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Welcome to NPTEL MOOCs course on Computer Vision and Image Processing: Fundamentals

and Applications. In my last class I discussed the concept of spatial filtering, I discussed the

concept of low pass filter, high pass filter and the high boost filter. Also, I discussed one filter

that is the non-linear filter, the median filter. The median filter can be used to remove impulse

noises. That is called as the salt and pepper noises.

Also I discussed one important concept the filter is bilateral filter. So, in the bilateral filtering we

consider range and the domain of an image. Today I am going to discuss the concept of image

filtering in frequency domain. In frequency domain what we have to do, we have to modify the

Fourier Transform of the image. So, for this we have filters like the low pass filter, high pass

filter, maybe the band pass filter and band stop filter. And this concept I am going to discuss

today, the concept of the frequency domain filtering.

So, for this the first step is we have to take the Fourier Transform of the image. So, before

determining the Fourier Transform of an images I have to do some preprocessing, that means I

have to multiply the image by minus 1 to the power x plus y. So, this step I am going to explain

now. So, what is the concept of the frequency domain image filtering?



(Refer Slide Time: 01:58)

So, I will discuss the concept of the frequency domain filtering. 

(Refer Slide Time: 02:02)

So, already I have explained this concept. If you see F u v, that is the Fourier Transform of an

image. If I consider the Fourier Transformation, it has two parts, one is the real part another one

is the imaginary part. So, in this case you can see first one is the real part, the next part is the

imaginary part. 

This Fourier Transform can be represented in the polar coordinate, like this. So, we have the

magnitude  component  and another  component  is  the phase angle component.  In case of  the



Fourier Transform, I can determine the magnitude of the Fourier Transformation. The magnitude

I can determine like this, so I have the real component and I have the imaginary component. 

And also I can determine the phase angle. The phase angle is nothing but tan inverse I u v, that is

the imaginary part, divided by the real part, the real part is R u v. And in this case u and v is the

special frequency along the x direction and the y direction respectively. So, in this case you can

see the Fourier Transform I am considering, and I am considering the magnitude of the Fourier

Transformation and the phase angle of the Fourier Transform.

(Refer Slide Time: 03:18)

And for the preprocessing what I have to do, if you can see here the Fourier Transform of an

image the image is f x y and corresponding to this the Fourier Transform is F u v. So, in this case

the input image is multiplied by minus 1 to the power x plus y. Then in this what is the objective

of this preprocessing step? 

This shifts the center of the Fourier Transform to the point that point is M by 2, N by 2. So,

corresponding  to  the  Fourier  Transformation,  then  in  this  case  the  center  of  the  Fourier

Transform is this and the coordinate is M by 2 and N by 2 that is the coordinate of the center of

the Fourier Transform. 

So, for shifting I have to multiply the image by minus 1 to the power x plus y, and after this I

have to determine the Fourier Transform of the image. This is called the preprocessing. So, first I



have to do the preprocessing and after this I have to determine the Fourier Transform of the

image. And for displaying the Fourier Transformation already I have explained that I have to

consider the log transformation. That is to compress a dynamic range of the image.
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And one important property of Fourier Transform is the symmetric property. If you see here, the

F u v is equal to F complex conjugate minus u, minus v that is the conjugate symmetric property.

And also if I considered a Fourier Transformation, the magnitude of the Fourier Transform is

symmetric. And that is why I am getting the Fourier Transform similar to like this, because of

the symmetric. The magnitude of the Fourier Transform is symmetric and also I have to consider

the  Fourier  Transform  is  conjugate  symmetric.  So,  that  is  why  I  am  getting  this  Fourier

Transformation.
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And in this case, I have already explained this one in one of my classes. That is if I take the

Fourier Transform of the input image, my input image is this and I am determining the Fourier

Transform of the image, so corresponding to this I am getting the Fourier Transform of this. And

in this  case,  if  I  want to reconstruct  the original  image,  I  have to apply the inverse Fourier

Transformation. 

So, in this  case this is the Fourier Transform of the image, and after this I am applying the

inverse Fourier Transformation to get back the image, that is the reconstructed image. And in

this  case  the  perfect  reconstruction  is  possible,  because  I  am considering  all  the  frequency

information presented in the image. 

And in case of the Fourier Transformation, the central part, supposes if I considered the Fourier

spectrum  here,  this  central  portion  corresponds  to  the  low  frequency  part,  this  is  the  low

frequency part, that is the low frequency information. And if I consider the outside portion, like

this that corresponds to the high frequency information. The central position is the low frequency

information and the outside if you see, that is the high frequency information. 

In this case I am considering all the frequency information for reconstruction so that is why the

perfect reconstruction is possible in this case.
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In  this  example  you  can  see  I  am  considering  only  the  central  portion  of  the  Fourier

Transformation, that corresponds to the low frequency information. And if I apply the inverse

Fourier Transformation, then you can see the reconstructed image. So, this is the reconstructed

image. 

And  in  the  second  example  what  I  am  considering,  I  am  neglecting  the  low  frequency

information, that means the central portion I am not considering, I am considering only the outer

portion of the Fourier Spectrum. That means I am considering the high frequency information.

And if I determine the inverse Fourier Transformation, then in this case this is my reconstructed

image. 

So, in the first case what you will be getting that because of the low frequency component it

gives general appearance of the image. Only I have the low frequency information so it gives

general appearance of the image. But in the second case I am considering the high frequency

information, that corresponds to fine details of the image. 

Fine details mean like the edges, boundaries the fine information present in the image.
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So, here I am explaining this one. The central part of the Fourier Transform, that is the low

frequency components are responsible for the general gray level appearance of the image. On the

other hand, the high frequency components of the Fourier Transform are responsible  for the

detail information of an image. So, this concept already I have explained.

Now in case of the frequency domain filtering I can consider the filters like this, suppose if I

consider a low pass filter, for low pass filter I have to select this portion only. I have to neglect

the outer portion of the spectrum. Then in this case I will be getting the low pass filter image.

And if  I  consider  high  pass  filter,  then  I  have  to  neglect  the  central  portion  of  the  Fourier

Transformation, so this portion I am neglecting and I am considering the outer portion of the

Fourier Transformation. 

So, that means I can consider the high pass filter and the low pass filter based on this concept.
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Here, I am showing one example. I have shown one image, that is the image is this, input image.

And corresponding to this image I have the Fourier Transform, this is my Fourier Transform.

And if I consider this circle, I have shown a circle, the red circle. And if I consider this portion

only  that  means  I  am  only  considering  the  low  frequency  information,  that  gives  general

appearance of the image. 

And if I consider the outer portion, the outside portion like this, if I consider this portion or this

portion or this portion, it gives the fine details of the image. Like the edges boundaries or a fine

information of the image.
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And in this case, again I am showing here what I am considering. I am considering the Fourier

Transformation and I have to reconstruct the image by using the inverse Fourier Transformation.

In the first case you can see only I am considering this portion of the Fourier Transform. That

means I am only considering the low frequency information and corresponding to this, this is my

reconstructed image. 

After this if you see the second case, I am considering this portion of the Fourier Transformation,

that  means  I  am increasing  the  size.  That  means  I  am only  considering  the  low frequency

information  or  maybe  some high  frequency  information  also  I  am considering  maybe.  And

corresponding to this one my reconstructed image will be like this. 

In  the  third  case I  am increasing  this  portion,  if  you see,  that  means  I  am considering  low

frequency information and maybe some high frequency information. And considering this, if I

determine the inverse Fourier Transformation, then I will be getting the reconstructed image like

this. And in the final case, you can see I am considering the big portion here. 

So, this portion I am considering that means I am considering the low frequency information and

the  high  frequency information.  Not  all  the  high  frequency  information  but  significant  high

frequency information I am considering.  And corresponding to this, this  is  my reconstructed

image. So, you can see the concept of the filtering, the frequency domain filtering. 



So, based on selection of this, the portion of the Fourier Transformation you can reconstruct the

image.  You  can  select  the  low  frequency  information,  you  can  select  the  high  frequency

information,  like  this,  based  on your  requirement  you can  select  the  portion  of  the  Fourier

Transformation. This is the Fourier spectrum.
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So, in the frequency domain filtering edges and the sharp transitions is mainly the high frequency

content  of  the  Fourier  Transformation.  Low frequency content  in  the  Fourier  Transform are

responsible to the general appearance of the image, that means it gives the information of the

general appearance of the image. And in this case the blurring or the smoothing is achieved by

attenuating range of high frequency components of Fourier Transformation. That means if I only

consider the low frequency information, I can do the blurring, I can do the smoothing.
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And  this  is  the  typical  frequency  domain  filtering.  So,  first  one  is  the  input  image  I  am

considering. After this I am doing the preprocessing, the preprocessing is nothing but the image

is multiplied by minus 1 to the power x plus y. And after this I am taking the Fourier Transform

of the image, so the F u v is the Fourier Transform of the input image. And after this I am

considering the filter function. The function is H u v. The filter function maybe low pass filter,

maybe the high pass filter, I am considering the filter function, the function is H u v.

The filter function is multiplied with the image, that is the F u v. F u v is the Fourier Transform

of the image.  That  is  multiplied  with the filter  function.  After  this,  I  am taking the inverse

Fourier Transformation to reconstruct the image after the processing. That means the processing

means the frequency domain filtering. And in the post-processing, again I have to multiply this

by minus 1 to the power u plus v. So, I will be getting the output image, the output image is g x

y. That is the enhanced image.
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And this concept I am showing here. So, I have the input image, in the first diagram if you see in

the  first  figure,  I  have  the  input  image.  I  am  taking  the  Fourier  Transform  of  the  image,

corresponding to this I am getting the Fourier Spectrum. And I have shown the reconstructed

image by considering the inverse Fourier Transformation. So, here I am showing the inverse

Fourier Transformation. 

And in the second figure if you see here, I am only considering the central portion of the Fourier

Transformation and I am reconstructing the image based on the central portion of the Fourier

Transformation. Then in this case I will be getting the blurred image. That is nothing but the low

pass filtered image. 

In the second case I am neglecting the central portion of the Fourier Transformation. This portion

I am neglecting. I am only considering the outside portion of the Fourier Transformation and I

am applying the inverse Fourier Transformation for reconstruction. Then in this case I am getting

the edges and the boundary, the fine details of the image. So, from this you can understand the

concept of the low pass filtering and the high pass filtering. 
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Now, you can see the convolution operation in spatial domain can be represented like this. So, g

(x, y) is the output image suppose, my input image is f (x, y), I am doing the convolution of f (x,

y) with h (x, y). In this case I am considering g (x, y) is the output image, f (x, y) is the input

image and I am considering the convolution of the input image with h (x, y). 

So, this is the convolution operation. You can see. So, g (x, y) is equal to f (x, y) convolution h

(x, y). So, f (x, y) is the input image, g (x, y) is the output filtered image, and I am considering

the impulse response, the impulse response is h (x, y). So, this is the definition of the convolution

in spatial domain. 
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And already you know in signal processing the convolution theorem. The convolution in the

spatial domain or in the time domain is equivalent to multiplication in the frequency domain.

That  is  the  convolution  theorem.  So,  here  you  see  a  convolution  in  the  spatial  domain  is

equivalent to multiplication in the frequency domain. 

So,  that  means  in  the  frequency  domain  filtering  what  I  have  to  do,  I  have  to  do  the

multiplication instead of convolution. So, in this case F (u, v) is the input image, the Fourier

Transform of the input image, and H (u, v) is the filtered transform function. So, only I have to

do the multiplication between F (u, v) and H (u, v).
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And in this case I have shown one example of the Gaussian low pass filter. So, in the frequency

domain I have shown. And corresponding to this I have shown the function in the spatial domain.

In spatial domain it is something like this. That is nothing but the averaging. Because if you see

the averaging filter in the spatial domain, if you see the filter coefficients of a filter widths, the

filter widths are something like this, 1 by 9, 1 by 9, 1 by 9, 1 by 9, 1 by 9, 1 by 9, so these are my

filter coefficients for a low pass filter. 

And if you see this Gaussian high pass filter, this is in the frequency domain. And corresponding

to spatial domain this is my function, that is h (x), corresponding to the high pass filter. If you

see the central portion the high value, because in the high pass filtering if you know what is the

mask corresponding to the high pass filter in the spatial domain. 

If you see the central pixel it is 8 by 9. The remaining is 1 by 9, minus 1 by 9, minus 1 by 9, like

this. This is the mask corresponding to the high pass filter in spatial domain. So, that is why

corresponding to this 8 by 9 I am having a peak here in the spatial domain. You can see the

response of the filter in frequency domain and in the spatial domain. 
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Now, first I am considering the ideal low pass filter. So, before going to the ideal low pass filter

in my discussion I will be considering the ideal low pass filter. So, I will be considering the ideal

filter, I will be considering the Butterworth filter, also I will be considering the Gaussian filter. In

case of the ideal filter that is mainly the sharp filtering, you can consider as a sharp filtering.

And in case of a Gaussian filter it is something like the smooth filtering. In case of the ideal filter

the transition from the pass band to the stop band is very sharp. I am repeating this. For the ideal

low pass filter or maybe the ideal filter the transition from the pass band to the stop band is very

sharp. So, that is why I am getting the sharp filtering. But in case of the Gaussian it gives smooth

filtering. In case of the Butterworth filter we have a parameter, the parameter is the filter order.

In Butterworth filter we have a parameter that parameter is filter order.

If  I  considered  the  high  order  values,  the  filter  order  is  very  high.  The  Butterworth  filter

approaches  to  the  ideal  filter,  for  lower  order  values  the  Butterworth  filter  is  more  like  a

Gaussian filter.  So,  that  means in  this  case Butterworth filter  maybe viewed us providing a

transition between two extremes, one is ideal low pass filter, another one is the Gaussian low

pass filter. Now corresponding to the ideal low pass filter in the frequency domain, I am defining

the filter function, the filter function is H (u, v).

Already I have explained what is u? u is the special frequency in the x direction and v is special

frequency in the y direction. And corresponding to this I am considering D naught is a positive



constant. D naught is called as cutoff frequency, it is a positive constant. And in this case if D u v

is less than equal to D naught, the response will be 1. If D u v is greater than D naught, the

response will be 0.

Now, what is D u v? What is the meaning of the D u v? D u v is the distance between a point u v

in the frequency domain and the center of the frequency rectangle. The center of the Fourier

Transform is M by 2 comma N by 2. So, D u v, that is the distance between a point u v in

frequency domain and the center of the frequency rectangle, that is D u v. And D naught is a

cutoff frequency, D naught is a positive constant. So, this is a definition of the ideal low pass

filter. 
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Corresponding to this filter transfer function I am showing the ideal low pass filter. So, if you see

the H u v, that is the filter function, that is very similar to the box function. And in the second

case I am showing the filter as an image. The filter as an image I am showing. And in the final

case, if you see the last case, I am showing the filtered response, that is the low pass filter. And D

naught is the cutoff frequency. And already I have explained that D naught is a positive constant.

So, all the frequencies on or inside the circle of radius D naught, so in this case I am considering

this circle. And radius is D naught here. So, all the frequencies on or inside the circle of radius D

naught are passed without attenuation. Whereas, all frequencies outside the circle are completely



attenuated. And in this case you can see the ideal low pass filter is symmetric about origin. So,

this is the meaning of the D naught.

So, if you see the previous expression for the filter function, you can see D u v is less than equal

to D naught, if this condition is satisfied then H u v will be 1. D u v is greater than D naught,

then H u v will be 0. That means all the frequencies on or inside the circle of radius D naught are

passed without attenuation. Whereas, all frequencies outside the circle are completely attenuated.

That is the meaning of this expression. 

And in this case of you see, corresponding to this rectangular function, in spatial domain I have

the  same function  in  spatial  domain.  So,  this  is  the  concept  of  the  ideal  low pass  filter  in

frequency domain and in the spatial domain.
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Now, in this case I am showing the example of the ideal low pass filter. And in this case you see

my input image is this, the first one is the input image. After this what I am considering? I am

considering the ideal low pass filtering with cutoff frequency, that is the cutoff frequency is the

D naught and the radii values, something like the 5, 15, 30, 80, and 230. If the radii value is 5,

that means I am considering a very small circle, radius value is 5. 



Corresponding to this, this is my output image. That means this is blurred image. Because I am

considering only the low frequency information. And suppose if I consider suppose the cutoff

frequency, the radius is 15, corresponding to 15 my reconstructed output image will be like this.

Corresponding  to  30,  that  means  my output  will  be  something  like  this.  That  means  I  am

continuously selecting the low frequency information and also some high frequency information.

That means I am increasing the size of the circle. So, this is the circle here, I am increasing the

size of the circle like this. And in this case you can see, if I consider the radius is 5 only the

image will be completely blurred. 

And if I consider suppose the radius is something like 80, then in this case the blurring will be

less. But if I consider this case, suppose the radius is 30, you can see some effects the rings like

this. This is called the ringing artifacts. You can see the ringing and the blurring. The blurring

depends on the size of the radius. That means it depends on the cutoff frequency. The cutoff

frequency is D naught. 
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Now, I will consider the concept of the Butterworth low pass filter. And corresponding to the

Butterworth low pass filter you can see the function, the transfer function in H u v is equal to 1

divided by 1 plus D u v divided by D naught to the power twice n. And in this case I have shown



the response for different orders of the Butterworth filter. The first one is n is equal to 1, n is

equal to 2, 3, 4 like this. 

That means in this case is I increase the order of the Butterworth filter, it approaches the ideal

low pass filter. In the first case I have shown the Butterworth filter transfer function. So, this is

the Butterworth filter transfer function. The second one is the filter displayed as an image. So,

this is the Butterworth filter displayed as an image. And in this case I have shown the filter radial

cross sections of order 1 to 4. 

And in case of the Butterworth filter, if I considered suppose low order, then in this case there is

no sharp discontinuity, no clear cutoff frequency for the low order Butterworth filter. That means

if I consider a high order Butterworth filter, it approaches the ideal low pass filter. 
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So, in this case you can see I have shown the Butterworth low pass filter that is displayed as an

image. So in this case you can see, H u v is the filter transfer function of the Butterworth filter.

Now,  corresponding  to  frequency  domain,  my  response  in  the  spatial  domain  will  be  sinc

function. So, in the case of the Butterworth low pass filter  the spread of the sinc function is

inversely proportional to the radius of H u v. 

That means, in this case if I consider the radius is D naught, so the spread of the sinc function

that is in the spatial domain, sinc function in the spatial domain is inversely proportional to the



radius of H u v. So, if I consider D naught is high suppose, then in this case the sinc function

approaches the impulse function. So, this is my impulse. 

I repeat this. The cross section of the low pass filter, the ideal low pass filter in the frequency

domain looks like a box filter. But in the spatial domain it would be sinc function. So, here I

have shown the sinc function.  And in case of the filtering in the spatial  domain, is done by

convolving h x y with the image. And in this case, each pixel in the image is like a discrete

impulse. 

So, if I considered a image, each pixel in the image is like a discrete impulse and convolving a

sinc function with an impulse copies the sinc at that location of the impulse. I am repeating this,

that means convolving a sinc function with an impulse, impulse means the pixel value, copies the

sinc at that location of the impulse. 

Now, in case of a sinc function, the central lobe of the sinc function is responsible for blurring.

So, I have a central lobe, this is a central lobe, that is responsible for blurring. And in this case if

I consider outer lobes,  small  lobes, they are responsible for ringing artifacts.  So, this  central

portion,  central  lobe  is  responsible  for  the  blurring  and the  side  lobes,  the  small  lobes  are

responsible for the ringing artifacts. 

And in this case already I have explained the spread of the sinc function is inversely proportional

to the radius of H u v, that means the larger D naught becomes the more the spatial sinc function,

approaches an impulse. So, that means if I considered the high value of D naught, then the sinc

function approaches to the impulse, the impulse is this. 

Then in this  case if I considered the impulse in spatial  domain, that means there will be no

blurring. Corresponding to this case I have the blurring because of the central lobe of the sinc

function. Also, I have the ringing artifacts. 
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So,  in  this  case  I  have  shown the  example  here.  Original  image  I  have  shown,  and  I  am

considering the Butterworth low pass filter. The order I am considering n is equal to 2, and I am

changing the cutoff frequency, the cutoff frequency is D naught I am changing. The first one is 5,

next one is 15, 30, 80, 230 like this. And in this case if you see, if a cutoff frequency is less the

blurring will be more. Because of the central lobe of the sinc function. 

And  in  this  case  if  I  considered  the  high  value  of  D  naught,  suppose  D  naught  is  15,

corresponding to this I have the ringing artifacts because of the side lobes, the side lobes of the

sinc function. And if I considered the high value, D naught is very high, 230, then corresponding

to this I have the impulse, that is the sinc function to be converted into impulse, then I do not

have the blurring effect. Then ringing will be also less because of the smoother transition from

the pass band to the stop band. So, you can understand that concept of the ringing artifacts and

also the concept of blurring. 
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And after this I will discuss the concept of the Gaussian low pass filter. And in case of this, I am

getting the smooth transition from the pass band to the stop band. And in this case,  smooth

impulse response and the ringing artifacts will be less in case of the Gaussian filter. So, first one

is,  I  have  shown the  Gaussian  low pass  filter  transfer  function,  the  second one is  the  filter

displayed as an image. And after this I am showing the Gaussian low pass filter for different

values of D naught. D naught is equal to 10, 20, 30,40, 100 like this. For different values of D

naught I am showing the filter radial cross sections for values of D naught.
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And in this case I have shown the Gaussian low pass filter in frequency domain and after this I

have shown the corresponding to spatial domain representation of the Gaussian low pass filter. 

(Refer Slide Time: 32:45)

And corresponding to the Gaussian low pass filter I have the outputs the first I am considering

the original input image and I am considering the D naught, something like the 5, 15, 30, 85,

230. And you can see the blurring and the ringing artifacts. Then in this case, the less ringing

than the Butterworth low pass filter, but also less smoothing. The blurring will be less. Ringing

artifacts will be less but also the less smoothing. 



So, I have shown the comparison between the ideal low pass filter, the Butterworth filter and also

the  Gaussian  low pass  filter.  And in  this  case  the  one  important  concept  that  you have  to

understand, the concept of ringing artifacts and the blurring. 
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And in this case I have shown the ideal low pass filter response corresponding to D naught is

equal  to  15,  you can  see  the  blurring  and  the  ringing  artifacts.  And in  the  next  case  I  am

considering the Butterworth low pass filter, the order is 2, n is equal to 2; and D naught is 15,

again 15. You can see the ringing artifacts will be less. And in this case of the Gaussian, D

naught is again 15, less blurring but ringing artifacts will be less. So, you can see the comparison

between the ideal low pass filter, the Butterworth low pass filter and also the Gaussian low pass

filter.
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Next I am showing one example, one practical example. A low pass Gaussian filter is used to

connect broken text. So, in the first figure if you see, I have shown the broken text here and if I

apply the Gaussian filter, the low pass filter, then you can see the output that in this case we can

connect  the  broken  text  because  of  the  blurring.  Because  the  Gaussian  filter  produces  the

blurring of the image. So, that is why the broken text is connected.
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Again  I  am  showing  the  concept  of  the  low  pass  filtering.  My  input  image  is  this  and

corresponding  to  this  my  Fourier  Transform  is  this.  The  original  image  and  its  Fourier

Transformation. In the next case I am showing the reconstructed image, in the second case what I

am considering, I am only considering the central portion of the Fourier Transformation. And

this  is  the  reconstructed  image.  That  is  the  filtered  image  and  corresponding  Fourier

Transformation.  So, you can see the output image and the input image. And you can do the

competition between the input image and the output image visually. 
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Next one is the concept of the high pass filter. So, what is high pass filter? The high pass filter is

nothing but 1 minus low pass filter. So, in spatial domain filtering also I have explained the how

to get the high pass filter. High pass filter is nothing but 1 minus low pass filter. So, in this case

also I have three cases, one is the ideal high pass filter Butterworth filter and the Gaussian high

pass filter.

And corresponding to this you can see the filter function, that filter function is H u v and it is

equal to 1, corresponding to D u v greater than D naught, D naught is the cutoff frequency, that is

the positive constant. And it is equal to 0 if this condition is satisfied. For the Butterworth filter

also, I have to considered the parameter. The parameter is the order of the filter. The order of the

filter  is n. And Gaussian transfer function for the high pass filter  is H u v you can see this

expression. So, this is a Gaussian high pass filter.
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So, for finding the fine details of the image like edges and the boundary I can consider the ideal

high pass filter, so high pass filter is nothing but 1 minus low pass filter. So, by using the high

pass filter we can see the fine details of the image like the edges in the boundary. 

(Refer Slide Time: 37:00)

So, like the ideal low pass filter again I am considering the ideal high pass filter, and in this case

this is the condition for the filter transfer function. So, I have shown the H u v. So in case of the

high pass filter we have only considered the outer portion of the Fourier Transformation. This



black portion, if you see this black portion, that is not considered. So, only I am considering the

outer portion of the Fourier Transformation. And corresponding to this you can see the response

of the high pass filter, and D naught is the cutoff frequency in this case. 
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So, in this case you can see the ringing artifacts corresponding to the ideal high pass filter as the

transition from the pass band to the stop band is very sharp. So, that is why I have the ringing

artifacts. And if you increase the cutoff frequency, the cutoff is D naught, then in this case you

can see the ringing artifacts will be less. This ringing artifact concept already I have explained. 
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And  after  this  the  concept  of  the  Butterworth  filter,  so  you  can  change  the  order  of  the

Butterworth filter, n is the order of the Butterworth filter and D naught is the cutoff distance as

explained earlier. So, corresponding to this Butterworth filter, you can see the filter function H u

v. The filter is displayed as an image and corresponding to this the response of the filter you can

see. So, this is the Butterworth high pass filter. 
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And corresponding to the Butterworth high pass filter, you can see the output, first one is the

input  image,  the  next  one  is  the  Butterworth  filter,  order  is  2,  but  D  naught  is  15.  So,



corresponding to D naught 15 you can see ringing artifacts. But if I increase D naught to 30 or D

naught to 80, then the ringing artifacts will be less. 

But, if I consider D naught is very high, then in this case I will be getting the blurred image.

Because that means I am considering the high frequency component as well as low frequency

component. That means I am considering the high frequency information as well as some low

frequency information. That is why the image will be blurred corresponding to D naught is equal

to 80.
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And finally I want to show the Gaussian high pass filter. So, the Gaussian high pass filter is

defined like this and D naught is the cutoff distance as discussed earlier. So, corresponding to the

Gaussian high pass filter I have the filter function and the filter is displayed as an image and I

have the response of the Gaussian high pass filter. Like this.
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And corresponding to the Gaussian high pass filter you can see the outputs. The first one is the

input image, and for different values of D naught you can see the outputs. The order is, I am

considering, n is equal to 2 here. So, if you see corresponding to D naught is equal to 15, the first

is this. D naught is equal to 30, you can see the output. D naught is equal to 80, you can see the

output. If I increase D naught, what will happen, that means I am considering high frequency

information also some low frequency information. So, that is why the image will be blurred. 
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So, here I have shown one example of the Gaussian high pass filter. I have shown the original

image after this I am considering the Gaussian filter. Corresponding to the Gaussian filter you

can see the output, that is high pass filter. So, I am having the edges. You can see the fine details

of the image and corresponding Fourier Transform you can see. Corresponding to this image this

is the Fourier Transformation. So, this is the Gaussian high pass filter.
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And in this case I have given one example of the high pass filtering. The original image I have

shown first. The next one is the high pass filtering output you can see next one. And after this

what  I  am doing,  high  frequency  emphasis  result  I  am showing  here.  And  after  histogram

equalization I will getting the output something like this. So, after this what I doing, finally I am

applying the histogram equalization technique to improve the contrast of an image. So, this is

one example of the high pass filtering. 
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The next one is the Laplacian in frequency domain. This Laplacian I will explain when I will

discuss the concept of the edge detection. So, Laplacian is spatial domain is represented like this,

that is the second order derivative, f is the image. So, the first order derivative is del f divided by

del x. That is the gradient of the image along the x direction and gradient along the y direction.

This is the gradient. 

And what about the second order derivative? The second order derivative is del 2 f, del x 2 and

another one is del 2 f, del y 2. And if I consider this one, that is nothing but the Laplacian of the

image. So, this Laplacian I will explain later on. So, corresponding to this Laplacian, if I take the

Fourier Transform of the Laplacian, then in this case you will be getting this one. 

Minus u square plus v square, F u v. F u v is the Fourier Transform of the input image. Then in

this case what is H 1 u v, that is nothing but minus u square plus v square. So, you can see in

spatial  domain  how  to  represent  the  Laplacian,  in  frequency  domain  how  to  represent  the

Laplacian. So, this is the Laplacian operator.
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And  corresponding  to  the  Laplacian  operator,  the  first  figure  if  you  see,  Laplacian  in  the

frequency domain, you can see this, the Laplacian will be something like this. So, by using the

Laplacian you can determine the location of the edge pixel. I will explain this concept later on

how to determine the location of the edge pixel by using the Laplacian.

And next  figure if you see,  the 2D image of Laplacian in the frequency domain.  So, in the

frequency domain the Laplacian will be something like this. And the third figure if you see,

inverse DFT of Laplacian in the frequency domain. So in the frequency domain you can see the

inverse DFT of the Laplacian in the frequency domain. In the spatial domain, corresponding to

the Laplacian operator, the mask will be something like this 0, 1, 0, 1, - 4, 1, 0, 1, 0.

So, if you see the central pixel the central pixel, the central position of the mask, the mask value

is minus 4. So, corresponding to this you can see here the mask will be something like this. So,

in spatial domain the mask response will be something like this because of the central point of

the mask is minus 4 of the Laplacian operator.



(Refer Slide Time: 44:16)

So, how to do the image enhancement by using the Laplacian operator? In spatial domain what

you can do suppose I have the original image. The original image is f x y and if I take the

Laplacian  of  the  image  that  means  I  can  select  the  high  frequency  component.  So,  high

frequency information is subtracted from the original image, that I am doing. 

And in frequency domain, this can be represented like this, so G u v is equal to F u v plus u

square plus v square F u v. That is the Laplacian I am considering in the frequency domain. And

I have the new operator, the new operator is H 2 u v, that is nothing but 1 plus u square plus v

square is equal to 1 minus H 1 u comma v. That is the Laplacian. 



(Refer Slide Time: 45:05)

So in this case I am showing one example of the Laplacian, so how to apply the Laplacian of the

image.  In this  case you can see the first  one is  the original  image,  the second one is  I  am

considering the Laplacian filtered image. That means I am determining the edges by using the

Laplacian.  The next  one is  I  am considering  the Laplacian  image scale,  and after  this  I  am

subtracting the Laplacian from the original image. 

I am getting the enhanced image, so you can see the enhanced image here, this is enhanced

image.  So,  by  using  the  Laplacian  you  can  enhance  the  image.  The  Laplacian  can  be

implemented in frequency domain or in spatial domain. 
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And after this, just I am considering the band stop filter and the band pass filter. And in this case

the band stop filter, the transfer function you can represent like this, and again the concept of the

cutoff frequency, the cutoff frequency is D naught and W is the width of the band. W is the

width of the band. And you can see the band pass filter, what is the band pass filter, 1 minus

band stop filter. That is the band pass filter.

And in this case, later I will explain if I take the difference between 2 Gaussians then in this case

I will be getting the band pass filter. Difference of two Gaussian functions that will give the band

pass operation.
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After this I am discussing another filter that is Homomorphic filtering. This filtering technique

can be used to improve the appearance of an image by simultaneous intensity range compression

and contrast enhancement. Then in this case the main concept is the optical image consists of 2

primary components, what are the primary components? One is the lightening component and

another is the reflectance component. 

So, I can consider these two components, here you can see one is the lightening component that

is nothing but the illumination, and f x y is the image. And another component is the reflectance.

The reflectance is nothing but the albedo, the albedo I have explained in my, I think, third or

fourth classes about the albedo, that is the reflectance. So, f x y is the image and I am considering

2 components, one is the illumination component another one is the reflectance component.

The lightening component corresponds to the lightening condition of a scene. That means this

component  changes  with  the  lightening  conditions.  That  is  the  incident  illumination.  The

reflectance component results from the way the objects in the image reflect light. That is the

albedo of the surface. And it is the intrinsic property of object itself. And normally it does not

change. In many image processing applications it is useful to enhance the reflectance component

while suppressing the contribution from the lightening component. 

That  means  for  some  applications  it  is  used  to  enhance  the  reflectance  component  while

suppressing the  contribution  from the  lightening component.  So,  homomorphic  filtering  is  a



frequency domain filtering technique. So, in the filtering technique what we have to do, we have

to compress the brightness, the brightness means from the lightening condition while enhancing

the contrast. The contrast means it is coming from the surface reflectance property of the object. 

So, in this expression you can see I have two components, one is the illumination component

another one is the reflectance component. So, f x y is equal to E x y and rho x y. And after this

what  I  can  consider,  this  E  x  y  is  mainly  the  low frequency  component.  This  illumination

component is a low frequency component because the lightening condition varies slowly over

the surface of the object. 

This component is responsible for the overall range of the brightness of the image, that is the

overall  contrast.  And if  I  considered the this  component,  the reflectance  component,  so this

reflectance component is a high frequency component because it varies quickly at the surface

boundaries, edges, due to varying phase angle. And this component is responsible for the local

contrast. These assumptions are valid for many real images. So, what I am doing in this case, if

you see this expression, after this I am taking the logarithm, the log I am taking so that the

multiplication is converted into addition. 

And after  this,  I  am applying  the  frequency  domain  enhancement  technique.  So,  what  is  a

frequency domain enhancement technique? From the input image I am taking the log because,

why I am taking the log, the multiplication is converted into addition. After this I am doing the

frequency domain filtering, for this I am doing the DFT and H u v is the filter function. And after

this I am applying the inverse DFT, and after this exponential function I am considering, that is

nothing but the inverse log function I am considering. And after this I am getting the output

image, the output image is g x y I am getting.  So, in the frequency domain I am doing this

operation. This Homomorphic filtering is a frequency domain filtering technique. 
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So, already I  have explained this concept,  the simultaneous dynamic range compression and

contrast enhancement. And the illumination component is a low frequency component, that is a

slow  spatial  variation,  and  a  reflectance  component  is  a  high  frequency  information,  it  is

characterized by abrupt spatial  variations because it varies quickly at the surface boundaries,

edges due to varying phase angles. 
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And in this case I can give one example of the Homomorphic filtering to remove multiplicative

noise. So, what is this noise model, you can see the multiplicative noise model. I have the signal



and  I  have  the  noise,  both  are  multiplied.  And  after  this  I  am  doing  what,  the  log  I  am

considering. So that the multiplication is converted into addition this multiplication is converted

into addition. After this I can apply the low pass filtering to remove the noise.
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In  this  case  you  can  see  I  am  considering  the  original  image  and  I  am  considering  the

multiplicative noise. I am considering. After this what I am considering?
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The  Homomorphic  filtering,  I  am considering  you can  see  the  output  of  the  Homomorphic

filtering and another one is the low pass filtering I am considering. 
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Next, I am considering the Wiener filter for image restoration. This image restoration already I

have explained,  in  this  case it  is  objective,  enhancement  is  subjective.  In case of the image

restoration model we can develop a mathematical model and based on this mathematical model

we can remove the noise or we can improve the visual quality of an image. The objective of the



image restoration is to restore the degraded image to its original form. Then in this case I can

consider some examples like motion blur or maybe the optical blur. 

So, in this case I can develop a mathematical model, and based on this mathematical model I can

improve the visual quality of an image. And in this case I am showing one example, an observed

image can be modelled as, so g x y is the observed image and I am considering the image, the

image is f, x dash y dash. And in this h is nothing but the point spread function, the PSF of the

imaging function and n is the additive noise. 

Now, the objective of the image restoration in this case is to estimate the original image, the

original image is f, from the observed degraded image, the degraded image is g. So, that is the

objective of the image restoration. So, I am repeating this, the objective of the image restoration

is  to  estimate  the  original  image  f  from the  observed  degraded  image  g.  Now,  this  image

degradation can be modeled as a convolution of the input image with a linear shift invariant

filter, h x y. And in this case h x y may be considered as a Gaussian function for out of focus

blurring. That I can consider. 

Then in this case what will be the g x y, g x y will be h x y convolution f x y that I can consider. 
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So, the definitions are like this f x y input before the degradation that is the original image. What

is g x year? Image after the degradation that is the observed image, h x y that is the degradation



filter used to improve the image. And I am considering the approximate f x y, that is the estimate

of x y which is computed from g x y, so I can do the estimation of f x y and n x y is the additive

noise.

So, you can see the degradation model that is how to do the image restoration. The first one is

the input image, I am considering the degradation. So for this I am considering the degradation

filter, that is used to improve the image. And I am considering the noise, and after this I am

getting  the  degraded  image,  the  degraded  image  is  g  x  y.  And  after  applying  the  image

restoration technique I  am getting  the restored image.  That  is  the better  quality  image I  am

getting. 
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Now, in this case the same thing I am showing here, that is the degradation filter I have shown,

the noise I have shown, the input image I have shown, and finally I am getting the restored

image. Then in this case this model can be mathematically represented in the spatial domain, and

in the frequency domain as follows. In spatial  domain I  can represent like this the g x y is

nothing but h x y, that is the degradation filter, convolution with f x y plus the noise. That is the

additive noise.

In frequency domain  I  can represent  like  this,  because  convolution  in  the  spatial  domain  is

equivalent to multiplication in frequency domain. So, G u v is equal to H u v into F u v plus N u



v. And in this case what is this approximate F u v, that is the g u v divided by H u v. What is H u

v, H u v is the Fourier Transform of the Gaussian.
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The image restoration can also be implemented by a Wiener filter. So, what is the Wiener filter?

The restored image is obtained as W u v, G u v. W u v is nothing but the Wiener filter. And that

you can represent like this, so later I will show how to get this expression, H complex conjugate

u v, and it is divided by H u v magnitude whole square plus P u v. What is P u v? That is the

ratio of S eta u v divided by S f u v. 

What is S f u v? That is the power spectral density of f x y. S eta u v, that is the power spectral

density of the noise,  additive noise. And if I  considered the P is equal to 0,  so in this  case

suppose P is equal to 0, then W u v, in the expression if you see this expression then W u v is

equal to 1 by H u v that is nothing but the inverse filter. If the P is greater than H u v then the

high frequency components, the high frequency information will be attenuated. 

And in this case the F u v, the magnitude of this F u v and N u v are known approximately. This

information is available. F u v means that is the Fourier Transform of the image and N u v means

the Fourier Transform of the noise.
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So, a Wiener filter minimizes the least square error. So, you can see I am computing the error

here, so here is defined like this f x y is the original image and I am considering the reconstructed

image the approximate image f approximate x y whole square. And in frequency domain I can

write like this, d u v. The transformation from spatial domain to frequency domain is done by

considering Parseval's theorem. 

That means energy in the data domain is equal to energy in the frequency domain. Then in this

case you can see this one, F approximate u v is equal to W u v, G u v and just you can represent

like this, this expression. And after this, the F minus F approximate you will be getting this one,

and from this if you put this value in the previous equation, then in this case you can determine

the least square error you can determine.
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And since f x y and n x y are uncorrelated, this input image and the noise they are uncorrelated,

then  this  error  cam  be  represented  like  this,  if  you  see  the  previous  expression  it  can  be

represented like this. Then in this case the integrand is the sum of two squares. So, you can see

the integrand, the integrand of the sum of two squares. We need to minimize the integrand, that

is integrand should be minimum for all the values of u and v, u is the spatial frequency in x

direction and v is the spatial frequency in the y direction. 

So, that means we have to consider this condition. And the condition for minimum integrand you

can determine like this from this expression. And finally, if you do all this mathematics, then in

this case you will be getting that W is equal to H complex conjugate, the magnitude of H square

plus magnitude of N square divided by F square. That you will be getting, that is nothing but the

Wiener filter.
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So, finally I can show how to do the denoising by using the Wiener filter. First the input image is

this, after this I am considering the degradation filter, noise I am considering, that is the additive

noise I am considering. After this I am getting the degraded image, I am considering the Fourier

Transform of the degraded image. I am getting G u v, after this I am applying Wiener filter. So I

am determining the approximate value of F u v, and after this I am taking the inverse Fourier

Transform to get the restored image. 

So, steps are like this compute the Fourier Transform of the blurred image. Multiply the Fourier

Transform by the Wiener filter, that Weiner filter already I have explained. And after this finally

we have to take the inverse Fourier Transformation to get the restored image. This is about the

brief discussion about the Weiner filter.
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The next concept what I want to discuss, the image quality measurement, so how to measure the

image quality. So for this I can calculate the mean square error, so error can be calculated like

this, f x y is the original image and I am considering the approximate, that is the reconstructed

image. The difference between this that will give the error. And from this you can determine the

mean square error. Then in this case the image size I am considering M cross N, M number of

rows and N number of columns.

So,  from  this  you  can  determine  the  mean  square  error  between  the  input  image  and  the

reconstructed image. So, that is one measure for image quality measurement. And from the MSE

you can determine the root mean square error, that you can determine. That is the root mean

square error you can determine from the MSE.
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Another measure is the signal to noise ratio. That you can determine by this expression. So my

input image is f x y, so I am getting the signal power here. And also the difference between this

two is nothing but the noise. So, first I am considering the signal divided by noise that will give

the signal to noise ratio.
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And another one is the peak signal to noise ratio, PSNR. That also you can determine, you can

see I am considering the signal power and also the peak signal power and also the noise power I



can determine.  And maximum pixel  value  I  am considering  255,  so you can  determine  the

PSNR. So, PSNR is measured with respect to the peak signal power, but in case of the SNR,

SNR is measured with respect to the actual signal power. That is the difference between the

PSNR and the SNR. So, by using this measure, so one is the mean square error another one is the

signal to noise ratio, another one is the PSNR, we can judge the quality of the reconstructed

image. 

In this class I discussed the concept of the frequency domain filtering. For frequency domain

filtering  the  concept  is,  I  have  to  modify  the  Fourier  Transform of  that  image.  And I  have

discussed the concept of the low pass filter. For this I discussed about the concept of the ideal

low pass  filter,  Butterworth  low pass  filter  and the  Gaussian  low pass  filter.  And also  two

important properties, one is the blurring effect another one is the ringing artifacts. 

So, how to consider these two cases, and it depends on the cutoff frequency, the cutoff frequency

is D naught. After this I explained the concept of the high pass filter, again I am considering the

ideal high pass filter, Butterworth high pass filter and the Gaussian high pass filter. After this I

have discussed the concept of the Laplacian.  So, by using the Laplacian how to improve the

visual quality of an image. So, by Laplacian you can detect the edges. 

And after this I discussed the concept of the Homomorphic filtering. And in this case I have two

components,  one  is  the  illumination  component  another  one  is  the  reflectance  component.

Illumination component is the low frequency component and another the reflectance component,

that is the albedo, is a high frequency component.  And how to do the filtering in frequency

domain that concept I have explained. 

After this finally I have discussed the concept of the image restoration by Wiener filter. And

after this I discussed the image quality measurement, like this one is the mean square error, one

is the signal to noise ratio, and another one is the peak signal to noise ratio. This is about the

frequency domain filtering. So, let me stop here today. Thank you. 


