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In my last  class,  I  discussed the  basic  concept  of  wavelet  transformation.  I  highlighted  one

important concept that is a signal should be analyzed both in time domain as well as in frequency

domain.  Also,  I  discussed  the  concept  of  continuous  wavelet  transformation.  So,  for  this,  I

considered  the  mother  wavelet  and also,  I  considered  two parameters,  one is  the  translation

parameter and another one is the scaling parameter.

So,  by considering  these  two parameters,  I  can  get  a  number  of  wavelets  for  analysis  of  a

particular signal. After this, I discussed the concept of multi resolution analysis. A signal should

be analyzed in different resolutions, a high resolution and a low resolution. So that concept also I

discussed in my last class.

Today,  I  am  going  to  discuss  the  concept  of  discrete  wavelet  transformation  and  how  to

decompose a particular signal into different frequency bands. In my definition of the signal, I am

considering either 1D signal or 2D signal. The 2D signal means image. So that concept, I am

going  to  discuss,  that  is,  how to  decompose  a  particular  signal  by  considering  the  discrete

wavelet transformation.

So I  can decompose a  particular  image into  number of frequency bands.  That  means,  I  can

consider  a  low  frequency  information,  I  can  consider  high  frequency  information.  So  that

concept I am going to discuss now.



(Refer Slide Time: 02:22)

So in my last class, you can see here, the main concept of the wavelet transform is, that is, I am

considering analysis windows of different lengths are considered, for different frequencies. So if

I  consider  high  frequencies,  we  have  to  consider  narrow  windows.  So  that  is,  use  narrow

windows for better time resolution. And if I consider the analysis or low frequencies, then in this

case we have to consider wider windows for better frequency resolution. And the function used

to window the signal is call the wavelet. So that concept, I have already explained, that is, the

analysis of the high frequency and also the analysis of low frequencies.



(Refer Slide Time: 03:10)

Here, in this example, you can see, I am considering one window. You can see the window here.

So this is the window. And in this case, I am considering one wide window. So, wide window do

not provide good localization at high frequency. So here you can see, so this portion corresponds

to the high frequency. So that is, you can see from this figure. 

(Refer Slide Time: 03:35)

And that is why, if we consider the narrow window, that is better for high frequency. That is, use

narrow windows at high frequencies.
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And after this, you can see, I am considering one narrow window. And if I consider this portion,

that portion is the low frequency portion of the signal. So if I consider the narrow window, they

do not provide good localization at low frequencies.  That is why, I have to consider a wide

window for analysis of the low frequency components. So that is why, I have to consider one

wide window for the analysis of the signal. 

So here, in this example, you can see that narrow windows do not provide good localization at

low frequencies.
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That is why, we are considering one wide window at low frequencies. So that is why the window

size  is  not  fixed  in  case  of  the  wavelet  transformation.  So  I  am  considering  variable  size

windows. Narrow windows for the high frequency information analysis, and if I consider the

wide window, that is good for low frequency signal analysis.

(Refer Slide Time: 04:52)

And also, I discussed the concept of the mother wavelet. Here you can see, I am considering the

one wavelet function, I am considering. And in this case, you can see, I have two parameters.

One  is  he  scaling  parameter  another  one  is  the  translation  parameter.  So  ‘a’  is  the  scaling

parameter and ‘b’ is the translation parameter. That concept also I have discussed in my last

class.
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And after  this,  I  discussed the  concept  of  continuous wavelet  transformation.  So this  is  the

definition of the continuous wavelet transformation. C(τ , s) , for the signal, the signal is f (t). I

am considering one 1 dimensional signal. And I have two parameters, one is τ, another one is s.

So τ is the translation parameter and s is the scaling parameter which measures frequency. And

the translation parameter, that is the measure of time. 

And here you can see, so this expression is for the continuous wavelet transformation for the

signal. The signal is f (t). And I am considering the kernel, so mother wavelet I am considering,

Ψ (
t−τ
s

¿, I am considering. So, this is the definition of the continuous wavelet transformation.
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After this I discussed the concept of the multi resolution analysis. So that means, we have to

analyze the signal at different frequencies with different resolutions. So I have given the example

in case of the image. So suppose if I consider one low contrast region in an image, that I have to

analyze at the high resolution. And also, if I consider a small object in an image, that I have to

analyze at high resolution.

But if I consider a good contrast region, that I can analyze at low resolution. And if I consider a

big  object  in  an  image,  that  I  can  analyze  in  low resolution.  That  is  the  concept  of  multi

resolution  analysis.  That  means  analyze  the  signal  at  different  frequencies  with  different

resolutions.

And also, it is important to analyze a signal, both in time domain and frequency domain. But the

problem is uncertainty principle,  that already I have explained the concept of the uncertainty

principle.

The point is that, if I consider high frequency, that means the good time resolution and poor

frequency resolution at high frequency. On the other hand, good frequency resolution and poor

time resolution at low frequencies. So that concept already I have explained.
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And in this case, you can see I am considering Approximation Pyramid. So if I considered N by

N image, that is the highest resolution I am considering. So that is the image. If I go to the top of

the pyramid, the next level is N by 2, N by 2, that is the less resolution I am considering. And the

lowest resolution is 1 by 1, that is 1 pixel, I am considering.

So I am considering different resolutions for multi resolution analysis. So that means, I want to

analyze a particular signal at different frequencies with different resolutions.
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And also, I had explained this concept, that is, how to represent a particular signal by considering

low frequency  information  and the  high  frequency  information.  So here  you can  see,  I  am

considering one signal, the signal is this. And that is approximated by low frequency information

and the high frequency information. So L0 is the low frequency information. And for the high

frequency information, that is, the detailed information, I am considering D1, D2, D3.

And suppose if I combine L0 and D1, L0  is the low frequency information and D1 is the high

frequency information. So by using this, I want to reconstruct the signal, then in this case I can

reconstruct the signal like this, that is, by considering L0 and D1. 

After this, I am considering the detail information D2. So if I consider the detail information D2,

so the reconstruction can be like this. So I can do the reconstruction like this. And after this, I am

considering the detail information D3, so by considering this I can reconstruct the signal. 

That  means,  for  reconstruction  I  am  considering  low  frequency  information,  also  the  high

frequency  information,  that  is  the  detail  information,  D1,  D2,  D3.  That  is  the  efficient

representation using the high frequency information, that is the detail information.
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So,  you can  see,  the  signal  is  represented  by  this  one.  One is  the  L0  is  the  low frequency

information, after this, I have the detail information like D1, D2, D3. So, by using this, I can

reconstruct a particular signal or I can represent a particular signal.

(Refer Slide Time: 10:14)

So, for wavelet representation of a function, a coarse overall estimation, that is the low frequency

information, and also, I have the detail coefficients that influence the function at various scales.

So that means, for wavelet representation of a particular function, so I have to consider coarse

overall  approximation  for  the  low  frequency  component.  Also,  I  have  to  consider  detail

coefficients that influence the function at various scale.
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And  you  can  see  how  to  reconstruct  the  signal.  So  I  am  considering  the  low  frequency

information. So in the signal you can see this is the low frequency information. And after this,

what  I  am  considering.  I  am  just  adding  the  detail  information  with  the  low  frequency

information, that is L0  + D1. And by using this, I want to reconstruct the signal. So this is the

reconstructed signal. 

After this what I am considering, the detail information D2 is considered. So that means L1+ D2

I  am  considering.  And  like  this,  I  am  considering  more  and  more  detail  information  to

reconstruct the signal. So you can see, by considering the low frequency information and the

detail information D1, D2, D3, I can reconstruct a particular signal. That is called synthesis. In

case of the analysis, I can represent a particular signal by the low frequency information and the

high frequency information.



(Refer Slide Time: 11:45)

So in my last class also I had given one example. Same example I want to give here.

So suppose I am considering one input, then, suppose the input is an array of 8 data points I am

considering. So suppose 1, 2, 3, 4, 5, 6, 7, 8, so eight data points I am considering. And first, I

am considering Level  1 decomposition of the signal.  That means,  I  want  to  decompose this

signal into low frequency component and the high frequency component.

So if you see these first two samples, from the first two samples I can determine the approximate

component. So the approximate component will be 1 + 2 divided by 2, so that is nothing but 3 /

2. After this, if I consider these two components, 3 and 4, so from this also I can determine the

approximate component. So 3 + 4 divided by 2, so it will be 7 / 2.

And after this I am considering next two components, 5 and 6. So 5 and 6, I can consider and I

am determining the approximate component. So, approximate component will be 11 / 2. And

after  this  I  am  considering  7  and  8,  so  from  7  and  8  I  am  considering  the  approximate

component. So approximate component will be 15 / 2.

So these are the approximate components. After this, I want to determine the detail components.

So  from 1  and  2,  that  means  from 1  and  2,  if  you  see,  what  I  can  determine,  the  detail

component. So that is 1 - 2, that is the difference between these two divided by 2, so it will be –

1/ 2. Similarly, for 3 and 4, I can determine the detail information, that is – 1/ 2. So I will be

getting – 1/ 2, – 1/ 2, like this.



So in the level one decomposing, you can see I am getting the low frequency information, these

are the low frequency information, up to this. And also, I am getting the detail information. Low

frequency means it is the approximate. Approximate information I am getting. And in this case, I

am getting the detail information. Details, I am getting. So this is Level 1 decomposition.

In  Level  2  decomposition,  so  in  the  Level  2  decomposition  what  I  am  considering,  I  am

considering 5 by 2, I am determining because my sample is 3 by 2 and 7 by 2. So if I consider

these two, so I will be getting the approximate component, it is 5 by 2, 13 by 2, 13 by 2 I will be

getting if I consider these two components. I will be getting 5 by 2, 13 by 2.

And after this, I can determine the detail components. The detail is - 1, - 1. So from 3 by 2 and 7

by 2, I can determine the detail information, that is, -1. And from 11 by 2 and 15 by 2, I can

determine the detail information, the detail information is - 1. And the previous values are - 1 by

2, - 1 by 2, -1 by 2 and -1 by 2. This is Level 2 decomposition.

And if I consider Level 3 decomposition, I will be getting 9 by 2, minus 2, minus 1, minus 1,

minus  half,  minus  half,  minus half  and minus half.  So in  this  case,  this  corresponds to  the

approximate component. And if I consider this, all this corresponds to the detail information.

So that is the final array I am getting. And that is nothing but the Haar Transformation of the

input data. So that means, this is the concept of the Haar Transformation of the input data. So I

considered an array of eight data and if I consider the Level 3 decomposition, that is I have done

Level 1 decomposition, Level 2 decomposition and the Level 3 decomposition and I am getting

the final array, so here you can see I have one approximate component and you can see the

remaining are detail information, the detail components.

So this is one example.
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I can give another  example.  Suppose I  have one 1D image,  having 4 pixels.  The pixels are

suppose 9, 7, 3, 5. I am considering one 1D image and resolution, I am considering resolution, 4

pixels I am considering. And if I apply the Haar Wavelet Transformation, then in this case, if I

apply  the  Haar  Transformation.  Haar  Transformation  means,  I  have  to  determine  the

approximate component and the detail component.

So, corresponding to this 9, 7, 3, 5, I will be getting 6, 2, 1, - 1. So, the 6 is the low frequency

information, that is L0, D1, detail information, D2, and D3, the detail coefficients. And in this

case, suppose if I consider resolution and I am determining the average, also I am determining

the detail coefficients.

So first, I am considering the 1D image with resolution of 4 pixels, that means, I am considering

9, 7, 3, 5. And I don’t have any detail coefficients in this case. And after this, the resolution is, I

am considering the resolution is  2,  suppose.  So corresponding to this,  I  am determining the

average. Average will be 8 and 4. And what about the detail? The detail will be 1 and minus 1.

How to determine 8 and 4? 9 plus 7 divided by 2, so I will be getting 8. And how to determine 4?

So 3 plus 5, divided by 2, I will be getting 4. And how to determine the detail information, that

is, detail coefficients, that is, 9 minus 7, divided by 2 so it will be 1. And another one is 3 minus

5  divided  by  2,  that  will  be  equal  to  minus  1.  So  like  this,  I  am  calculating  the  average

coefficients  and  the  detail  coefficients,  that  is  the  approximate  coefficient  and  the  detail

coefficient.



After this, if I consider resolution 1, then in this case also I can determine the average value. The

average is 6. And what about the detail coefficient? The detail coefficient will be 2.

So this is the decomposition of a particular signal. The signal is 9, 7, 3, 5, and I am decomposing

that signal. And ultimately what I will be getting? I will be getting 6, 2, 1, - 1. That I will be

getting after the decomposition. That is the Haar Transformation I am applying. So you can see, I

am getting 6, 2, 1, -1. So if you see here, I will be getting this. First one is 6, after this, 2 and 1, -

1.

And also, we can reconstruct the original image to a resolution by adding or subtracting the

detail  coefficients  from the lower resolution versions.  So that  means,  how to reconstruct the

image, because my coefficients are 6, 2, 1, - 1. These are my coefficients.

So, how to reconstruct? So I have to consider the detail information, the detail information is 2.

So, if I consider the detail information 2, so I can reconstruct this one, 8 and 4. After this, if I

consider detail information, suppose 1, another information is 1 and - 1. So I can reconstruct the

signal,  the  signal  is  9,  7,  3,  5.  So  the  signal  is  reconstructed.  9,  7,  3,  5.  So  this  is  the

reconstruction procedure.

Reconstruction means synthesis. And if you see the decomposition, the decomposition means

analysis. So this is analysis. And this is, reconstruction means synthesis, synthesis of the signal.

So I  can  reconstruct  the  signal  by  considering  these  detail  coefficients.  Because  I  have  the

approximate information, that is, the average information is available. And by considering the

detail coefficients, I can reconstruct the signal. That is the concept of the signal decomposition

and the reconstruction.
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And  now,  I  will  discuss  the  concept  of  the  Multiresolution  Conditions,  the  Multiresolution

Analysis, how to analyze a particular signal in different resolutions.

So suppose if a set of functions can be represented by a weighted sum of this basis function, the

function is, psi 2 to the power j, t minus k. That means, I am considering a set of functions which

can be represented by a weighted sum of psi 2 to the power j t minus k. That, I am considering.

Then, a larger set including the original can be represented by a weighted sum of psi 2 to the

power j plus 1 into t minus k. So that means I am considering the higher resolution in this case.

So in this figure, you can see, I am considering j, it controls the resolution. So you can see the

low resolution signal and the high resolution signal.

So this concept is there. Suppose a set of functions which can be represented by a weighted sum

of the basis function. The basis function is, psi 2 to the power j into t minus k. Then a larger set,

including the original can be represented by a weighted sum of psi 2 to the power j plus 1 into t

minus k.

 So you can see in this figure, I am considering a signal at low resolution and the high resolution.

And the resolution is controlled by the parameter, the parameters is j. 
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Again, I am repeating this. So if a set of functions can be represented by a weighted sum of psi 2

to  the  power  j,  t  minus  k,  then  a  larger  set  including  the  original  can  be  represented  by  a

weighted sum of psi 2 to the power j plus 1 into t minus k.

So what is this concept? You can see, suppose if I consider one set, that is the V j, so that is the

span of this function, the basis function is psi 2 to the power j into t minus k. And if I consider

another larger set, the another large set is V j plus 1. So larger set I am considering, that is V j

plus 1. That should be the span of this basis function, the basis function is psi 2 to the power j

plus 1 into t minus k.

So first, I am considering a small set, the small set is V j, and corresponding to this I have to

consider the basis function, the basis function is psi 2 to the power j into t minus k. But if I

consider one larger set, that is V j plus 1, then in this case, I have to consider the basis function.

The basis function is psi 2 to the power j plus 1 into t minus k. That I have to consider.

And in this case you can see that the set V j is a subset of V j plus 1, because the V j plus one is a

large set as compared to V j. And you can see, if I consider a particular function, f t, suppose,

that is represented by using the basis function, the basis function is psi j k. But if I consider, one

larger set, that is, if I consider a function f j plus 1, previously it is f j but now I am considering a

large set, that should be represented by or that can be represented by the basis function, the psi j

plus 1 into k.



That means I am considering the liner combination of the basis function, that is the weighted

sum of basis function,  I am considering.  So you can see, this function is represented by the

weighted sum of psi j plus 1 k. But if I consider f j, that is the small set, I am considering, that

can be represented by the weighted sum of the basis function, the basis function is psi j k. 

That  means,  the meaning is  this,  that  is  if  I  consider  a  small  set,  suppose  V j,  that  can  be

represented by a weighted sum of psi 2 to the power j t minus k. But if consider a large set, the

large set is V j plus 1, for this I have to consider the basis function, the basis function is psi 2 to

the power j plus 1 into t minus k. So that I have to consider, because V j is a subset of V j plus 1.

(Refer Slide Time: 26:41)

So here, you can see I am considering a set,  the set is V naught, that is the small set, I am

considering. So for this I am considering the basis function, the basis function is psi t minus k.

Next, I am considering one large set as compared to V naught. So V1 is larger than V naught. So

for V1, I have to consider the basis function, the basis function is psi 2 t minus k. Like this, if I

consider another set, that is, a large set V j, that should be represented by the basis function, the

basis function is psi 2 to the power j t minus k.

So that means, if f t is an element of the set, the set is the V j, then f t can be represented by this.

f t is equal to summation over k, summation over j, a j k, that is the coefficients, psi j k, t. That I

am considering.



So V j means the space spanned by the basis function, the basis function is psi 2 to the power j t

minus k. So that is the sub-space, the V j, that is the space spanned by the basis function psi 2 to

the power j t minus k, I am considering.

And in this figure, you can see I am considering the sub-space V naught, V1, V2, V3, like this.

So the first small subset is V naught, this is the V naught, and you can see the next one is, you

can see the subset, that is the V1 I am considering, the set is V1. So from this, you can see that V

j is a subset of V j plus 1, I am considering.

So that means, if f t is an element of V j then in this case f t will be also element of V j plus 1. V j

plus 1 means I am considering one large or maybe one big set as compared to V j. So you can see

the small set is V naught, the next big set is V1, and compared to V1, the next big set is V2,

compared to the set V2 the next big set is V3.

So that means, you can see, I have the nested spanned spaces. So V j is a subset of V j plus 1, I

am considering. This is called the nested spaces, that is spaces are V j. So I am considering V

naught, V1, V2, like this I am considering. And corresponding to V naught, I need the basis

function, the basis function is psi t minus k. Similarly for V1, the basis function is psi 2t minus k.

So like this, I am considering.
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So  that  means  the  function  is  represented  like  this.  f  t  is  equal  to  the  summation  over  k,

summation over j and a j k is the coefficient. And I am considering the basis function, the basis

function is psi j k.

Now, in this case you can see, I am considering the space, the space is V naught. Now, how to

get V1? That is the big set as compared to V naught. So for this, what you can see, if I can find

the difference between V1 and V naught and after this if I consider suppose V naught plus that

difference, then I will be getting V1. So that means the idea is, define a set of basis functions that

span the difference between V j.

So I am repeating this, suppose I have that information, that is the V naught is available, so how

to get V1? So if find the difference between V1 and V naught, after this, if I consider V naught

plus that difference, then in this case I will be getting V1. So with the help of this difference I

can represent V1. 

(Refer Slide Time: 30:47)

So here you can see, I am considering the set, the set is V naught, V1, V2, V3, like this. And I

am considering W j be the orthogonal complement of V j in V j plus 1. So what do you mean by

orthogonal complement? The orthogonal complement is a subspace of vectors where all of the

vectors in it are orthogonal to all of the vectors in a particular subspace. So that is the meaning of

the orthogonal complement. 



So I can repeat this one. So that means the orthogonal complement is a subspace of vectors

where all of the vectors in it are orthogonal to all of the vectors in a particular subspace. So that

is the meaning of the orthogonal complement. 

So I can give one example. Suppose for example, if I consider a plane, suppose if I consider a

plane in R to the power 3 space, the 3 dimensional space, the 3D space, then the orthogonal

complement of that plane is the line that is normal to the plane and passes through the point, the

point is 0, 0, 0.

So that means if I consider a plane in 3 dimensional space, that is R to the power 3 space, then

the orthogonal complement of that plane is the line that is normal to the plane and passes through

the point, the point is 0, 0, 0. So that is the concept of the orthogonal complement.

So, in this  case, how to determine V j plus 1? You can see, V j plus 1 is the bigger set as

compared to V j. So if I consider V j plus W j, W j is nothing but the difference I am considering.

Then in this case, if I consider adding of this, V j plus W j, then I will be getting V j plus 1. So

here, in this figure you can see, so if I consider V naught, here it is, the V naught, if I consider V

naught as a set. And if I consider the difference, the difference is W naught. If I add V naught

plus W naught, I will be getting V1. So I will be getting V1.

Similarly, if I consider V1 plus W1, then I will be getting V2. So this is V1, so if I consider, this

is V1, so this is V1. And if I consider V1 plus W1, then I will be getting V2. So this space is V2.

So with the help of the difference, I can consider this one, that is, the V j plus 1 is equal to V j

plus W j.
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So,  how to  compute  the  difference?  So,  if  f  t  is  a  element  of  V j  plus  1,  then  f  t  can  be

represented using the basis function phi t from V j plus 1. So that concept I am showing here.

That is, f t is represented like this. c k is the coefficient and phi 2 j plus 1 into t minus k, the

function is represented like this, using the basis function phi t from V j plus 1.

And alternatively, f t can be represented using two basis functions. One is phi t from the space,

the space is V j. And also, I am considering psi t from the space W j. What is W j? W j is the

difference between V j and V j plus 1. So, here you can see, the V j plus 1 is represented by V j

plus W j.

V j plus 1 is the larger set as compared to the set V j. So that means, the function f t can be

represented like this. I am considering two basis functions. One is phi t, I am considering, this

basis function, phi 2 to the power j into t minus k. And another one is psi, 2 to the power j t

minus  k I  am considering.  And you can see the  coefficients,  the c  k  and the d j  k  are  the

coefficients I am considering. Because, I am considering the linear combinations.

So f t, can be represented by using these two basis functions. So, for this what I am considering?

This component I can consider as approximate component and this difference I can consider as

the detail components, the details I can consider.
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So,  that  means,  you can  see  these  functions,  this  f  t,  instead  of  considering  only one  basis

function, I am considering two basis function, one is phi another one is psi. So, I am getting V j

and another one is W j. W j, the difference between V j plus 1 and V j. That difference I am

calculating.

So, the signal, the signal or the f t, the function is represented by using these two basis functions.

So, what is this component, the second component? The difference between V j and V j plus 1.

That is the difference.
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So, here you can see, how to represent V j plus 1. V j plus 1 is nothing but V j plus W j. And

recursively I can determine V j plus 1. So V j plus 1 is nothing but V naught plus W naught plus

W1 plus W2 plus W3, up to W j I am considering. That means, V naught corresponds to the

approximate information and W naught W1, W2, all these are basically the difference, that is

nothing but the detail information.

So, here you can see, I am considering the V naught and W naught is what? It is the difference

between V1 and V naught. W1 is the difference between V naught and V1. So, by considering

these differences, I can represent a particular function. 

So, you can see, the function is represented by this, f t is equal to summation over k, c k, phi t

minus k, that is for V naught. So this basis function I am considering for V naught. And another

one is summation over k, summation over j, that is the second component I am considering.

d j k, that is the coefficients, and phi 2 to the power j, t minus k. Then I am considering the detail

component, and this is for W naught, W1, W2, and I am considering the basis function psi. So,

that means I am considering two basis functions, one is phi, another one is psi, to represent the

function f t.

Since I am considering the vector space, I am considering this summation as direct sum. So, this

should be direct sum. Instead of the simple summation, this should be the direct sum because I

am considering the vector space.
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So, here you can see, for wavelet decompositions we consider two basis functions, one is phi t,

another one is psi t. And you can see the two shapes are translated and scaled to produce number

of wavelets at different locations and on different scales. I can do the translation; I can do the

scaling so that I will be getting a number of wavelets.

So, you can see, I am doing the translation, also I am doing the scaling. So, here you can see, this

phi t is used to encode low resolution information and this psi t, it is used to encode detailed or

high-resolution information.

(Refer Slide Time: 38:43)

So, I am writing it again, the function f t is represented by these two functions, one is the scaling

function  I  am  considering,  and  another  one  is  the  wavelet  function.  So,  I  have  two  basis

functions, one is phi t minus k and another one is psi 2 to the power j, t minus k. So, a function is

represented as a linear combination of these two basis functions.

In Fourier analysis, there are only two possible values of k. Either it may be 0 or pi by 2. The

values of j  correspond to different scales.  The scale means frequencies.  So, you can see the

difference between the wavelet expansion and the Fourier analysis.
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And this is the Haar wavelet I am showing. So, by considering the Haar wavelet, I can determine

the  approximate  component  and  the  detail  component.  So,  by  using  this  wavelet,  the  Haar

wavelet,  I  can determine the approximate value,  approximate means the average value I  can

determine. And by using these wavelet function, I can determine the detail information. That is,

the difference I can determine.

So, the first one is for computing the average, the second one is for computing the details.
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And in this case I am showing one example. I am considering 1D Haar wavelet decomposition,

and I  want  to determine  the average and the detail  information,  you can see.  So first,  I  am

calculating the approximate value and the average value. The green one is the average value and

the red one is the detail value. So, in my numerical example I have shown this example.

After this what you can do, you can rearrange these values like this. So, the greens you can

rearrange  and  the  red  you  can  rearrange  like  this.  After  this,  again,  I  can  determine  the

approximate value and the detail value, the average value and the detail value. After this, again, I

can rearrange. After this, again, I can determine the approximate value and the detail value.

And finally,  I will be getting the signal after decomposition.  So, that means, I have the one

approximate component, you can see this is the approximate component. And if you see this red

one, all these red ones, that is nothing but the detail information.

So, like this I can do the decomposition by using the Haar wavelet. So, Haar wavelet can be used

for determining the approximate value and the detail coefficients.

(Refer Slide Time: 41:12)

So, here you can see, I am considering 1D Haar wavelet decomposition. So you can see, I will be

getting the final array like this. So, this is after decomposition I am getting this one. So this is

approximate values, and the remaining red one is the detail, details I am getting.
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So, this implementation can be done by using two filters, one is the low pass filter, another one is

the high pass filter. That means, the decomposition can be done by considering two filters, one is

the  low  pass  filter.  The  low  pass  filter  is  h  naught  n,  and  high  pass  filter  is  h1  n,  I  am

considering.

So, for analysis I am considering this one. So, signal is f n. So, I am considering the low pass

filter to get the approximate component and high pass filter to get the detail information. And

after this, I can do the down sampling. The down sampling by 2. So, this is for the analysis of the

signal. So this is called Analysis Filter Bank. And for the reconstruction, for the synthesis of the

signal, what you can do, just opposite.

We have to do the up sampling of the signal, we are doing the up sampling. And after this, again

I am considering the synthesis filter bank, that is nothing but, again, the low pass filter and the

high pass filter.  So g naught n is the low pass filter  and g1 n is the high pass filter.  So by

considering this, I can reconstruct the original signal.

So you can see, this is the approximate reconstructed signal, by considering low pass filter and

the high pass filter. And this filter is called the Quadrature Filter, the Quadrature Mirror Filter.

The concept of the Quadrature Mirror Filter, I can explain in my next slide.
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What is a Quadrature Mirror Filter? Here, you can see I am showing the frequency response of

the low pass filter and the high pass filter. So, h naught n is the low pass filter and h1 n is the

high pass filter. So, how to get the high pass filter? That is nothing but h1 n is the mirror of h

naught n. That is, the high pass filter is the mirror of the low pass filter.

So that is why, if I consider the symmetry point, the symmetry point is pi by 2. So this is pi by 2.

So suppose if I have only the low pass filter, so high pass filter easily we can obtain by this. So h

naught n is available suppose, the low pass filter is available. Already we have designed the low

pass filter. So, how to get the high pass filter? 

The high pass filter h1 n in the time domain is nothing but it is minus 1 to the power n into h

naught n. And corresponding to this, you can see the transfer function. So h naught minus z, I am

considering. So, what is h naught z? That is the transfer function of the low pass filter. So, it is

the transfer function of the low pass filter, that is in the z domain. z transform I am considering.

And h1 z, that is the transfer function for the high pass filter.

So, this is the concept of the Quadrature Mirror Filter. If I know, the low pass filter, from the low

pass filter I can determine the high pass filter, because the center of symmetry is pi by 2.
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And similarly, for the synthesis side also we need the low pass filter and the high pass filter. So

here you can see g naught n, g1 n. g naught n is the low pass filter, that is the synthesis filter.

And g1 n is the high pass filter.  So from this, you can see, from h naught n, that is, in the time

domain, that is, the low pass filter, and h1 n is the high pass filter in the time domain.

You can see. Because, you can determine G not z, that is the synthesis filter, that is the low pass

filter, in the synthesis side is nothing but H naught z, because H naught z is the low pass filter in

the analysis side, that is the analysis, for the analysis of the signal I am considering the low pass

filter. That filter is H naught z.

So, from H naught z you can determine G not z. G not z is nothing but the low pass filter for

synthesis. And also, you can determine G1 z. G1 z is nothing but the high pass filter for the

synthesis of the signal. So from h naught, you can determine G1 z. And already you know what

is H1 z. H1 z is nothing but H naught minus z. You know this. And also you know that in time

domain h1 n is equal to minus 1 to the power n, h naught n. You know this.

So that means the concept is, if you only know this one, h naught n, that is the low pass filter of

the analysis, the low pass filter for analysis then all other filters, all other filters means h1 n, g

naught n, g1 n, you can determine from h naught n. So you can determine h1 n from h naught.

You can determine g naught n from h naught, you can determine g1 from h naught. So all the

filters you can determine from h naught. So that is the concept.
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And  we  are  considering  a  class  of  perfect  reconstruction  filters  needed  for  the  filter  bank

implementation. So I have to consider filter banks because I have to decompose the signal for

discrete wavelet transformation. For discrete wavelet transformation, we need the filter banks,

the low pass filter and the high pass filters.

So in this case, these filters satisfy this condition, h1 n is equal to minus 1 to the power n and, h

naught N minus 1 minus n, where N is the tap length required to be even. So it should be even.

And corresponding to this, we can determine the synthesis filters. So that means, for discrete

wavelet  transformation  I  have to  determine the approximate  components,  and also the detail

components. So for this, I need low pass filters and the high pass filters.

And for analysis we need the low pass filter  banks and also the high pass filter  banks. And

similarly, for the synthesis of the signal, we need filter banks. That is nothing but low pass filters

and the high pass filters.



(Refer Slide Time: 48:26)

So here, you can see, I am showing the analysis of the signal and also the reconstruction of the

signal. So here you can see I am considering the low pass filter h naught n, and high pass filter is

h1 n. And I am considering the Quadrature Mirror Filter. So from h naught n you can determine

h1 n. So the signal is decomposed by considering this low pass filter and the high pass filter. 

Similarly, for the synthesis I am considering h naught minus n, that is the synthesis filter, that is

the low pass filter. And h1 minus n, that is the high pass filter for the synthesis, I am considering,

which can be obtained from h naught n. So the main filter is h naught n, from h naught n, you

can determine h1 n, you can determine h naught minus n and also you can determine h1 minus n,

you can determine.
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So this multiple level of decomposition we can do by using these filter banks.  In this figure, you

can see the multiple levels of decompositions I can do. So first, I am considering the signal, the

signal is f k, that is of highest resolution. After this, I am considering the low pass filter and the

high pass filter. I am determining the approximate value and the detail vale. 

After this, I am down sampling. So I am having the detail information, detail here is 1. And from

the  approximate  information,  you  can  see  we  have  the  approximate  information,  from  this

approximate information I can again do the decomposition. So for this, I am again considering

the low pass filter and the high pass filter.

So I will be getting the approximate component and the detail component. So detail information I

am getting, the Detail 2. And after this, I can do the down sampling to get the lowest resolution.

So  like  this,  I  can  implement  this  decomposition.  And  this  is  nothing  but  the  multilevel

decomposition.
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And for the synthesis, for the reconstruction, the opposite is this. Because I have the approximate

information, I have the detail information, detail information 1, detail information 2. And you

can see, by considering again the filter banks, the low pass filter and the high pass filer, you can

reconstruct the signal.

And one thing is important, here I am doing the up sampling. In case of the analysis, we did the

down sampling but in this case I am considering the up sampling of the signal. And you can see,

I can reconstruct the signal by considering approximate information and the detail information.

This is about the reconstruction.
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In this figure also I am considering the decomposition of a particular signal, that is the discrete

wavelet transformation I am considering. For decomposition of the signal, I am considering the

low pass filter and the high pass filter. So I will be getting the approximate component and the

detail component. So this is the decomposition of a particular signal.
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In this case also I am showing one signal, the 1D signal. And I am considering one low pass

filter  and one high pass filter  to get the approximate and the detail  components. So, any 1D

signal can be decomposed like this. Now, I am discussing the 1D signal that can be extended for

2D signals. Like, in the image we can do the decomposition.
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And  here  you  can  see  the  Multiple-Level  DWT,  the  multiple  level  discrete  wavelet

transformation. How to implement this one? So the signal is this, I am considering the low pass

filter  and the high pass filter. So I will be getting the approximate component and the detail

component I will be getting.

And  you  can  see  in  the  second  figure,  what  I  am  doing?  I  am  doing  the  multiple  level

decompositions.  So  signal  is  S.  I  will  be  getting  the  approximate  component  c  A1,  detail

component  c  D1.  From  this  approximate  component,  again  I  am  getting  the  approximate

component c A2 and the detail component c D2.

And from the approximate component c A2, I am getting the approximate component c A3 and

the detail component, c D3. So like this, we can do multiple-level DWT, the discrete wavelet

transformation.
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So,  in  this  case  I  am considering  one  1D signal,  and  you can  see  how to  decompose  this

particular signal. So corresponding to this signal I am getting the approximate component. The

approximate  component  is  c  A1  and  detail  component  is  c  D1.  And from the  approximate

component  c A1, I  am doing the decomposition  again,  so I  will  be getting  the approximate

component c A2 and detail component I will be getting c D2.

Again, from c A2, again I can do the decomposition. I can get the approximate component, the

approximate component is c A3 and the detail component is c D3. And from c A3, that is the

approximate component, that is this approximate component, I can again do the decomposition,

so I will be getting the approximate component and the detail component.

So like this I can do the multiple level decompositions. So finally, after decomposition what I

will be getting? I will be getting one approximate component, that means one approximate signal

I  will  be getting.  And if  I  consider  c  D5,  c  D4,  c  D3,  c D2 and c D1, all  these are  detail

information of the signal.
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And this is another example you can see. You can see the original signal. And you can see I am

getting the approximate signal and approximate level 1 signal, also the detail level 1 signal you

can get. This is detail level 1 signal, approximate level 1 signal, detail level 3, approximate level

3, approximate level 5, like this we can do multiple decompositions.

(Refer Slide Time: 54:17)

Similarly, again, I am considering another signal here. And corresponding to this, you can get the

approximate  in  level  3  decomposition,  detail  in  level  3  decomposition,  approximate  level  3

decomposition and detail level 1 decomposition. So like this you can do the decomposition of a

particular signal.
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So this can be implemented for 2D signals. The two dimensional signal like image. Because the

main  property is  the  separable  property of  the  kernel.  So if  I  consider  this  kernel  which  is

separable, so based in this property I can implement it for the 2D signal, that is for the image.

For  the  2D  signal,  for  the  2D  image,  what  I  have  to  consider.  First,  I  have  to  apply  the

transformation  along  the  rows  and  after  this,  I  have  to  apply  the  transformation  along  the

columns. So like this, I have to do.

In case of the DCT, the discrete cosine transformation,  I did like this. So first,  I applied the

transformation along the rows and after this I applied the transformation along the columns. So

similarly, I am apply Haar transformation along the rows and after this, I can apply the Haar

transformation along the columns.
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So, there are two techniques  for decomposition of a particular  signal,  that is  the image.  If  I

consider the 2D signal, one is the Standard Decomposition, another one is the Non Standard

decomposition. That is for 2D Haar wavelet transformation. So I will be explaining these two

techniques,  one  is  the  Standard  Decomposition  technique,  another  one  is  the  Non Standard

Decomposition technique.
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So in case the Standard Decomposition Technique, compute 1D Haar wavelet decomposition of

each row of the original pixel values. After this, compute 1D Haar wavelet decomposition of

each column of the row-transformed pixels.
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So you can see, I am showing here. So suppose this is the image I am considering. First I have to

apply the Haar decomposition row wise. Row wise Haar decomposition. So I will be getting the

approximate component, that is the green and detail means the red. So you can see, along the

rows I am getting the approximate value and the detail value. And after this, I am rearranging

terms.
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And from the previous slide I am getting this one. So like this we have to do the decompositions.

And finally after rearranging I will be getting this, that is the row-transformed result I will be

getting. That is, row wise Haar decomposition I am considering.
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After this, because we have the row-transformed result, this result is available. After this I have

to  apply  the  decomposition  along  the  columns.  So  if  I  apply  the  decomposition  along  the

columns, then in this case you will be getting only this as the low frequency component and if I

consider others, the red, these are the detail coefficients.
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So in this example you can see here. So first I am applying the row wise decomposition. So after

row wise decomposition, you will be getting this one. After row wise decomposition, what you

can get? Row transform result I will be getting.  So after this, I am arranging this one. After



arranging this one, so I will be getting this one. That means, this is the output corresponding to

row-transform decomposition.

After this what I am getting? I am applying the transformation, that means the decomposition

along the columns,  and you can see only I  have one low frequency information.  So that  is

available here, this is the low frequency information. The rest is the high frequency information.

High frequency information means the edges and the boundaries. These are the high frequency

information. But if I consider the constant intensity portion, or also the homogenous portion of

the image, that corresponds to the low frequency information.

The edges and the boundaries are the high frequency information, because in case of the edges

and the boundaries there is an abrupt sense of the grey scale intensity value. So that is why the

edges and the boundaries are the high frequency information, the high frequency pixels. And if I

consider the homogenous portion of the image, or maybe the constant intensity portion, that

corresponds to low frequency information.

So here, you can see after this decomposition, I am getting this one. So I am getting the one low

frequency information. If I consider outer side, this one, this is nothing but the high frequency

information, I will be getting.

(Refer Slide Time: 59.4)

The next one is the Non-standard Haar wavelet decomposition. So for this, perform one level

decomposition  in  each row, that is,  one step horizontal  pairwise averaging and differencing.



Number 2, perform one level decomposition in each column from Step number 1. After this,

repeat the process on the quadrant containing averages only in both the directions.
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So that concept, I can show in the figure here. So, I am considering the input image. So first I

have to do one level horizontal decomposition. So in the horizontal direction, that is along the

rows, I am doing the decomposition, I am getting the average and the detail information.

After this, one level vertical Haar decomposition I am doing. You can see, vertically, I am doing.

In this case, I am doing the horizontally,  the decomposition.  In the second case, I am doing

vertically  the  decompositions,  I  am  doing.  Like  this.  So,  you  can  see  the  averaging  and

differencing of the detail coefficients, I am doing.
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After this, we have to rearrange the terms. After this, I have to consider only the low frequency

information, that is the quadrant, and this quadrant I have to consider. That is, I have to consider

the green quadrant because it has the low frequency information. After this, again, I have to do

the decomposition of this one. The green quadrant, I have to do the decomposition. That is one

level horizontal and one level vertical, I have to do.

And finally, I will be getting this one. So here you can see, I have this low frequency information

and red means the detail information, the detail coefficients.
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So in this case, you can see, first I am doing the decomposition along the rows, after this, the

columns. After this, rearranging the terms and corresponding to this, you can see, I have this low

frequency information, that is the average value and you can see, if you consider outside, that is

nothing but the detail information. That is the high frequency information.
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After this, this green quadrant, considering the green quadrant I am doing the decomposition. So

if  I  do the decomposition,  I  will  be getting this  one,  and you can see only I  have this  low

frequency information. So this low frequency information is available here. And if I consider the

rest of the portion, that corresponds to the high frequency information.

So  this  is  the  concept  of  the  Non-standard  decomposition.  So  I  have  two  decomposition

techniques,  one  is  the  standard  decomposition  technique,  another  one  is  the  non-  standard

decomposition technique.
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So this concept, I am showing here. So f n is the input image. The two dimensional signal, that is

the image I am considering. And I am considering the low pass filter and the high pass filter to

get the average value and the detail value. And after this, I am doing the down sampling by 2. 

And after this what I am considering, again, I can do the decomposition of the signal, you can

see. Again, I am applying the low pass filter and the high pass filter. And after this, I am doing

the down sapling by 2. So first component, I am getting LL component because I am applying

the low pass filter and the low pass filter here. So I will be getting the LL component. That is, the

low frequency low frequency information, I will be getting. LL means the low frequency low

frequency information.

And corresponding to the second case, if you see, I am applying the low pass filter and the high

pass filter.  That means I am getting LH coefficients,  that is the low frequency and the high

frequency coefficients, I will be getting.

Similarly, in this case I am applying the HP, that is the high pass filter; and after this, the low

pass filter. That means I will be getting HL coefficients, the high frequency and low frequency

coefficients.

And after this, I am applying the high pass filter and the high pass filter, that means I will be

getting  the high high coefficients.  The high frequency high frequency coefficients,  I  will  be

getting. So this is represented like this.



So LL information, that is the low frequency information is available here. LH information is

available here, HL information is available here and very high frequency information, that is the

high high frequency information is available here. 

So that means, after this decomposition I will be getting this transform image.
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Now, I am considering this example. So suppose one image is decomposed and I am getting

these  components.  So  this  component  is  LL component,  this  is  LH component,  this  is  HL

component and this is the HH component, I will be getting.

So you can see, I have this component, LH component, HL component, HH component. So this

component is the HH component.  This component is HL component. This component is LH

component.  So  after  the  decomposition,  I  will  be  getting  this  one.  That  is,  the  level  1

decomposition.
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So you can see, I am considering two level decompositions. You can see the original image and

after this, I am doing the decomposition at the level 1. So this LL, this is LH, this is HL and this

is  HH. And after  this  again,  I  am doing the decomposition of this  image.  The second level

decomposition. So I can do the decomposition like this.
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And this is one example of the Haar transformation. So I am applying the Haar transformation

for  the  decomposition  of  the  input  image.  So  like  this,  we  can  do  the  multiple  level

decompositions. This is briefly about the discrete wavelet transformation.
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And already, I discussed different transformations. So what are the advantages and disadvantages

of these transformations? So first one is the KLT, that is the KL transformation. So the advantage

is, theoretically optimal. What are the disadvantages? It is data dependent and not fast, because

the KLT depends on the statistics of the input data. So that is why, it cannot be implemented in

real time. 

Next  one is  the DFT. The DFT is  very fast  but  what  are  the problems? The problem is,  it

assumes the periodicity of data and also, the high frequency distortion that is nothing but the

Gibb’s Phenomenon. That concept already, I have explained.

In case of the DCT, what are the advantages? Less high frequency distortion as compared to

DFT. And also the high energy compaction. But the problem is the blocking artifacts. 

In case of the DWT, the high energy compaction and also the scalable, because I can consider

different  scales  for  decompositions,  and  energy  compaction  is  very  high.  But  the

computationally, it is very complex.

So you can see the comparison between these.
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And if you see the previous figures, again I am showing the previous figures here. So suppose in

this  case  I  am  doing  the  decomposition.  One  application  I  can  explain.  Suppose  image

compression, so for image compression I can do this decomposition. And what I can consider for

this component, that is the low frequency component, that is the LL component, I can allocate

more number of bits because it has more visual information as compared to other components,

that is the high frequency components.

So suppose corresponding to this component it has more information, so that is why I have to

allocate  more  number  of  bits  for  the  LL  component  as  compared  to  LH  component,  HL

component  or  HH  components.  So  that  means,  for  image  compression  I  can  neglect  this

component, I can neglect this component, that is the redundant information I can neglect. That

means the maximum importance I can give to LL component as compared to other components.

So based on this principle, I can do image compression or video compression. That is, based on

DWT. So one compression standard is JPEG 2000. In JPEG 2000 this principle is used. In case

on  the  JPEG,  we  use  the  DCT.  But  for  JPEG  2000,  we  use  DWT,  the  discrete  wavelet

transformation.  This  is  the  concept  of  image  compression  by  considering  discrete  wavelet

transformation.
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And finally, I want to discuss one point, important point. That is, that Fourier transform is not

suitable  for  efficiently  representing  piecewise  smooth  signal.  And  the  wavelet  transform is

optimum for representing point singularities due to the isotropic support, because we consider

dilation  of  the  basis  functions.  So,  that  means  the  Fourier  transform  is  not  suitable  for

representing very smooth signals. For this, we can consider the wavelet transformation. 

But there is a problem in the wavelet transformation. What is the problem? Here you can see, the

isotropic support of wavelets makes it inefficient for representing anisotropic singularities such

as  edges,  corners,  contours,  lines,  etc.  That  means,  the wavelet  is  not  good for representing

anisotropic  singularities.  I  am repeating  this,  that  is,  wavelets  are  not  good for  representing

anisotropic singularities like edges, corners, contours, like this.

So that is why, to approximate the signals having anisotropic singularities, such as cartoon-like

images,  we have to  consider  some other  transformation.  So for this,  the analyzing elements

should consist of waveforms ranging over several scales. So we have to consider several scales.

Several locations we can consider, and orientations. And the elements should have the ability to

become very elongated. 

So suppose if I consider the representation of a cartoon, suppose a carton image like this, that

means it has edges and the corners or the contours may be available. So for this, the wavelet is

not good. So for this, we have to consider some other transformation so that we can represent

this anisotropic singularities. 



For isotropic support we can consider  wavelets,  but for anisotropic  singularities  the wavelet

representation has a problem. So for this, we have to consider some other transformation. Now,

here you can see, we have to consider different scales, we have to consider different locations

also we have to consider, and also the orientations also we have to consider.

(Refer Slide Time: 70:26)

So  this  requires  a  combination  of  an  appropriate  scaling  operator  to  generate  elements  at

different scales. So we have to consider the elements and in this case we have to consider the

different scales, and also we have to consider a translation operator to displace these elements

over the 2D plane. And also we have to consider an orthogonal operator to sense its orientations.

So that means, I have to consider the cases like the scaling, the translation and the orientation

also we have to consider for representation of cartoon-like characters. Like, suppose if I want to

represent smooth edges or maybe the contours or maybe the edges or the lines, I have to consider

different  scales and also we have to consider the translation parameter  and also we have to

consider the different orientations. 

So that means, in summary, I can say that wavelets are powerful tools in the representation of the

signal. The wavelets are good at detecting point discontinuities. However, they are not effective

in representing geometrical smoothness of the contours. The natural image consists of edges that

are smooth curves, which cannot be efficiently captured by the wavelet transformation.



So that is why we have to consider some other transformation. Like the transformation like the

curvelets,  ridgelets,  contourlets,  shearlets,  we  can  consider  for  representing  anisotropic

information.

And in this case, you can see, I am showing one example. The approximation of a curve. So I am

considering one curve here, you can see, this is the curve. The approximation by isotropic shape

elements.  So  I  am  considering  the  isotropic  shape  elements.  But  in  the  second  case,  I  am

considering  anisotropic  shape  elements.  So  you can  see  I  am considering  anisotropic  shape

elements, that is very efficient as compared to the first one.

In  the  first  case,  I  am  considering  the  isotropic  shape  elements,  that  is  not  efficient  for

representing smooth contours or maybe the smooth edges or maybe the lines. But in the second

case,  I  am considering  anisotropic  shape  elements  which  is  very  good for  representation  of

anisotropic singularities.

So,  I  am  not  going  to  explain  the  concept  of  the  curvelets  transformation,  ridgelets

transformation,  contourlets  transformation  and  the  shearlets  transformation.  So  for  this

transformations  you  may  read  books,  and  in  my  book  also  I  have  discussed  about  these

transformation, the curvelets transformation, ridgelets transformation, contourlets transformation

and the shearlets transformation.

So in this class, I discussed the concept of the discrete wavelet transformation. And also, I have

explained how to decompose a particular image into different bands. So I can get LL frequency

band, that is the low frequency band, LH band, HL band and HH bands. So I can decompose a

particular image by using the DWT. So for this, I have to consider the low pass filter and the

high pass filter. 

So it is not possible to discuss all the mathematical concepts behind wavelet transformation. So if

you are interested,  then you may see books, the image processing books and you can study

yourself about the wavelet transformation. 

In my class, I have explained only the basic concepts of the wavelet transformation. So let me

stop here today. Thank you.


