domain

into rings or maybe the wedges suppose if I consider, this is the wedge, I can consider. 

The rings are used to extract frequency information, while the wedges are used to extract

orientation information of the texture pattern. So, the rings these are rings are used to extract

the  frequency  information.  And  this  the  wedges  I  am  using  to  extract  the  orientation

information. The wedges are used to extract the orientation information. And after this, the

energy features can be computed in his annular regions I can compute and it indicates the

coarseness or fineness of a texture pattern. 

So, I can determine the energy, I can determine the energy for the annular regions and it

indicates the coarseness or the fineness of a texture pattern. Also, I can determine the energy

features in each wedges and these features indicates the directionality of a texture pattern. So,

that  means,  I  can  determine  the  energy  features  in  the  annular  regions  and  also,  I  can

determine the energy features in wedges. 
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And in this wedge, you can see, I am considering the power spectrum, so this is the power

spectrum. In the first case I am calculating f r1r2 I am calculating. So, in this case what I am

considering, that means, all the angles I am considering that is for the annular rings, so, this



ring  I  am considering  these  the  annular  rings  So,  the  angle  is  from 0  to  twice  pi  I  am

considering, so this angle is from 0 to twice pi, that I am considering and but radius is from r

1 to r 2 I am considering. 

The annular rings I am considering and I am determining the feature, the feature is f r1r2. In the

second case what I am considering f θ1 θ2 and, in this case, I am considering the radial distance

from 0 to infinity.  0 to infinity the distance I am considering the radius. But angle I am

considering from theta 1 the angle is suppose this theta 1 to this direction is supposed Theta

2.  So, that  is  and this  angle theta  1 and theta  2 I  am considering  and that  means,  I  am

considering this wedge, this I am considering. 

And corresponding to this I am determining the feature, the feature is  f θ1 θ2 from the power

spectrum. So, this  ¿ f (u, v )∨¿
2
¿is the power spectrum. So, from the power spectrum, I am

determining these 2 features, once is f r1r2and another one is f θ1 θ2. 

So, that means, we can see the behavior of the texture, the fineness or the coarseness and also

we can see the direction of a particular texture pattern, that we can see from these 2 features,

one is f r1r2, another one is f θ1 θ2 So, this is about the autocorrelation function for representation

of a particular texture. 
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The next one is very important, and that is the Gabor filter-based texture representation. That

is I can extract texture features by using a Gabor filter. So, what is Gabor filter you can see a

2D Gabor function consists of a sinusoidal plane wave of a certain frequency and orientation



modulated by a Gaussian envelope. That means I am considering its 2D sinusoidal function.

So,  here  you  see  Sω,θ (x , y )that  is  the  sinusoidal  plane  wave  and  I  am  considering  the

frequency, the frequency is omega and orientation is theta. 

And that is modulated by a Gaussian function that Gaussian function is Gθ (x , y ), that is the

Gaussian function. And if I consider these 2 functions, one is the sinusoidal function, another

one is the Gaussian function then I will be getting the Gabor function, the 2D Gabor function

I am getting. And in this case you can see the Gθ (x , y ) that is the Gaussian function, the 2D

Gaussian  function  and in  this  case  you can  see  the  σ x
2 that  is  the  variance  along the  x

direction and theσ y
2, that is the variance along the y directions. 

This actually represents the spread of the Gaussian function. And in this case S omega theta

that is the sinusoidal plane wave you can see, so it has 2 components one is the imaginary

part, another one is the real part. Here I am considering the imaginary is you can see. So it is

a complex function and I am considering a sinusoidal plane wave of a certain frequency, the

frequency is omega and the orientation is theta. This sinusoidal function is modulated by the

Gaussian. 

The 2D Gaussian function is used to control the spatial spread of the Gabor filter. The various

parameters of the Gaussian determine the spread along the x direction and the y directions

and also, we have done orientation parameters. So, in general, in general for the Gaussian

filter, the σ x=¿ σ y=σ  that means that is a variance along the x direction is equal to variance

along the y direction is equal to sigma is a constant. 

In this case, the rotation parameter theta does not control the spread as the spread will be

circular, if variances are equal. In this case, I am considering the sigma x is equal to sigma y

is equal to sigma that means, the variance along the x direction is equal to variance along the

y direction. And corresponding to this case, the rotation parameter Theta does not control the

spread, as the spread will be circular, if the variances are equal. So, this is the definition of a

Gabor filter. That means we are considering a sinusoidal plane wave of a certain frequency

and orientation modulated by a Gaussian envelope. 
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The same thing I am showing here in this slide also. I am defining the Gabor function, the 2D

Gabor function and I am considering the sinusoidal function and also the Gaussian function.

So, here you can see that  Gθ (x , y ) that is the Gaussian function the 2D Gaussian function,

Sω,θ,  so  I  am  considering  the  parameters  the  frequency  parameter  is  omega  orientation

parameter is theta, that is the Sω,θ (x , y ) is the 2D sinusoid function sinusoidal the sinusoidal

function. XY corresponds to a spatial location of an image. 

So, a spatial  location of the image is considered and, in this  location,  the Gabor filter  is

centered.  Omega corresponds to  the  frequency parameter  of  the  2D sinusoid.  And Theta

already I had mentioned that theta is the orientation parameters. And we have considered the

variance along the x direction and the variance along the y directions. If this sigma x and

sigma y is equal, then in this case, the rotation parameters does not control the spread as the

spread will be circular if the variances are equal. 
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The 2 sinusoidal components of the Gabor filters are generated by a 2D complex sinusoid.

The local spatial frequency content of the image intensity variation, that is a texture in an

image can be extracted by applying these 2 sinusoids. And in this case, you can see there are

real and imaginary components of the complex sinusoid. The 2 components are phase shifted

by pi by 2. So, if  you see the previous slide, you can see the sinusoid function that is a

complex number and I have 2 components one is the cos theta another one is a sin Theta. 

The phase difference between these is pi by 2. And in this case the Gaussian and the sinusoid

function are multiplied to get the complex Gabor filter. So, here you see I am considering the

ideal part of the sinusoidal function. So, R is the real and I am considering does Gθ (x , y )  that

is  the Gaussian function,  the 2D Gaussian function that is  the real part  of the sinusoidal

function is modulated by the Gaussian and I am considering the real part of the Gabor filter. 

The second one is I am considering the imaginary part of the sinusoidal function and this is

modulated by the Gaussian and I am getting the imaginary part of the Gabor function. The

real and the imaginary part of the Gabor filter are separately applied to a particular location,

the location is suppose x and y of an image F (x , y) to extract Gabor features. So here you

see what I am doing. I am considering the images f (x y) that is convolved with the real part

of the Gabor filter. 

So this is the real part of the Gabor filter. And also you can see the next part, the second part,

this is the image the image is F (x , y) that is convolved with the imaginary part of the Gabor

function  and from this  the  real  part  and the  imaginary  part,  I  can  determine  that  Gabor



coefficients, the Gabor features I can determine. So CΨ (x , y) that is nothing but the Gabor

features. So, corresponding to a particular texture, I can determine the Gabor features. 

So,  the  parameters  are  omega  and  the  theta.  Omega  is  the  frequency  and  theta  is  the

orientation. Also, another parameter the sigma x and sigma y. So, I will be getting the Gabor

features for different orientations. So, you can see how we can extract the Gabor features by

considering this Gabor filter. So, I have to consider the real part of the Gabor function. So,

for this I am considering the real part of the sinusoidal function and also, I have to consider

the imaginary part of the Gabor function, for this I am considering the imaginary part of a

sinusoidal function. 

And already I had mentioned what are the parameters, the parameters are variance along the x

direction, variance along the y direction, the orientation parameter theta and I can consider

the frequency parameter omega. 



(Refer Slide Time: 25:24)

 

So, in this case I have shown a typical Gaussian filter with sigma is equal to 30 and in this

case I am considering the σ x=¿ σ y=σ . And another case you can see a typical Gabor filter

with sigma is equal to 30 and omega is equal to 3.14 and the orientation is 45 degree that I

am considering. 
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And here I have shown that 2D Gabor filter and this is the expression for the 2D Gabor filter

and sigma is the spatial spread, omega is the frequency and theta is the orientation parameter.

And in this case, you can see, use a bank of Gabor filters at multiple scales and orientations to

obtain filtered image. Gabor filters with different combinations of spatial width, frequency

omega and orientation theta. 



So, you can see all these examples 1, 2, 3,4. So for this what I am considering the Gabor

filters with different combinations of spatial width and frequency omega and the orientation

also I am considering that is that theta. So, this is about the Gabor filter. So, by using the

Gabor filter, we can extract texture features. 
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Another  important  technique  is  MPEG-7  homogeneous  texture  descriptors  that  is  called

HTD,  the  homogeneous  texture  descriptors.  This  HTD  describes  directionality  and  the

coarseness and the regularity of a texture pattern. So, what it describes, the first one is the

direction  of a  particular  texture,  the coarseness and the regularity  of a  texture  pattern,  it

characterizes  a particular  texture.  So,  for this  what I  have to  consider,  for this  the mean

energy and the energy deviation from a set of frequency channels are considered. 

So, I am repeating this. So, for HTD, the homogeneous texture descriptors, the mean energy

and the energy deviation from a set of frequency channels are considered and 2D frequency

plane is partitioned into 30 frequency channels. So, for this we have to consider 30 frequency

channels. So, for this what we have to consider, the mean energy we have to compute and its

deviation are computed in each of these 30 frequency channels in frequency domain. 
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So, here I have shown the pictorial  representation of the HTD, the homogeneous texture

descriptors. And you can see we have considered 30 channels, the frequency channels we

have considered. So, here what is HTD? So, here you can see HTD is the first component is

Fdc. So, what is F dc and what is F sd. F dc and F sd are the mean and standard deviation of the

image that is the definition of F dc and F sd, the mean and the standard deviation of the image

respectively. 

And I am considering e 1, e 2, e 3, up to e 30 because we have 30 frequency channels and also

we are considering the deviation is d 1, d2 up to d 30 for 30 channels. So, in this case the ei and

di are nonlinear victories scale and quantized mean Energy and Energy deviations of the

corresponding  ith  channel.  So,  that  means  ei corresponds  to  the  mean  energy  and  di

corresponds to energy deviation of a particular channel. 
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And also the individual channels or modeled by using Gabor functions. So, suppose let us

consider channels index by s r. So, what is s here s is the radial index and r is the angular

index. So, what I have to consider, the individual channels are modelled by using Gabor

functions.  So,  I have 30 channels and the individual  channels are model by using Gabor

functions. And I am considering the channel index by s, r. s means the radial index and r

means the angular index. So, s, r channel is model in the frequency domain like this. 

So, this is G s r omega theta is nothing but I am considering 2 exponential functions you can

see and P omega theta that I am considering. So, on the basis of the frequency layout and the

Gabor functions, the energy ei of the ith feature channel is defined as the log scale sum of the

squares of the Gabor filtered Fourier transform coefficients of an image. So, that means, what

is ei, so ei is computed like this and you can see what is pi, pi it is determined from this

expression that is the definition of pi. 
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So, this is the pi. So, what is p omega theta in this expression if you see all this expression

what is the P (ω,θ). P omega theta is the Fourier transform of an image represented in the

polar frequency domain. That is P (ω,θ )is equal to f (ωcosθ ,ωsinθ). And in this case f u, v is

the Fourier transform, 2D Fourier transform of the image in the Cartesian coordinate system

that I am considering. And also, I need to determine the energy deviation I have to determine.

In my last slide I have determined the mean energy. Now, I have to determine the energy

deviation,  that is the di for a particular channel. That is defined as the log scale standard

deviation of the square of the Gabor filtered Fourier transform coefficients of an image. So,

you can see I can compute di by using this expression and what is qi, the qi is obtained from

this.  This  concept  you  can  read  from  some  papers  on  MPEG  7  homogeneous  texture

descriptors. So, that is by HTD, I can represent a particular texture, that is nothing but the

texture descriptors. 
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And finally, I want to discuss another descriptor for texture, that is LBP, the local binary

pattern. So, LBP is a well-known texture descriptor and that is widely used in many computer

vision applications.  So, for many computer vision applications, even the face recognition,

facial  expression  recognition  are  the  many  applications  the  LBP  is  used.  LBP  is

computationally simple and easy to apply and also, it is a nonparametric descriptor. 

One  important  point  is  it  can  handle  the  monotonic  illumination  variation,  that  is  one

important point. So, it can handle the monotonic illumination variations. So, how to compute

the LBP? So, corresponding to this image you can see here, that is I am considering the basic

local binary pattern, because LBP has many variants, but in this case, I am considering only

the  basic  LBP.  So,  in  basic  LBP  each  pixel  of  an  image  is  compared  with  their  8

neighborhood pixels of a 3 by 3 block. 

So, here you can see in this image, I am considering a 3 by 3 block and you can see the

neighborhood of the pixel, the pixel is 42, the center pixel is 42 and the neighborhood pixels

are 202, 12,  24,  0,  42,  64,  33 and 81, that  means we have 8 neighborhoods.  So, in that

neighborhood, I can write like this i n i n, that is the neighborhood and in this case n is equal

to 1, 2, so I have eight neighborhood pixels. Corresponding to the center pixel, the center

pixel  is  suppose ic  that  is  the  center  pixel.  And after  this  what  I  have  to  do,  I  have  to

determine the LBP. So, how to determine the LBP. 

So, for this if i n that is the neighborhood pixel is greater than equal to the center pixel, ic is

the  center  pixel,  this  is  the  center  pixel  and  in  is  the  neighborhood  pixel,  this  is  the



neighborhood pixel. And if i n is greater than ic, then in this case, i n will be equal to 1 else i

n is equal to 0. So this I am considering. So based on this you can see the 42 is compared 202.

Since 202 is greater than 42, corresponding to this, I will be getting 1 here, this 1. 

After  this  is  the  12  is  compared  with  42,  the  12  is  Less  than  42,  so  that  is  why  I  am

considering it 0. Next, I am comparing 24 with 42, 24 is less than 42, so that is why I am

considered it is 0. And like this I am getting these numbers, all these numbers I am getting.

So, what will be the my number binary number 10001101. That means, I have to do the

binarization. So, binarization is done by concatenating this in from the left top corner so,

what is the left top corner is the left corner left top corner in the clockwise direction. So,

clockwise direction is, this is the clockwise direction I am considering, this is the clockwise

direction. 

So, that means I am repeating this the binarization is done by concatenating this i n from the

left top corner in the clockwise direction. So, corresponding to this my binary number will be

1000 if  you see this  example 1101 that  is  the case.  And subsequently  the corresponding

decimal  equivalent  value I have to determine.  So, corresponding to this  what will  be the

decimal  equivalent  value?  The  decimal  equivalent  value  will  be  141,  that  141  will  be

assigned to the center pixel, the center pixel is this is the central pixel. 

So, this 141 will be assigned to the central pixel ic which is known as the LBP code and this

step is repeated for all the pixels of the image. So, for all the pixels of the image I have to

repeat this step and finally, the corresponding histogram of the LBP codes is considered as a

local  texture  features  of  the  original  image.  So,  what  finally  I  have  to  do.  Finally,  the

corresponding histogram of the LBP codes we have to consider and the local texture features

of the original image I can determine. 

So, here you see corresponding to the center pixel I am getting the LBP code, the LBP code is

141. So, this is the LBP code for the center pixel. So, for all the pixels of the image, I have to

do this and finally, the corresponding histogram of the LBP codes we have to consider and

that is considered as the local texture features of the original image. So, I have to determine

the histogram of the LBP codes. 

The LBP  p r corresponding to the central pixel I can determine and that will be the binary

number and this binary number I can convert into the decimal number and what about this

function, the function is F (x) the F (x) will be 1 if x is greater than equal to 0 otherwise it



will be 0, if x is less than 0. That means I am doing this case, that is I am comparing the

center pixel with the neighborhood pixel and based on this I am getting the value of F (x). 

And from the F (x) I am getting this binary numbers and binary numbers I am converting into

equivalent decimal representation and that is nothing but the LBP code. And there are several

variants of the LBP. This is the basic LBP, like this I can give some example. One example is

the extended LBP. Another LBP is the uniform LBP, that is very popular, uniform LBP is

very popular. So, you can see all this concept from the research papers. So, what is extended

LBP, what is uniform LBP. But the basic concept of the local binary pattern is this. 
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So, here also I have shown one example of the local binary pattern. Corresponding to this

image you can see I am following the same procedure, just comparing the central pixel with

the neighborhood pixels, just I am doing the comparisons like this. And based on this I am

getting the binary code, the binary code will be 11111100 and the decimal equivalent will be

252, that is the LBP code. 
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And finally, there is another technique, I am not going in details about this local derivative

pattern, that is called the LDP, the local derivative pattern. So, this is also very popular. If

you want to see this concept, you can see this paper, the research paper, that is the local

derivative pattern vs local binary pattern. So, in case of LBP, the LBP actually encodes the

binary result of the first order derivative among local neighbors by using a simple threshold

function. LBP is incapable of describing more detailed information. 

So, that  is  why we consider  the LDP, that  means LDP considered n minus 1 th ordered

derivative direction variations based on binary coding functions. An LDP encodes the higher

order  derivative,  that  is  one  also  important  point.  In  LDP,  we  consider  a  higher  order

derivative  information,  which contains  more detailed  discriminative  features  that  the first

order LDP cannot obtain from an image. Because in case of LBP, we consider the first order

derivative. 

And also, we considered a simple threshold function because I am comparing the center pixel

with the neighborhood pixels and for this I am considering a threshold function. But in case

of  the  LDP,  we are  considering  the  high  order  derivative  we are  considering  and many

directions  I  am  considering,  the  directions  like  0-degree,  45  degree  like  this  different

directions I am considering. And LDP encodes the higher order derivative information and

that is why it contains more detailed discriminatory features in the LDP as compared to LBP. 

So, for more details, you can see this paper on LDP, the local derivative pattern. So, in this

class, I discussed some other texture features like autocorrelation function I have discussed



and after this one important representation that is a Gabor filter I have considered. So, how to

extract the texture features by Gabor filter, that concept also I have discussed. This is very

important. And finally, I discussed the concept of LBP, the local binary pattern. So, this is

about the texture analysis. Let me stop here today. Thank you. 


