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Image Filtering

Welcome to NPTEL MOOCs course on Computer Vision and Image Processing: Fundamentals
and Applications. Last class I discussed the concept of image enhancement, the objective is to
improve the visual quality of an image. Today, I am going to discuss the concept of image
filtering to remove noises. Image filtering operations can be implemented in spatial domain or in
frequency domain. In spatial domain I can manipulate the pixel values directly, so for this I can
consider neighborhood operations. In case of a frequency domain I can modify the Fourier

Transform of the image.

So first [ have to determine the Fourier Transform of the image and after this I can do processing
in the frequency domain. And after this I have to do Inverse Fourier Transformation to get the
processed image. So, before discussing the image filtering concept, I will first discuss some
image processing operations. So, already you have understood these operations, I am going to

explain it again some of the operations like zooming and some neighborhood operations.
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Image Enhancement

* Image enhancement techniques:
» Spatial domain methods
» Frequency domain methods

* Spatial (time) domain techniques are techniques that
operate directly on pixels.

* Frequency domain techniques are based on modifying
the Fourier transform of an image.



So, first one is the image enhancement techniques that can be implemented in spatial domain or
in frequency domain. In spatial domain I can operate directly on pixels so that means I can
change the pixel values directly. And in the frequency domain I can modify the Fourier

transform of an image. So, this concept already I have explained.
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[mage Enhancement

Original image Enhanced image

Enhancement: to process an image for more
suitable output for a specific application.

And in this case [ have given one example of image enhancement. I have the original image and

you can see the enhanced image.
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Geometric operations
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And I have considered some geometric operations. So, if you see here g x y is equal to f x plus a
comma y plus b. That means g x y that is the output image f tx y, tx y is the transformation for
the x coordinate ty x y, that is the transformation for the y coordinate. That means I am changing

the domain of an image.

So, if you see here that g x y is equal to f tx x y comma ty x y that is the I am changing the
domain of an image. That is the spatial coordinates I am changing. So, based on this equation I
can do scaling operation, I can do translation operation or I can do the operation like the zooming

operation zooming operation also I can show.

The image zooming either magnifies or minifies the input image. So, if I consider suppose from
transformation tx x y and in this case suppose x coordinate is divided by c and if I consider ty x y
the y coordinate is divided by d. So, by this transformation I can do zooming. Zooming in and

the zooming out.
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Rotation

MXK. Bhuyan, Computer Vision and Image Processing — Fundamentals and Applications, CRC press, USA, 2019.

And in this case I have shown some operations like rotation I can do and also I can do the

scaling. That is I am changing the domain of an image.
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Spatial or neighbourhood operations
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And in this case I am showing some neighborhood operations that is the spatial or neighborhood
operations. So, for this I am considering one window the window is given by W x y, that is the

window. And I have the output image the output image is g x y.



Then in this case I am considering the neighborhood pixels for the processing so if you see this
window, this is the window, and corresponding to this central pixel I am considering the
neighborhood pixel. And based on these neighborhood pixels I can do the processing. That is

called the neighborhood operations.

I can give one example of a neighborhood operation here the input image is {1 j, this is the input
image, divided by n that is the number of neighborhood pixels, and I am considering one window
that window is W x y. That window I am considering. And I am getting the output image, the

output is g X y. So, this is one example of neighborhood operations.
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Operations between images

(z,y) (2,9) +9(x,y) checio
del] = Tl 2o
m(e,y) = floy)xgley) < HYFE
d(z,y) = flz,y)+ g(m y ,g.\a\‘\),A

m=1

» Arithmetic operation can produce pixel y
values outside of the range [0 - 255]. f‘_’ =5 )

* You should convert values back to the
range [0 - 255] to ensure that the image is
displayed properly.

And I can do some operations between images. So, first you can see the addition of two images,
the subtraction of two images that is the g x y is subtracted from f x y, so this is the subtraction
operation. Multiplication of two images and you can see the division operation. So, in case of the
subtraction, that is nothing but the change detection, already I have explained in my second class.

So, it is nothing but the change detection.

If I want to detect the moving regions, then in this case I have to apply the subtraction operation.
That is called the change detection. And in this case you can see that I am doing the addition of

number of images. Now, because of these operations, the arithmetic operation can produce pixel



values outside the range, the range is already we are considering from 0 to 255. That is mainly

from 0 to L minus 1 number of levels I am considering.

So, arithmetic operation can produce pixel values outside the allowable range. Then in this case
what I have to do I have to convert the values back to the range, the range is from 0 to 255. So, |
have to do this. And in this case if I consider the multiplication of an image, suppose the
multiplication of f X y by constant, suppose the constant is c, that is nothing but the scaling, I can
do the scaling. Then in this case, by this operation, I can change the brightness of an image. The

brightness I can adjust.

If the scaling factor is greater than 1, that means in this case the brightness of the image will be
more and a factor less than 1 darkens the image. So, I can do the scaling of the image. And
similarly, in the division also if I consider f x y divided by some constant, suppose d, by a factor

of d, that is very similar to change detection. That is very similar to change detection.
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g(z,y) = f(z,y) +n(z,y)

—_—

noise is uncorrelated and has zero average value
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Now, in this case I am going considering how to remove noises based on averaging. So, I am
considering one image that is f X y is the noiseless image and I am considering the noise is n x y.
And suppose the g x y is equal to f x y plus n x y. And one consideration I am considering, that is

noise is uncorrelated and has 0 average value.



Then in this case if I consider the K number of images, I am taking the average of K number of
images. The images you can see, the images is g X y and I am determining the mean value I am

determining, that is the average value I am determining. So, by this process I can remove noise.
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Let g(x,y) denote a corrupted image by
adding noise 5(x,y) to a noiseless image
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At every pair of coordinates z=(x,y, the
noise is uncorrelated £[zz,]=0
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So, I am explaining it again. So, you can see the g x y is the corrupted image, and in this case |
am adding noise, that noise is eta x y. And in this case I am considering the noiseless image the
noiseless image is f x y, that is the noiseless image. And we have considered the noise here has 0

mean value. So, that is why the expected value of zi is equal to 0.

And also, I am considering at every pair of coordinates the noise is uncorrelated. So, that means

the expected value of zi zj is equal to 0.
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The noise effect is reduced by averaging a
set of K noisy images. The new image is
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The intensities at each pixel of the new
image new image may be viewed as random
variables.

The mean value and the standard deviation
of the new image show that the effect of
noise is reduced.

And this the noise effect is reduced by averaging a set of K noisy images. So, I am considering K
number of images and I am determining the mean value. So, K number of images I am
considering from i is equal to K and I am taking the the average of this. Now in this case the

mean value and the standard deviation of the new image show that the effect of noise is reduced.
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So, first I am showing the new images, there is a mean g, mean x y. And I am determining the
mean value that the expected value I want to see. So if you see it is expected value of 1 by K this
expression, in place of g mean I am putting this expression. And since 1 by K is constant, so [ am

taking out from the summation.

And after this, in place of gi x y I am putting f x y plus noise I am considering. And it is
separated, the f x y is separated from the noise. And already I have considered that the noise has
0 mean, so that is why this will be 0 and this value will be K f x y. So, ultimately, I am getting

x y. So, if I take the average of number of images then I am getting fx y.
What is fx y? f x y is the noiseless image.
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Similarly, the standard deviation of the new
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As K increases the variability of the pixel
intensity decreases and remains close to the
noiseless image values f{x,y).

The images must be registered!

And also I can determine the standard deviation of the new image. So this is the standard
deviation of the new image. And ultimately if I do this calculation, you can see it is 1 by root K
sigma eta x y. So, if I increase K what will happen? If I increase K, K means the number of
images if I increase the variability of the pixel intensity decreases and remains close to the
noiseless image value f x y.

So, registered case. If I increase K then the variability of the pixel intensity decreases and
remains close to the noiseless image value f x y. So, you can see if | consider number of images

and if I take the average of this, then the noise can be reduced.
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Tmage of Galayy Pair NGC 3314 corrupted by additive Gaussian noise. Results of
averaging 5. 10,20, 50, and 100 noisy images, respectively. (Original image courtesy of NASA.)
And in this example I have shown the noisy image. The first one is the noisy image. The second
one is the averaging of five images I am considering, the second visual is the average of five
images. Next one is the averaging of 10 images, next one is the averaging of 20 images. And if
you see this image, averaging of 50 noisy images. And this is a averaging of 100 noisy images.

So, you can see that the noise is removed because of the averaging operation.
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Image Subtraction

+ Medical application.  iodine medium injected
into the bloodstream

R. C. Gonzalez and R. E. Woods, Digital Image Processing, Addison-Wesley, 2008.



The next one is the image subtraction. So, already I have explained, because of the image
subtraction I can determine the moving regions. That is called the change detection. So, for

medical application that can be used.

Here I am giving one example. So suppose this is my one input image and suppose I want to
determine the locations of the arteries and the veins, so for this I am injecting iodine into the
blood stream. So, iodine medium injected into the blood stream I am doing. And in this case, if |
do the subtraction between these two images, so this is the first image and this is my second

image.

If I do the subtraction, that is f x y minus h x y, then I will be getting a g x y, the subtracted
image I am getting. So, you can see the subtracted image. That is the subtracted image is the g x
y I am getting. That means I can see the locations of the arteries and the veins. And in the next
image you can see depth portion, depth portion is enhanced. Depth portion is enhanced by image

enhancement techniques.

So, you can see the application of image subtraction.
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Logical Operations

+ Two images of the same size can be combined using
operations of addition, subtraction, multiplication,
division, logical AND, OR, XOR and NOT.

+ Such operations are done on pairs of their corresponding
pixels.

+ Often only one of the images is a real picture while the
other is a machine generated mask. The mask often is a
binary image consisting only of pixel values 0 and 1.
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Also, I can do some logical operations. Like I can do AND logical operation, OR operation,

XOR operation, NOT operations. Then these operation I can do for image processing. Than in



this case such operations are done on pairs of their corresponding pixels. And in this case, I have

to consider one real picture and another one is I have to consider is mask for this operation.

So, first I have to consider the real picture, real picture means the image I have to consider. And
also I have to consider a machine generated mask I have to consider. So, in case of the mask it is
nothing but the binary image consisting only of pixel values 0 and 1. So, this logical operation is
performed between the mask and the image. So, I can show some examples of this logical

operations.
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R. C. Gonzalez and R. E. Woods, Digital Image Processing, Addison-Wesley, 2008.

So, first one is the AND operation. So, I am considering the image first one is the image and I
am considering the mask term mask is like this. So if I do the AND operation, then in this case
the output will be like this. If you see this portion will be black, this remaining portion will be
black.

Similarly, if I consider the mask, suppose this mask, and if I do the OR operation then in this
case I will be getting the output image something like this. So, I can apply these operations, the

logical operations, AND operation, OR operation, all these operation I can apply.
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(a) Digital dental X-ray image. (b) ROI mask for isolating teeth with fillings (white corresponds to
1 and black corresponds to0). (¢) Product of (a) and (b).

R. C. Gonzalez and R. E. Woods, Digital Image Processing, Addison-Wesley, 2008.

And here I am showing one another example. That is how to enhance region of interest. So, it is
a dental X-ray image. And I am considering the mask, two masks I am considering. And in this
case what | am doing, the multiplication of two images. This is the first image and this is the
second image. I am doing the multiplication between these 2 images. Then in this case, you can

see the result is this.

So, what I am getting? I am getting the region of interest mask for isolating teeth with fillings.
So, that means, in this case I am getting the teeth with fillings, so mainly I am doing the
multiplications between the image, the first image and the second image. In the second image I
am considering mask. The mask means the region of interest mask for isolating teeth with

fillings. So, these operations I can apply.
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SPATIAL DOMAIN FILTERING

Now, let us consider the spatial domain filtering operation. So, what is the spatial domain
filtering operation I want to explain. So, in spatial domain filtering operation I have to consider

the neighborhood operations so for this I have to consider one mask.

Suppose, if I want to modify a pixel value, then in this case I have to consider the neighborhood
pixels and mainly I have to do some convolution, the convolution operation I have to do. And
based on these operations I can consider low pass filter, high pass filter, high boost filter, I can

consider these type of filters. Also another important filter is the median filter I can consider.

So, first I will explain the concept of the spatial filtering, and in this case I will explain the mask.
How to do the masking operation. And after this I will explain the concept of the low pass filter,

high pass filter, a median filter [ will explain.
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Low- and High-Pass Flters

Frequencies: a measure of he amount by which gray values change
Wilh distance

Highlow-requency components. arge/small changes n gray values
over smalldistances

Highflow-pass filer passing highvlow components, and reducing or
climinating low/high-frequency filter

So, in case of the digital image the frequency means the measure of the amount by which grey
value change with distance. So, already you know about the frequency, this is the definition of
the frequency and I may have the low frequency component or the high frequency component in

an image. And for this I have the high pass filter or the low pass filters.

If I want to select the low frequency component, then in this case I have to apply the low pass
filter. If I want to select the high frequency component, the high frequency component in an
image is nothing but the edges and the boundaries. And if I consider a low frequency information

that corresponds to the constant intensity or the homogeneous portion of the image.
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Image filtering involves
+ Neighbourhood operation.

+ Taking a filter mask from point to point in an
image and perform operations on pixels inside
the mask.

Some simple neighbourhood operations
include:

— Min: Set the pixel value to the minimum in
the neighbourhood

— Max: Set the pixel value to the maximum in
the neighbourhood

— Median: The median value of a set of
numbers is the midpoint value in that set (e.g.
from the set [1, 7, 15, 18, 24] 15 is the
median). Sometimes the median works better
than the average

So, for the neighborhood operations I have to consider a filter mask and I have to take the filter
mask from point to point in an image and perform operation on the pixel inside the mask. And
based on this I may have this type of operations. One is the min operation, so what is the
minimum operation, the min filter? Set the pixel value to the minimum in the neighborhood.

That operation I can do.

Another operation is the max filter. Set pixel value to the maximum in the neighborhood, that
operation also I can do. And I can do the median operation. So, in this case suppose if I consider
neighborhood pixel value is 1, 7, 15, 18, 24, so for this what is the median value? Median value

is 15, so that means the pixel under consideration, that value is replaced by 15.

In this case, I am considering the neighborhood operation. So, that is I am considering a mask,
and in this mask I am applying this these operations, the min filters, max filter and the median

filter.
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Spatial Domain Approach

» Spatial Domain Approach - Procedures that operate
directly on pixels
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In this case I am showing the spatial domain approach. And here you can see f x y is the input

image and T is the transformation, I am doing some transformation. And I am getting the output

image, the output image is g x y. T is an operator on the input image, the input image is f x y.

And in this case I am considering the neighborhood of x y. So for this I am considering a mask,

in this example I am considering the 3 by 3 mask, and on the pixel the pixel is x comma y. That

is the central pixel a central pixel is x comma y.

And let us see how to do this operation.
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Area or Mask Processing Methods

output image g

inputimage
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So, again I am showing this one I have the input image and I have the output image and I am
considering the neighborhood pixels. So, these are the pixels, the neighborhood pixels. And I am
considering the mask and I am getting the output image. The output image is g x y f x y is the

input image and T is the operation that is the neighborhood operation that I am doing.

(Refer Slide Time: 20:30)

Mask or Filter

» Neighborhood of a point (x,y) can be defined by using a
square/rectangular (common used) or circular subimage
area centered at (x,y) - mask or filter

» The center of the subimage is moved from pixel to pixel
starting at the top of the corner
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So, mask is similar to this. So it is a symmetric mask. And what is the central pixel of mask? The

central pixel of the mask is x comma y. And that I can consider as a filter. So, I have the filter



values, the coefficient values, or I can consider as widths of the masks. So, this is one example of

the mask or the filter.
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Spatial Filtering

n Use filter (mask/kernel/template/window)
u The values in a filter subimage are referred to as
coefficients, rather than pixel
u Simply move the filter mask from point to point in an
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And in spatial domain filtering what I have to do, I have to put the mask over the image, suppose
I am considering one image Z1, the pixel value is Z1, Z2, 73, 74,75, 76, 77, Z8, Z9. And I have
the mask, here this is the mask. So, what are the widths of the mask? The widths are w1, w2 like
this, these are the width of the mask. And what I have to do? I have to put the mask over the
image. So, corresponding to this pixel the central pixel I have to put the mask over the image,

that means I am doing the overlapping of the mask with the image.

After this, corresponding to the pixel Z5 I am determining the response of the mask. The
response of the mask is given by w1 into z1, plus w2 into z2, like this I have to determine the
response of the mask for the image pixels. So, pixels are Z1, Z2, Z3 up to Z9. And in this case, I

am considering the 3 by 3 mask, the 3 by 3 mask is considered. That is the symmetric mask.
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The above is repeated for every pixel in the
original image to generate the filtered image

R. C. Gonzalez and R. E. Woods, Digital Image Processing, Addison-Wesley, 2008.

This operation again I am showing here. I am considering a 3 by 3 filter, my input image is fx y,
I am considering the mask, 3 by 3 mask I am considering. So, this is the filter and if you see the
widths of the filter, the filter widths or the coefficients are r, s, t, u, v, w, X, y, z. And if I
considered the image pixel value a, b, c, d these are the a, b, ¢ d upto i. These are the original

image pixels I am considering.

And already I have explained, so how to do the masking. I have to put the mask over the image
and I have to determine the response of the mask, that is nothing but v is multiplied with e, plus r
is multiplied. This is the multiplication, like this I have to do the multiplication and addition.

This process is repeated for all the pixels of the image.

Then in this case [ will be getting the filtered image.
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Linear Filtering

In the case of linear filtering, the mask is placed over the pixel; the gray values of
the image are multiplied with the corresponding mask weights and then added up to
give the new value of the pixel.

Thus the filtered image g[m,n] is given by

gmn] = ZZWW".”‘f[mfm‘,nfn‘]
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Where summations are performed over the window. The filtering window is usually
symmetric about the origin so that we can write

gmn] = ZZM/,”.ﬁ.f[m +m',n+n']
Lyl _______-——

So, this concept is called the linear filtering. So, if you see this expression here g m n is the
output image and, in this case I am considering the input image is f m n and I am considering the
mask that mask is given by w m dash n dash. And in this case summations are performed over

the window. And in this case, the filter is the symmetric filter, that is mask is symmetric mask.

Then in this case I can do these operation, that is nothing but you can see it is something like
convolution. Because the filter coefficients are multiplied with the pixel values and it is added

up. It is nothing but the multiplications and sum up, that is the convolution.
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Linear vs Non-Linear
Spatial Filtering Methods

+ Afiltering method is linear when the output is a weighted
sum of the input pixels.
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+ Methods that do not satisfy the above property are called
non-linear.

-eg, R=max(z,k=12,...9)
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And in this case I can show the difference between the linear filtering and non-linear filtering. I
am considering the spatial filtering methods. And in this case if I consider this operation, that
means [ am determining the response of the mask. A filtering method is linear when the output is

output is a weighted sum of the input pixels.

So, in this case this is the linear filtering. But if I consider this operation max, the max operation,
I am considering 9 pixels because k is equal to 1 to 9. And out of 9 pixels I am determining the
maximum pixel, that is the maximum valued pixel. Then in this case this is not the linear
filtering. This is the example of the non-linear filtering. Because I am just determining the

maximum value out of 9 pixels.
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How Filtering Work?
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And already I have explained how to do the spatial filtering. You can see here, I have the input

image and this is the mask. And in the mask mainly I have to consider the neighborhood pixels.

And in this case how to determine the output pixel? So, I have to place the mask over the image

and after this I have to do the spatial convolution.

So, here you can see this expression here is nothing but the spatial convolution. Multiplication

and the sum up I have to do. Like this I have to determine the filtered image or maybe output

image you can determine.
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What Happens at The Borders?

» The mask falls outside the edge

= Solutions?

u [gnore the edges
The resultant image is

smaller than the original

n Pad with zeros
Introducing unwanted artifacts

And one thing is that the mask falls outside the edge. Then in this case you can either ignore the
edges the boundary pixels you can ignore or otherwise what we can do I can do the 0 padding in

the boundary pixels. So, that I can put the mask in the boundary pixels.

These two solutions, one is, I can neglect the boundary pixels that is the ignored edges I can
consider. And if I ignore the edges, the resultant image will be smaller than the original. And if I

consider the 0 padding, then in this case I will be getting unwanted artifacts.
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Handling Pixels Close to Boundaries

Here I have shown these two cases, one is the 0 padding and another one is the I can neglect the

boundary pixels I can neglect.
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Linear Spatial Filtering Methods

* Two main linear spatial filtering methods:
— Correlation
— Convolution

Now in case of the linear filtering methods we have two operations, one is the correlation
operation another one is the convolution operation. So, what is the correlation operation and how

the correlation is related to convolution?
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Correlation
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In this case I have shown the same thing, the masking operation. I am considering the mask and I
am considering the image. The image is f i j. And I am considering the mask that is the kernel
matrix, the kernel matrix is w i j. And corresponding to this I am getting the output image the

output image is g 1j [ am getting.

So, in this case what I have to do I have to put the mask over the image and 1 have to do the
multiplication between the pixel value and the widths value of the mask. And after this I have to
add all these things. So, that means it is nothing but the multiplication and the sum up. So, like
this by using this expression you can see, for all the pixels of the image I have to do this
operation. For this I have to shift the mask to the next pixel like this so that I can consider all the

pixels of the image. So, w s t is nothing but that is the mask.
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Correlation (cont'd)
¥

Often used in applications where

we need to measure the similarity

d ava V !)etween images or parts of
images

(e.g., pattern matching).

This is the correlation operation. And one application of the correlation operation in pattern
matching you can see if I consider suppose this pattern, the pattern is this and I want to detect
whether this pattern is available in the input image, my input image is this. So, if I find the
correlation between the pattern and the image, then in this case based on the correlation I can

detect whether particular pattern is available in the image or not.

In the second example also I can consider the pattern which pattern I am considering, and by
using the correlation I can detect whether this pattern is available in the image or not, that I can

detect. That is called pattern matching.
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Convolution

« Similar to correlation except that the mask
is first flipped both horizontally and
vertically.
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Note: if w(x,y) is symmetric, that is w(x,y)=w(-x,-y),
then convolution is equivalent to correlation!

And what is the convolution? In the convolution what I have to, the mask is first flipped both
horizontally and the vertically. That operation I have to do for the convolution. So, mask is first
flipped both horizontally and the vertically, and you can see here. And after this the operation is
very similar to the correlation, only difference is mask is first flipped both horizontally and

vertically, and the rest of the operation is very similar to correlation.

But if I consider symmetric mask, the symmetric mask is something like this. Then in this case
convolution is equivalent to correlation. So, for a symmetric mask the convolution is equivalent

to correlation.
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lllustration of Spatial filtering
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1 1 1 Input Image after zero padding
3x 3 Averaging

Mask

S. Jayaraman etal. “Digital Image Processing”, Tata McGraw-Hill

And in this I want to give one illustration of the spatial filtering. And in this case I am
considering the low pass filter. Here you can see I am considering the original image, and I am
considering the mask, that is the 3 by 3 mask for the averaging operation. So, if you see the

value, itis 1, 1, 1 and mainly it is divided by 9.

Because I am considering averaging over 9 pixels. So, this is the mask corresponding to the
averaging filter. That is the low pass filter. And for considering the boundary pixels I am doing
the 0 padding, so you can see the 0 padding I am doing. After this what I have to do? I have to

put the mask over the image and I have to do the convolution.
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Movement of Spatial Mask
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So, you can see in the next slide, here I have to put the mask over the image. And in this case |
have to determine the response of the mask corresponding to the center pixel. The center pixel is
7 here. Corresponding of the center pixel, I am determining the response of the mask, the

response of the mask is 8.4.
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Movement of Spatial Mask (Cont..)

19 | 19 || 19
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19 | 19 (|19
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8

0x1/9+ 0x 1/9 +0 x 1/9+ 8.4 x 1/9+9 x 1/9 +11 x 1/9+10 x 1/9+50 x 1/9+ 8 x 1/9
= 10.7

After this what I have to do? I have to move the mask to the next pixel. And corresponding to the

center pixel the center pixel is 9 in this case, corresponding to the center pixel I have to



determine the response of the mask. So, the response of the mask I can determine so you can see.
This is the response of the mask corresponding to the center pixel, the center pixel is 9. So, like

this I have to do this operation for all the pixels of the image.
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Movement of Spatial Mask (Cont..)

19 | 19 | 19
0 0 0 0 0
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0 8.4 107 | 11 0
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0x1/9+ 0x 1/9 +0 x 1/9+10.7 x 1/9+11 x 1/9+0 x 1/9 +50 x 1/9+8 x 1/9 +0x 1/9
= 88

So, like this you can see, again the mask is shifted and I have to determine the response of the

mask.
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Movement of Spatial Mask (Cont..)
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0 8.4 10.7 88 0
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0x 1/9+ 8.4 x 1/9+10.7 X 1/9+0 x 1/9 +10 x 1/9+50 x 1/9+0X 1/9+9x 1/9+ 5 x 1/9
= 103



And again you can see, | am moving the mask to the next pixel. And I am determining the

response of the mask.
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Movement of Spatial Mask (Cont..)

1 | 19 | 19
0 | 103|129 || 57 | 0

119 119 119

0 9 5 6 0
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0 0 0 0 0

0x1/9+10.3 % 1/9+12.9 x 1/9 +0x 1/9 +9x 1/9+ 5x 1/9+0 x 1/9 + 0x 1/9+0x 1/9
= 441

And like this for all the pixels of the image I have to do this operation. So, in this demonstration

you can see how to do the spatial filtering. And in this example I am only considering the low

pass filter.
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Movement of Spatial Mask (Cont..)
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So, this operation is very similar to the spatial convolution.
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Movement of Spatial Mask (Cont..)

0 0 0 0 0
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0 10.3 || 12.9 5.7 0
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129x1/9+ 5.7 x1/9+0x1/9+4.6 x 1/9+6 x 1/9+0x 1/9+0x 1/9+0x 1/9+0x 1/9
=32

So, for all the pixels of the image I have to determine the response of the mask.
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Movement of Spatial Mask (Cont..)

0 0 0 0 0

And finally I am getting this image.
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Result of Averaging filter

7 g 1" 8.4 10.7 8.8

10 50 8 10.3 12.9 5.7

9 5 6 441 4.6 3.2
Original Image / Image after Spatial Averaging o

So, you can see I have the original image and this is the image after spatial averaging that I am

getting. So, you can see the result of the averaging filter.
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Averaging Low-pass filter

An example of a linear filter is the averaging low-pass
filter. The output 1, of an averaging filter at any pixel
is the average of the neighbouring pixels inside the
filter mask. It can be given as 7, fm =3 Yo, fim+in+ 1,

where the filter mask is of size mxn and 1w, are the
image pixel values and filter weights respectively.

Averaging filter can be used for blurring and noise
reduction.

r
o Averaging low-pass filter reduces noise. v
o Large filtering window means more blurring o

So, if I do the averaging the averaging low pass filter reduces the noise. And in this case if I
considered the large filtering window, that means the blurring will be more. In my previous

example I have considered only the 3 by 3 mask, and if I considered the large filtering window



then the blurring will be more. So, these are the case, the blurring will be more and the averaging

low pass filter reduces noise.
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Averaging filter

Original Image Noisy Image
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Filtered Image

And in this case I have shown one example of the averaging filter, original image is there and I
am considering the noisy image, and I am having the filtered image. And this is the mask

corresponding to the low pass filter, that is the averaging filter.
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Low-pass filter example

* Filtered with 7X7 averaging mask

»
RC)

|-

And if I considered a 7 by 7 mask, that is the blurring will be more. Because if | consider 7 by 7
mask, this is nothing but I have to divide by 49. And if I consider 3 by 3, mask that means I am



dividing by 9. So, that is why corresponding to the 7 by 7 averaging mask, the blurring will be

more.
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5x5

———
Smoothing
filter

!
)

Original Image Smoothened Image

S. Jayaraman etal. “Digital Image Processing”, Tata McGraw-Hill

Here I am giving another example. So, original image is this and I am applying 3 by 3 mask, that
is the averaging filter I am applying. And you can see the output image, that is the smoothened

image | am having.

Similarly, I am considering another example, I have the original image and I am considering the
5 by 5 mask and I am having the smoothened image. So, in this case you can see that blurring is

more as compared to the previous example.
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Smoothing Filters: Averaging

Example: extract, largest, brightest objects

15 x 15 averaging image thresholding

And in this case | am considering the extraction of the brightest object in an image. So, my input
image is this, and after this [ am applying 15 by 15 averaging filter. And after this I am just
applying the image thresholding technique. So, by this technique you can see I can extract the

largest and the brightest object in the image. This is one application of the averaging filter.
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Smoothing filters: Gaussian

+ The weights are samples of the Gaussian function
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mask size: height = width = 5a (subtends 98.76% of the area)

Next filter I am considering that is the smoothing filter, the Gaussian filter. In case of a Gaussian

filter if you see, the weights are samples of the Gaussian function. So, I am considering the



Gaussian function here, this is the Gaussian function. Corresponding to this Gaussian function I

have the Gaussian mask, here I am considering the 7 by 7 Gaussian mask.

And what about the weight of the mask? Weights are nothing but the weights are the samples of
the Gaussian function. So I have the Gaussian function, only I have to put the value of x and y so
that I will get the weights of the mask. And in this case if I considered the mask size, the mask
size depends on the sigma. Because if I consider height is equal to width 5 sigma, then in this

case area will be 98.76 percent of the area it will cover. So, the mask size depends on sigma.
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Smoothing filters: Gaussian (cont’d)

As ¢ increases, more samples must be obtained to represent the
Gaussian function accurately.

Therefore, ¢ controls the amount of smoothing

15 x 15 Gaussian mask

T T T e T T O O T )
& @0 ADIRTrTEE BRI il (RS 4 370
3406 7 91001101109 T7643
R I T T R T
57 9 1113 14151615 141311975
5710 12 14 16 17 18 17 16 14 12 10

o0~ =1

10 13 15 17 19 19 19 17 15 13 10

8 G
8§ 11 13 16 18 19 20 19 18 16 13 11

8

i

U]
b
(

o

10 13 15 17 19 19 19 17 16 13 10 G

-1 oo

5 1012 14 16 17 18 17 16 14 12 10 7 5
579 111314151615 141311975

57T 910121313 1312109 7354
4 6 T=010710 11 1010 9 & Gudey
3 40T 8 8 8 T 17 beard™
2 =pan b6 618 60 SEad 2 2

b
|
3
)

And corresponding to sigma is equal to 3, you can see [ am considering 15 by 15 Gaussian mask.
So, in this case the parameter sigma controls the amount of smoothing. That is, it controls the

amount of blurring. So, this is one example of the 15 by 15 Gaussian mask.
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Smoothing filters: Gaussian (cont’d)

limited smoothing strong smoothing

And corresponding to the Gaussian mask, you can see I have the input image, I am considering
small sigma, then in this case it is limited smoothing. And if I consider large sigma, you can see
more blurring, the strong smoothing. So the blurring depends on sigma. This is called the

Gaussian blurring.
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Again, I am showing another example. I am considering the Gaussian mask corresponding to this

Gaussian function, corresponding to this Gaussian function I am considering the Gaussian mask.



And my input image is this. And [ am considering two cases one is the large sigma another one is

the small sigma. So, for the large sigma blurring is more as compared to small sigma.

(Refer Slide Time: 37:27)

Averaging vs Gaussian Smoothing

Averaging
el

Gaussian
___,_‘—

And you can see the difference between the Gaussian smoothing and the averaging smoothing.
One is the averaging I am considering; another one is the Gaussian smoothing I can consider.

That called the Gaussian blur.
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Edge Sharpening

» To make edges slightly sharper and crisper

» This operation is referred to as edge enhancement,
edge crispening or unsharp masking

» A very popular practice in industry

» Subtracting a scaled blurred version of an image
from the original image

faign(m,n) = fm,n) - flm,n)
1 ii i
Sharpened image Original image Blurred image

The next filter I want to consider the high pass filter, that is used for sharpening edges. Then in

this case what I have to do? I have to develop a high pass filter, I have the original image f m and



if I subtract the blurred image, that is the low pass filtered image from the original image, then in
this case I will be getting the sharpened image, that is nothing but I will be getting high

frequency components.

So, a sharpened image is represented by f High m n, that is nothing but the high frequency
components [ will be getting corresponding to the edges and the boundaries. So, this is the
definition of the high pass filter. So what I have to do, I have to subtract the blurred image, that
is the average version of the image from the original image, then in this case I will be getting the

certain image. This operation is important for edge enhancement so I can highlight the edges.
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High-pass filter

A high-pass filtered image can be computed as the difference between the original and a
lowpass filtered version.
High pass = Original - Lowpass

4

v

So, in this case I have shown the mask corresponding to the high pass filter. So, first mask if you
see this one, if I apply this mask nothing will happen, so that means I will be getting the same

image. That is why it is called the identity mask. The original image I will be getting.

Original image minus the average portion of the image that is the mask corresponding to the low
pass filtering 1 by 9, 1 by 9, 1 by 9 like this, so this is the mask corresponding to the high pass
filter. So, central pixel is 8 by 9 and remaining you can see, it is minus 1 by 9, minus 1 by 9,

minus 1 by 9 like this. So, you can see how to get the high pass filter mask.
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input image mask
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And if I apply this mask, the high pass filter mask, this is the mask corresponding to the high
pass filter. You can see here, I am considering one input image. And in the input image I am

considering the constant pixel value, if you see the 10, 10, 10 like this, this value.

Corresponding to this portion of the image what will be the response of the mask? If you apply
the convolution operation and if you determine the response of the mask you can see
corresponding to that portion the response is 0. But if I see here that this portion the pixel value

is suddenly changing from 10 to 80, that means that corresponds to edges or the boundaries.

So, corresponding to that location if I apply the mask then you can see the response of the mask
is this. So, that means corresponding to the high frequency I will be getting the response
corresponding to the high pass filtered mask. So, this is the mask corresponding to the high pass
filter.
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MK. Bhuyan, Computer Vision and Image Processing — Fundamentals and Applications, CRC press, USA, 2019.

And here I am showing one example, the original image I am considering, that is the original
mask I am considering that is nothing but the identity mask. And this is a low pass filter mask.
And if I subtract the low pass filter mask from the original, I will be getting the mask
corresponding to the high pass filter. And if I apply this filter in this image, the image is this, the
input image, then in this case I will be getting the edges. So, that means edge sharpening I can do

by using the high pass filter. Because I am considering only the high frequency components.
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And in this case you can see, in frequency domain I have shown the first row is the frequency
domain. Corresponding to the low pass filter, high pass filter and the band pass filter. In the

second row I am showing the response in the spatial domain.

In the spatial domain this is the response for the low pass filter, this is the response for the high
pass filter and this is the response for the band pass filter. So, in this case the central pixel
already you know, the central pixel is 8 by 9, so that means in this case it is a maximum value

here you are getting.

And in this case it is the averaging operation I am considering. So, you can see the concept of the
low pass filter, high pass filter and the band pass filter in frequency domain and in the spatial

domain. First row is the frequency domain and second row are the spatial domain.
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Unsharp (smoothed) Masking and High Boost filter

To sharpen images subtracting an unsharp version of the
image from the original image
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(A m)+ gl
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The next filter is the high boost filter. So, in this case what I have to consider, subtracting an
unsharp version of the image from the original image. So, that means what I am considering, if
you see I am considering the average version of the image, that is nothing but the low pass
filtered image, and I am considering the original image, original image is f m n. And I am

considering a factor, the factors A. The A is greater than 1.

So, what I am doing the subtracting the unsharp version of the image from the original image.
The unsharp version of the image means this is the unsharp version of the image. That is the

average image. And after this you can see this operation, so I can write like this, A minus 1 fmn



plus f m n minus f average I can do. And finally, I will be getting this expression, A minus 1 fm
n, that is the original image; and after this, f High m n, that is the high frequency image. So, if I
put A is equal to 1, then in this case this component will be 0, if I considering this A is equal to 1

so this will be 0. Then in this case I will be getting the high pass filtered output.

So, this is my original image if I consider A is equal to 1 then only I will be getting the high
frequency components. If A is equal to 1.3, then in this case you can see if you put this value in
this expression A is equal to 1.3, then in this case corresponding to 1.3 I have the high frequency
information as well as the low frequency information. So, in this output I do not have the low
frequency information but in the second case you can see, because of A is equal to 1.3, that

means I am considering low frequency information as well as the high frequency information.

If I consider the A is equal to 1.5, that means I am considering more low frequency information
and as well as high frequency information I am considering. So, by applying the high boost filter
I can consider both low frequency information and the high frequency information I can
consider. So, I am getting the edges, that is sharpening the edges as well as I am having the low

frequency components.
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And in this case | am showing the same thing, the high boost filtering, f m n is the input image
and I am considering A factor, A cross f m n. And in this case I am considering the average

version of the image, and this is nothing but the high boost filter I am considering. So, you can



see this is my original image and I am considering suppose it is A minus 1. Plus, I am
considering the blurred version of the image and I am getting the output, the output is this I am

getting. That is the high boost filtering.
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High pass Vs High boost filtering

Original Image

High boost filtered image
You can see the difference between the high pass filter and the high boost filter. So, I am

considering the original image is this, the first output is the high pass filter image. I am having
the high pass filtered image. And second one is the high boost filter. In the high boost filter, you
can see | have the background information along with the edge information. So, in the high boost
filter I have the high frequency information as well as the low frequency information. But in case
of the high pass filtered image I have only the high frequency information, that means I have the

edges.
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And in this case I can show these two examples. Corresponding to this image I may applying the
high boost filter. And in this case I am considering A is equal to 1.4, and corresponding to this I
am getting the output image, this. That means I am getting the background information as well

as [ am sharpening the edges.

And corresponding to the second example, I am considering this is the input image and I am
considering A is equal to 1.9. Corresponding to A is equal to 1.9 I have the output image, this is
the output image. So, that means I am sharpening the edges and also I have the low frequency

information.
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0
= Median Filters

u Replace the value of a pixel by the median of the gray
levels in the neighborhood of that pixel

» Quite popular because for certain types of random noise
(impulse noise = salt and pepper noise), they provide
excellent noise-reduction capabilities, with considering
less blurring than linear smoothing filters of similar size 255 o
u Force the points with distinct gray levels to be more like 5~ ofF
their neighbors
u [solated clusters of pixels that are light or dark w.r.t. their
neighbors, and whose area is less than n%/2 (one-half the
filter area), are eliminated by an nxn median filter
» Eliminated = forced to have the value equal the median M ) mw'u(f,_)
intensity of the neighbors ~ ies (M l-\-ufz) + A Medion (T
N

The next filter is the median filter. So, median filter is applicable for to remove the salt and
pepper noise. The salt and pepper noise is mainly the impulse noises. I have the means so these
pixel values will be affected by the impulse noises. And in this case the high value of this, the
high value of this maybe is 255, but the low value of this noise may be 0. This is something like

ON and OFF noise. That is the impulse noise I am considering.

And in this the median filter operation what I have to consider, I have to consider a mask, and
within this mask I have to consider all the pixels, the neighborhood pixels I have to consider.
And this central pixel value is replaced by the median value, so that concept I am going to

explain. And one thing it is important that median is a non-linear filter.

Why it is a non-linear filter? So, I can show you, suppose if I take the median A f1 plus B {2 that
is not equal to A median f1 plus B median 2. So, if you see this one the median is a non-linear
filter. The median A f1 plus B f2 is not equal to A median fl plus B median f2. And how to

apply the median filter? I can explain you in the next slide.
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=L- Example

u Salt & Pepper Noise

So, this is one example of the salt and pepper noise. The salt and pepper noise is nothing but the
impulse noises. And it is not affecting all the pixels of the image. Like that in Gaussian noise the
Gaussian noise affects all the pixels of the image. But in case of the salt and pepper noise, it
affects only a few pixels of the image and that is nothing but ON and OFF noise. So, my input

image is this and I am considering the salt and pepper noise.
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Median Filtering

/ Median
filtering

Averaging

Very effective for removing “salt and pepper” noise
(i.e., random occurrences of black and white pixels).

Again [ am considering here you can see my input image is this and I am considering the salt and

pepper noise. And in the first case I am applying the averaging operation and in the second case |



am applying the median filter operation. You can see the difference between the averaging
operation and the median filtering operation. So, this median filter is very effective to remove

salt and pepper noise.
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R. C. Gonzalez and R. E. Woods, DigitalImage Processing, Addison-Wesley, 2008
And here also I have shown one example. The original image with noise and in first case I am
applying the averaging filter that is the output of the averaging filter, in the second case I am
considering the median filter. You can see the distinction between these two images, one is the
averaging filter another one is the median filter. So, I think the median filter gives better result as

compared to averaging filter.



(Refer Slide Time: 49:49)

| | . o
= Median Filtering

» Median filtering is a non-linear operation that is
particularly effective at removing salt and pepper
noise

» Neighborhood values: 113, 119, 120, 123, 124,

125, 126,127, 150
123|234 125|114 102 7/

1241 115|123 150{ 124
125 119 124 | 127] 115
1141120125126 134
122 134| 115|214 112

» Median value: 124

And how to apply the median filter? So, in this example I am considering one image my image is
this the pixels value I have shown. And I am considering a 3 by 3 mask and I have to consider a
neighborhood values. The neighborhood value is 115, 119, 120, these are the neighborhood
values. And for these values I have to determine the median value. So, for this I have to arrange
in the ascending order or the descending order, and after this I have to find the median value. So,

in this case the median value will be 124. So, like this I have to determine the median value.
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And in this case, in this example suppose if I consider the 3 by 3 mask, and in this case this pixel
is affected by the salt and pepper noise, because the value is 255. Then in this case,
corresponding to this 3 by 3 window I have the pixel values, the pixel values are 15, 17, 18, 20,
20, 20, 20, 20, 255. That means I have to arrange in the ascending order, and after this I have to
find the median value. So, median value will be 20 then this 255 pixel value that will be replaced

by 20. So, this is the concept of the median filter.
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Example

tw = imread(‘twins.tif'); /
4l | t= rgb2gray(tw);

t_sp = imnoise(t, 'salt & peppep;
% | imshow(t_sp);

t_sp_m3 = medfilt2(t_sp);
figure, imshow(t_sp_m3);

t_sp_mS = medfilt2(t_sp, [5 5]);
figure, imshow(t_sp_m5);

And in this case I am showing one example. The first one is the input image and after this [ am
considering the salt and pepper noise. And after this what I am considering? If you see first one
is the input image I am considering after this [ am applying the salt and pepper noise. And after
this I am applying the 3 by 3 median filter [ am applying. So, corresponding to the 3 by 3 filter I
am getting this output. The next one is, [ am applying the 5 by 5 median filter, the 5 by 5 median
filter I am applying. And corresponding to this I have the output this one.
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Median Filtering

Original Qriginal with Noise  N=3 Median Filter  N=5 Median Filter

So, here also I have shown one example. I have the original image, original image with noise and
I am considering N is equal to 3 median filter, N is equal to 5 median filter I am considering. So,
you can see the outputs. Then one problem of the median filter is the computational complexity.
The computational complexity is in the order of n square. So, n means the small n means the

number of pixels in the window.

So, the computational complexity is very high, because I have to find the median value. And in
this case the computational complexity is in the order of n square, n is the number of pixels in the
window. So, that means I have to do n square comparisons to determine the median value for the

window.

And suppose if I consider N by N image, then in this case, for the entire image if I want to
determine the median value, then my computational complexity N square into n square. That is
the computational complexity. Then in this case some algorithms like the quick sort algorithm I
can apply, because I have to do the sorting so in this case I can apply some algorithm like quick

sort algorithm I can apply to reduce the computational complexity.
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And again, here I have shown the example of the median filter the first one is the input image,
second one I am considering the salt and pepper noise. So all the pixels are now affected by the
salt and pepper noise, and after this I am applying the median filter. So, this is the output of the

median filter image.
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Bilateral Filtering

Mean filter : blurs image, removes simple noise, no
details are preserved

Gaussian filter : blurs image, preserves details
only for small .

Median filter : preserves some details, good at
removing strong noise

We want a filter that not only smooths regions but
preserves edges

Finally, I want to discuss another filter that is the bilateral filter. So, what is the bilateral filter?
So, before discussing the bilateral filter I want to discuss again the mean filter. What is the mean

filter? Mean filters blurs the image, removes simple noise, and no details are preserved in case of



the mean filter. In case of the Gaussian filter, Gaussian filter blurs the image, preserves details

only for small value of sigma. Already I have explained about the Gaussian filter.

And after this I discussed about the median filter. Median filter preserves some details and it is
very good for removing strong noises. Now in this case we want a filter that not only smooths
the region but it can preserve edges. That means I need the edge information also I have to do the

smoothing. So, for this I have to apply the bilateral filtering.
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+ Bilateral filtering smooths images while
preserving edges, by means of a nonlinear
combination of nearby image values.

+ The method is non-iterative, local, and simple.

* |t combines gray levels based on both their
geometric closeness and their photometric
similarity, and prefers near values to distant
values in both domain and range.

So, bilateral filtering smooths images while preserving edges. That means I have to preserve the
edges and also I have to smooth the images. So, these two considerations, one is I have to do the
smoothing and also I have to preserve the edges. And in this case I have consider two cases, one

is the geometric closeness I have to consider, that means the domain I have to see.

And also I have to consider a photometric similarity between the pixels, the neighborhood pixels.
So, these two considerations I have to take into account. One is the geometric closeness between
the neighborhood pixels and also I have to consider the photometric similarity between the
neighborhood pixels. That means I am doing operations for the domain as well as the range. That

means [ am looking at the domain and the range of the image.
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* The basic idea underlying bilateral filtering
is to do in the range of an image what
traditional filters do in its domain.

« Two pixels can be close to one another,
that is, occupy nearby spatial location.
(Geometric closeness)

+ Two pixels can be similar to one another,
that is, have nearby values. (Photometric
similarity) e
=

So, already I have explained. So what I have to do, for this I have to consider a geometric
closeness I have to consider. The two pixels can be close to one another, that is occupy nearby
spatial location. So that means I have to consider the domain and also I have to consider the
photometric similarity. Two pixels can be similar to one another, that is they have the nearby

values. So, that means I have to consider the range, the pixel range I have to consider.
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What Is Bilateral Filter?

Bilateral
- Affecting or undertaken by two sides equally

Property:
- Convolution filter
- Smooth image but preserve edges A
- Operates in the d_cln_@in and the range of image

—

A

And in this case what I have to consider? Property is nothing but the convolution filter I have to

do, smooth images but preserve edges. So that means I am considering the edges and also I am



doing the smoothing of the image. And in this case, I have to operate in the domain and the

range. For range I have to consider the photometric similarity and for the domain I have to

consider geometric similarity.
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Gaussian filter Bilateral filter

Combined domain and range filtering will
be denoted as bilateral filtering.
So, you can see the output, one is the Gaussian filter output another one is the bilateral filter. In

case of the bilateral filter you can see the edges, I am having the edges and also the image is also

smoothed. So, combined domain and range filtering I have to do in the bilateral filtering.
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The bilateral filter is defined as:
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g(i, j) is the filtered image, and [ is the original input image.
The weight w(i j, k, [) 1s assigned using the spatial closeness
and the intensity difference. A pixel located at (i, j) is
denoised lmmg pixels located at (k, /). The
weight is assigned to the pixel (k, /) for denoising the pixel
(i, j), and the weight is given by:
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And in this case the bilateral filtering is defined like this, g 1 j. And in this case I am considering
the input image, the original image is I, and also I am considering the weight. The weight is w 1,
J, k, L. And g, 1, j is the filtered image. The weight w, 1, j, k, 1, that is the weight I am considering
is assigned using the spatial closeness that is the geometric closeness. And the intensity
difference that is the photometric similarity. One is the geometric closeness this is the spatial
closeness, another one is the intensity difference that is the photometric similarity I have to

consider.

A pixel located at i, j is denoised using its neighboring pixels located at k, l. And in this case the
weight is defined like this. You can see we have two parts, the first part is this, the second part is
this. So, what is meaning of the first part and what is the meaning of the second part? I can show

you in the next slide.
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So, this is the weight. The first part is the domain kernel, you can see because I have to consider
geometric closeness I have to consider. The second part is the range kernel I have to consider the
range kernel. The first one is the domain kernel. For the range kernel I have to consider the

photometric similarity.

So here you can see I am finding the photometric similarity between the pixels and also I am
considering the geometric similarity between the pixels. So, you can see the geometric similarity

between the pixels. So, that means in bilateral filtering I am considering the domain kernel and



also the range kernel I am considering. And that is combined and if I combine these two I will be

getting the weight.
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Bilateral Filters with various range and domain parameter values

R. C. Gonzalez and R. E. Woods, Digital Image Processing, Addison-Wesley, 2008.
And in this case you can see the bilateral filters with various range of domain parameters value.

So, I am considering the sigma d, that is the domain parameters value and also I am considering
sigma r, that is the range parameters value. For defining parameters you can see the output

images. That means I am considering both range and the domain filtering in the bilateral filters.

So, in this class today I have discussed about the spatial filtering. First I discussed about the
concept of the masking. After this I discussed about the concept of the low pass filter and the
high pass filter, and the high boost filter. After this one non-linear filter I discussed, that is the

median filter I have discussed. And finally, I discussed the concept of the bilateral filtering.

So, in the bilateral filtering we considered the domain filtering and the range filtering. So, this is
about to spatial filtering. In my next class I will discuss about the concept of frequency domain
filtering. In a frequency domain filtering I have to modify the Fourier Transform of the image.

So, that concept I am going to discuss in the next class. So, let me stop here today. Thank you.



