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Welcome  to  the  NPTEL  MOOC  course  in  Computer  Vision  and  Image  Processing  –

Fundamentals  and  Applications.  In  my  last  classes  I  discussed  the  concept  of  image

transformation;  I  discussed  the  concept  of  the  Fourier  transformation,  discreet  cosine

transformation,  and  the  KL  transformation.  Fourier  transform  gives  the  frequency

information present in a signal, but there is a drawback.

The major  drawback of the Fourier transform, it  does not  give the time information  that

means, at what time a particular event took place, and that information is missing. So, to

consider that issue, we are now considering another transformation that transformation is the

Wavelet transformation. 

So, today I am going to discuss the fundamental concept of Wavelet transformation, it is not

possible to discuss all the mathematical concepts of the Wavelet transformation. So, that is

why I will briefly discuss the fundamental concept of the Wavelet transformation. So, let us

see what is the Wavelet information?

So, first I  will  discuss the concept  of the Fourier series and after this,  I will  discuss the

Fourier transformation and I will highlight the disadvantages, the drawbacks of the Fourier

transformation and after this, I will discuss the STFT, the Short Time Fourier Transformation

and finally, I will discuss the discrete wavelet transformation.



(Refer Slide Time: 02:01)

So, first one is the Fourier series you can see here I am considering a periodic function. The

periodic function is x t and, in this case, I am considering a period twice pi then in this case,

this x (t) can be represented by the Fourier series, the Fourier series is a naught plus the

summation k is equal to 1 to infinity and I have two components one is the cosine component

another one is the sine component.

So, due to this Fourier series, I will be getting the fundamental component of the signal and

also the harmonic components present in the signal. The coefficient a naught is given by this,

the coefficient a (k) and the b (k) is given by this expression. So, I think already you know

about the Fourier series.

(Refer Slide Time: 02:48)



I  can  give  you  one  example  of  the  Fourier  series.  A  square  wave  is  composed  of

fundamentals  and the  harmonics. So, if I considered a square wave it is composed up the

fundamentals and the harmonics. So, you can see the fundamental components and all the

harmonic components present in the signal.

(Refer Slide Time: 03:08)

After this the next development is the development of the Fourier transformation. So, already

I  have  discussed  about  the  discrete  time  Fourier  transformation  DFT,  the  DFT  can  be

implemented  by  FFT  and  also,  last  class  I  discussed  about  DCT  the  discrete  cosine

transformation. The DFT gives the frequency information present in an image or a signal. So,

here I have shown the image of the Fourier and this is the 2D-DFT magnitude spectrum of

the Fourier image.

So, these are Fourier transform of Fourier and in this case the Fourier spectrum. So, this is the

center point of the Fourier spectrum and if I consider, so this portion, the central  portion

corresponds  to  the  low frequency  part  and  if  I  consider  the  outside  part,  that  part,  that

corresponds to the high frequency part. Now, before the Fourier transform, I have to multiply

the image if I consider one image is f (x, y), the image is multiplied by - 1 to the power x plus

y that is the pre-processing I have to do. 

The image is  multiplied by minus 1 to the power x + y.  So, because of this the Fourier

transform, if the size of the image is, suppose N cross N, then the Fourier transform will be

cantered at the point, the point will be N / 2, N / 2. So, that means, the pre-processing is the

image is multiplied by - 1 to the power x + y and corresponding to this the Fourier transform,

the center of the Fourier transform spectrum will be N / 2, N / 2. 



And in this case, last class I have shown that log transformation is used for displaying the

Fourier transformation. The log transformation is used to compress the dynamic range of the

pixels for better visualization.

(Refer Slide Time: 05:00)

And in my last  classes, I discussed about the 2D Fourier transformation.  So, if the input

image  is  f  (x,  y),  the  corresponding  Fourier  transform is  F  (u,  v).  So,  f  (x,  y)  the  2D

transformation pair that is a 2D-DFT, f (x, y) that is transformed to F (u, v), then in this case

u and v means the spatial frequency along the x direction and v is the spatial frequency along

the y direction. If I apply this one that is the Fourier transform, I am getting, F (u, v) I am

getting and from this I can determine the inverse Fourier transformation.

(Refer Slide Time: 05:36)



And in this example, I have considered three images. And corresponding to these images I

have shown the Fourier spectrum one is the first images, the vertical lines, the horizontal

lines, and the diagonal lines and corresponding to this I am getting the Fourier spectrum like

this. So, u and v means the spatial frequency in the horizontal and the vertical directions in

radian per link respectively.

(Refer Slide Time: 06:01)

And already, I have mentioned that this Fourier transform can be represented in the Polar

form. So, I have the magnitude part and the phase angle part, the phase angle I can determine

like this. So, I have two components, one is the real part another one is the imaginary part of

the Fourier spectrum.

(Refer Slide Time: 06:19)



And this pre-processing I have shown here that what I have mentioned earlier. So, the image

is multiplied by minus 1 to the power x plus y and after this the Fourier transform is applied,

then the Fourier transform will be cantered at the point M by 2 and N by 2. 

The size of the image is, suppose M cross N, M number of rows and N number of columns,

then this will be the center of the Fourier transformation. The centre will be M by 2 and N by

2, this is the center of the Fourier transform that is the Fourier transform spectrum. So, this

pre-processing I have to do before the Fourier transformation.

(Refer Slide Time: 07:03)

And in my last class, I have shown that image reconstruction from the magnitude information

and the phase information. So, you have seen here the input image is f x y and this is the

magnitude spectrum. So, I am using the log transformation to compress the dynamic range

and after this, I am considering the face spectrum, the face spectrum is this and, in this case, I

am only considering the magnitude information, I am not considering the phase information

and this is my reconstructed image.

In the second case, I am considering the phase information, the magnitude information is not

considered  because  the  magnitude  is  constant,  then  corresponding  to  this,  this  is  the

reconstructed image. So, perfect reconstruction is not possible, if I only consider the phase

information or the magnitude information. So, for perfect reconstruction I need both phase

information and magnitude information.



(Refer Slide Time: 08:01)

Now, in an image, what do you mean by the frequency? So, suppose if I consider one image,

suppose if I consider edges here, one edge is and this is one intensity portion and that is

another intensity portion. And, in this case, I am considering the edge. So, in this case, if I

draw the profile here, suppose intensity is something like this and the edge is present at the

location at this, at the edge there is a sudden change of the grayscale intensity value.

So, that means, if I consider the edges that corresponds to the high frequency information and

if  I  consider  the  constant  intensity  portion  or  the  homogeneous  portion,  that  portion

corresponds  to  the  low  frequency  information.  So,  an  edge  means  the  high  frequency

information because there is an abrupt change of grayscale intensity value.

And in the Fourier transform, if I apply the Fourier transform, so already I have explained.

So,  the central  portion corresponds to  the low frequency information,  so this  is  my low

frequency  information  and if  I  consider  the  outside  portion  that  corresponds  to  the  high

frequency information.

In  this  example,  you  can  see  this  example  here,  I  am considering  one  image  and  I  am

applying the Fourier transformation and I am getting the Fourier spectrum, the spectrum is

this. Next what I am doing, I am considering the Fourier spectrum, and I am applying the

inverse  Fourier  transformation  to  reconstruct  the  original  image.  So,  I  am  getting  the

reconstructed image.

So, this is about the Fourier transformation and inverse Fourier transformation and the perfect

reconstruction is possible because I am considering all the frequency components present in



the signal that means, all the high frequency components and the low frequency components,

I am considering for a reconstruction.

(Refer Slide Time: 10:13)

Now,  in  this  example,  I  have  shown  here,  I  am  considering  the  inverse  Fourier

transformation,  but  in this  case,  I  am only considering the central  portion of the Fourier

transformation. The central portion of the Fourier transformation or the spectrum corresponds

to the low frequency. 

And in this case, if I want to reconstruct the original image, the perfect reconstruction is not

possible because I am only considering the low frequency information and corresponding to

this if I apply the inverse Fourier transformation, then I will be getting this image. 

In the second case, I am not considering the central portion of the Fourier spectrum, that is

the  low  frequency  information  I  am  not  considering,  only  I  am  considering  the  high

frequency information of the Fourier spectrum and corresponding to this I am reconstructing

the image by using the inverse Fourier transformation. 

So,  I  am  getting  the  reconstructed  image  that  means,  I  am  getting  the  high  frequency

information.  So,  this  is  about  the  low  frequency  information  and  the  high  frequency

information present in the Fourier spectrum.



(Refer Slide Time: 11:23)

So,  that  is  why I  can  say,  the  central  part  of  the  Fourier  transformation  that  is  the  low

frequency component are responsible for the general gray-level appearance of an image. So,

that means, this low frequency information gives the general appearance of an image and if I

considered a high frequency component or the Fourier transformation, these are responsible

for the detail information of an image. So, if I consider the high frequency information, they

give the detail information of an image.

(Refer Slide Time: 12:00)

So, in this  example,  also I have shown here and the input image I have shown here and

corresponding  to  this  I  am  considering  the  Fourier  spectrum  and  I  am  using  the  log

magnitude spectrum, because I have to compress the dynamic range for better visualization.



So, you can see the lower frequency component present in the Fourier spectrum and the high

frequency that is the detail information present in the Fourier spectrum. So, central portion

corresponds to the low frequency information and if I consider the outside portion, the outer

portion of the spectrum that correspond to the high frequency or the detail information.

(Refer Slide Time: 12:40)

And in this case, what I am doing the reconstruction of the image from the Fourier spectrum.

So, in this case, I am applying the inverse Fourier transformation. So, you can see here, only

this  portion  that  is  this  information  is  considered  that  means  only  the  low  frequency

information is considered and corresponding to this, this is my reconstructed image. In the

second case, thus, I am considering more information, low frequency information or maybe

some high frequency information and corresponding to this, this is my reconstructed image.

Again, I am considering more information that is more important than I am considering that

may contain low frequency as well as some high frequency information and corresponding to

this, this is my reconstructed image. And similarly, if I consider this one, that this information

then in this case, I have both low frequency information and also high frequency information

and corresponding to this, this is my reconstructed image. So, you can understand the concept

of the Fourier transformation.



(Refer Slide Time: 13:44)

So,  Fourier  transformation  breaks  down  a  signal  into  constituent  sinusoid  of  different

frequencies.  So,  this  is  my  Fourier  transformation  expression,  but  one  drawback  in

transforming to the frequency domain is that, the time information is lost. So, when looking

at the Fourier transformation of a signal, it is impossible to tell when a particular event took

place. So, that is the main drawback of the Fourier transformation.

So, up till now, I have discussed the concept of the Fourier transformation in an image, I have

explained the central portion of the Fourier spectrum, it gives the low frequency information

and  if  I  consider  the  outer  portion  of  the  Fourier  spectrum,  it  gives  the  high  frequency

information. So, for perfect reconstruction, I need both low frequency information and the

high frequency information.

Now, after this I have considered the Fourier transformation expression. And already I have

explained it one main drawback of the Fourier transformation is that, the time information is

not available, yet what time a particular event took place and that information is not available

in the Fourier transformation. So, for this we have to consider another transformation that

STFT first  I  will  discuss.  And after  this,  we will  discuss  the DWT the  discrete  wavelet

transformation.



(Refer Slide Time: 15:12)

So, corresponding to the Fourier transformation I can give one example. So, if I consider this

signal, this signal has two frequency components. One frequency is at the 50 hertz, another is

at 100 hertz. So, corresponding to this signal, I have the spectrum, the Fourier spectrum is

this. So, you have seen that there are two frequency components one is the 50 hertz frequency

component and under only the 100 hertz frequency component corresponding to that signal.

(Refer Slide Time: 15:41)

In the second case, I am considering one non-stationary signal; the signal is represented by

this.  So,  it  is  f  2  t  and  I  am considering  the  non-stationary  signal  and  a  signal  will  be

something like this and corresponding to this signal also I am getting the peaks corresponding

to 50 hertz and 100 hertz, so this is my spectrum.



So, if you compare the spectrum and the previous spectrum, the previous spectrum was this

for  the  stationary  signal,  then  in  this  case  I  am  getting  identical  spectrum  one  for  the

stationary signal and the second one is for the non-stationary signal. So, that means, the time

information is not available in the Fourier transformation.

(Refer Slide Time: 16:26)

I can give another example you can see there are two signals one is the stationary signal. The

first one is the stationary signal and second one is the non-stationary signal and you can see

the frequency components present in the signal 2 hertz, 10 hertz, 20 hertz like this. In the

nonstationary  also  you  can  see  the  frequency  components  present  in  the  signal  and

corresponding to this, you can see the spectrum, the magnitude spectrum and if you see these

two spectrum, they are almost identical. So, that means the time information is not available

in the Fourier spectrum.



(Refer Slide Time: 17:03)

Again, I am considering the same explanation.  You can see I am considering two signals

deferent in time domain, but same in the frequency domain. That means, at what time the

particular frequency component occur, that information is not available in the spectrum.

(Refer Slide Time: 17:24)

So, for this we will consider another transformation. So, that transformation is the short time

Fourier transformation STFT. So, for this we consider the window, particular window I am

considering. So, suppose this window time window I am considering and corresponding to

this time window, I want to see what are the frequency components present in the signal.

So, that means, take Fourier transformation of segmented conjugative pieces of a signal and

each Fourier transformation then provides test spectral content of that time segment only. So,



corresponding to that time segment, so if I consider this time segment or the time window, I

can see what are the frequency components present in the signal that is the short time for your

transformation.

(Refer Slide Time: 18:17)

This short time Fourier transformation is called Gabor. So, this is the Gabor, so for this I am

considering one window function, the window function is cantered at tau. So, corresponding

to this function I am considering this window and corresponding to this window I want to see

what are the frequency components present in the signal.

So, this window is considered in the time domain. So, corresponding to this time interval, so

what  are  the  frequency components  present  a  signal  that  I  want  to  see? So,  that  means,

corresponding to this time window, I can see what are the frequency component present in

the signal and like this, I can see the frequency components present in the signal, this is the

short time Fourier transformation and this is also called a Gabor.



(Refer Slide Time: 19:07)

So, in this example, I have shown the STFT. So, I am considering a non-stationary signal. So,

you can see the frequency components. So, from this point to this point, if you see from this

to this time window, only one frequency component is present that is available in the Fourier

spectrum and corresponding to this time interval two frequency components are present in the

signal. So, I am having the two frequency components in the Fourier spectrum.

(Refer Slide Time: 19:38)

So, what is the STFT, take Fourier transform of segmented consecutive pieces of a signal?

Each Fourier transformation then provides the spectral content of their time segment only.

But one problem is how to select the time window? That is the one main problem of the

STFT. So, how to select the time window that is the problem?



Now, I want to consider this case that is the low frequency signal, better resolved in the

frequency domain and the high frequency signal better  resolved in the time domain.  This

concept I can explain in the next slide. What is the meaning of this? This is a very important

concept. You can see here.

(Refer Slide Time: 20:22)

Here,  I  have shown two signals,  one is  the low frequency signal.  The first  one is  a low

frequency signal and another one is the high frequency signal. So, if I consider low frequency

signal,  that  signal  can  be  better  resolved  in  the  frequency  domain.  That  means,  in  the

frequency domain I can see the information present in the signal and in this case if I consider

a high frequency signal that can be better resolved in the time domain.

(Refer Slide Time: 20:50)



Based on this concept I can show the uncertainty theorem. So, uncertainty theorem is we

cannot calculate frequency and the time information of a signal with absolute certainty. This

is  similar  to Heisenberg uncertainty principle  involving momentum and the velocity  of a

particle. In Fourier transform, we use the basis which has infinite support and infinite energy. 

In wavelet transformation,  we have to localize both in time domain and in the frequency

domain. So, that means, in the time domain, we can do some translation of the basis function

and in frequency domain we can do scaling. So, this is the uncertainty theorem.

(Refer Slide Time: 21:35)

So, in this example, you can see, I am considering the signals in the time domain and the in

the frequency domain you can see the signals, but one problem is that, at what time particular

event took place, at what time a particular frequency is present in the signal that information

is missing in these examples, that is uncertain.



(Refer Slide Time: 21:55)

So,  in  this  example,  I  have  shown  the  STFT  of  a  signal,  you  can  see  the  frequency

information, the time information, and the amplitude information that we can obtain by using

STFT.

(Refer Slide Time: 22:09)

Now, this uncertainty principle I can explain here. So, if I consider the narrow window that

gives  poor  frequency resolution and if  I  consider  the wide window that  gives poor  time

resolution, so first example, I am considering the narrow window and in a second case I am

considering  the  wide  window  and,  in  this  case,  this  is  very  similar  to  the  Heisenberg

uncertainty principle. 



Cannot know what frequency exist at what time intervals that information is not available.

So, in these two examples, I have shown that cases one is for the narrow window another one

is for the wide window.

(Refer Slide Time: 22:48)

The next I am considering the resolution of the time and the frequency. So, if you see these

windows, I am considering different windows here. So, if I consider this window, this gives

better frequency resolution, but it is poor time resolution. But if I consider this window, this

window gives  better  time resolution,  but  poor  frequency resolution.  So,  you can see the

concept of the resolution, one is the time resolution another one is the frequency resolution.

And in this case, I have shown, this is the time axis and this is the frequency axis.

(Refer Slide Time: 23:30)



And, in this example, I have shown that cases like the time domain, you know that Shannon.

So, in the time domain information of a signal that means we have the time information and

the amplitude information of a signal. And in the frequency domain that we have explained

the  Fourier  transformation,  we  have  the  amplitude  information  and  the  frequency

information, but timing permission is not available.

And if I consider the STFT, that is the Short Time Fourier Transformation. So, we can see

that corresponding to a particular time window, I have the frequency information present in

the signal. In case of the wavelet analysis, we are considering variable size windows, I can

consider the narrow window or maybe something like the window something like this.

And in this case, I can see in a particular time interval, what are the frequency component

present in the signal. So here, I have the time information and scale information gives the

frequency information that is the wavelet analysis. So, you can see the distinction between

the  signal  representation  in  the  time  domain,  frequency domain,  and  the  STFT,  and the

wavelet analysis.

(Refer Slide Time: 24:43)

So finally, you can see, for analysis of the high frequencies, we can consider narrow windows

for better time resolution. And for the analysis of the low frequency signal, we can use wider

windows for better frequency resolution. The function used to window the signal is called a

wavelet. So, this is the main concept of the wavelet transformation, the window size is not

fixed in the wavelet transformation. In STFT, the window size is fixed.



(Refer Slide Time: 25:15)

So, you can see this example, I am considering one nonstationary signal, A signal with three

frequency components at varying times. So, in this case, you can see the wide windows do

not provide good localization at high frequency. So, if I consider this window first this wide

window, this wide window do not provide good localization at high frequency.

(Refer Slide Time: 25:42)



And if  I  considered  a  narrow window that  is  good  for  the  high  frequency,  use  narrow

windows at high frequency. And corresponding to the low frequency component, if I consider

low frequency part, the narrow windows do not provide good localization at low frequencies.

So, for this we have to consider wide windows. So, like this we have to consider the wide

window. So, this is my wide window that I am considering. This is the concept of the variable

size windows.



(Refer Slide Time: 26:14)

So, what is wavelet? Wavelets are functions that wave above and below the x axis. The first

one is the varying frequency, limited duration, and average is value will be zero. So, here you

can see the one example is the wavelet another one is the sinusoid. In case of the wavelet, we

have the varying frequency, limited durations, and the average is value will be zero.

(Refer Slide Time: 26:41)

So, what is a mother wavelet? In wavelet we have a mother wavelet  and in this case the

mother wavelet will be something like this. And mathematically, it can be shown like this,

this is the definition of the wavelet.  So, I am considering the mother wavelet, the mother

wavelet is denoted by psi t, this is the mother wavelet.



And other wavelets, the other wavelet already I have defined, the other wavelet is defined

like this, psi a, b t,  1 by root a, psi t minus b divided by a. So, in this case, I have two

parameters a and b, these are two arbitrary real numbers. Now, this a is the dilution parameter

and b is the translation parameter. So, now, how to represent the mother wavelet?

The mother wavelet psi t is nothing but psi a is equal to 1, b is equal to 0. So, if I put a is

equal to 1 here and b is equal to 0 then in this case, I will be getting the mother wavelet and,

in this case, if I consider a is not equal to 1 and suppose b is equal to 0 then in this case, I can

get psi a 0, t it is 1 by root a psi t by a. So, that means I am considering a is not equal to 1 and

b is equal to 0.

So, what is the meaning of this? The meaning of this is, this is obtained from the mother

wavelet indeed in this case the time is scale by a and the amplitude is scale by root a, that this

parameter a is it causes the contraction of the mother wavelet, if a is less than 1, or otherwise

if a is greater than 1 that corresponds to expansion or the stressing, expansion of the mother

wavelet or distressing of the mother wavelet, if a is greater than 1. This parameter a is called

the dilution parameter or the scaling parameter.

And if I consider a is less than 0. So, what will happen if a is less than zero? It corresponds to

the time reversal with dilation.  Now, this function psi a, b, it  is a shift of psi a, 0 by an

amount of b when b is greater than 0 that means in this case, there is a sifting along the right

direction in the time axis by an amount b when b is greater than 0. On the other hand, this

function is shift in the left along the time axis by an amount b when b is less than 0.

So, that means shifting in the right direction and shifting in the left direction in the time axis,

if b is greater than 0 that means it is the shifting right along the time axis by an amount b and

in this case, if the b is less than 0, then in this case shifting in the left along the time axis by

an amount b. So, this is the interpretation of the parameters a and b and I have defined the

mother wavelet and from the mother wavelet, you can see I can get the other wavelets.



(Refer Slide Time: 31:00)

So,  in  this  case,  I  had given some examples  of  the  mother  wavelet.  So,  first  one  is  the

Daubechies wavelet, one is the Haar wavelet, and another one is the Shannon wavelet. I have

not mathematically defined, but you can see the shape of this wavelets, one is the Daubechies

wavelet, Haar wavelet, and the Shannon wavelet.

(Refer Slide Time: 31:20)

So, in this example, I can show you the mother wavelet and, in this case, I am considering a

is equal to 1, a is equal to 2, a is equal to 4, that means what is the a? a is the dilation

parameter and b is the translation parameter.



(Refer Slide Time: 31:36)

So, you can see I am doing the scaling because I am changing the parameter, the parameter is

a, so a is equal to 1, a is equal to 2, a is equal to 4, like this. So, I am doing the scaling.

(Refer Slide Time: 31:48)

And also, I can do the translation with the help of the parameter, the parameter is b. So, b is

the translation parameter. So, in this case, I am considering the shift, shift is equal to 0, shift

is equal to 100, shift is equal to 200. So, I can do the translation and the dilation.



(Refer Slide Time: 32:07)

In this case, I have shown here, I have the mother wavelet, that is the Haar wavelet, and I can

do the translation and also, I can do the scaling. So, in this case, instead of considering the

parameters  a and b,  I  am considering the parameter  s and the tau.  So,  the tau is  for the

translation and s is for the scaling.

(Refer Slide Time: 32:26)

Now, let us consider the definition of the continuous wavelet transformation. So, C tau s is

the continuous wavelet transformation. And in this case, I am considering the input signal,

the input signal is f t and I am considering the mother wavelet, the mother wavelet is psi t

minus tau divided by s. And in this case, the mother wavelet can be translated and it can be

scaled. And in this case, what is the meaning of the scaling? 



Scaling means it gives frequency information. So, scale is equal to 1 by frequency. So, in this

case, you can see these parameters the tau is the translation parameter, and s is the scaling

parameter that is nothing but the measurement of the frequency. So, this is the definition of

the continuous wavelet transformation that is the forward continuous wavelet transformation

of the signal, the signal is FT.

(Refer Slide Time: 33:26)

And you can see, this W s tau is the continuous wavelet transformation, f t I am considering

and the psi s tau is the wavelet I am considering, wavelet function that is nothing but the

inner for the between the f t and the wavelet function. And from this you can reconstruct the

original  signal  by  the  inverse  CWT  the  continuous  wavelet  transformation.  So,  inverse

continuous wavelet transformation is obtained like this.

And in this case, C psi that corresponds to energy, the energy is given by this. And in this

case, this psi F is the Fourier transform of the mother wavelet, the mother wavelet is the psi t.

So this is the definition of continuous wavelet transformation and also we can determine the

reconstructed signal that is the inverse continuous wavelet transformation we can determine.



(Refer Slide Time: 34:24)

So, for CWT what are the main steps? You can see, take a wavelet and compare it to the

section at the start of the original signal. So I am considering one wavelet, the wavelet is this.

And one section I am considering and wavelet is this. Calculate a number C that represents

how closely correlated the wavelet is with the section of the signal. The higher C is, the more

the similarity.

(Refer Slide Time: 34:58)

And after this, shift the wavelet to the right and repeat steps one and two, until you have

covered the whole signal. So, these steps, I have to repeat for the whole signal.
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And after this, I have to do the scaling, the wavelet and repeat the steps 1 to 3. And finally,

repeat steps 1 to 4 for all the scales. That means, I want to find a similarity between the

wavelet and the signal at different scales. So this example I have given, corresponding to

CWT, the continuous wavelet transformation.
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This  CWT  you  can  display  like  this.  Already,  I  have  defined  the  continuous  wavelet

transformation and CWT you can display like this. So we have the time information and

CWT coefficients. You will be getting the CWT coefficients and the scale information is also

available, this should be CWT.
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And in this case, it is a CWT of a stationary signal. So, if I consider this signal and this is the

CWT of the stationary signal, so you can see here I have this information scaling information,

the translation information, and the coefficients. Coefficients means, the continuous wavelet

transform coefficients. The scale gives the frequency information.

(Refer Slide Time: 36:17)

Similarly, I am considering the CWT of another signal and signal is this. And in this case,

you can see I have the scale information, the translation information, and the coefficients of

the CWT.
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CWT  of  non-stationary  signal,  so  I  am  considering  one  non-stationary  signal  and

corresponding to this you can see the CWT. And in the MATLAB also, you can show the

CWT of the non-stationary signal or maybe the stationary signal.
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So, you can see the difference between the Fourier transform and the wavelet transformation.

So, I have shown the signal, the signal is this and if I apply the Fourier transformation, that is

nothing but the signal is weighted by F u, that is the Fourier transform of the signal, the signal

is weighted by F u.

And in case of the wavelet transformation, I am considering this signal that means the signal

is weighted by C tau s that means I am considering the continuous wavelet transformation.

So, you can see the similarity between the Fourier transform the wavelet transformation. But

in this case, in the case of the continuous wavelet transformation, we are considering different

scales and positions, because I have two parameters, one is s another one is tau, one is the

scaling parameter, another one is the translation parameter.
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And for wavelet series expansion, so already, I have defined that wavelet like this and if I

consider scale is equal to, s is equal to s naught to the power minus m and translation tau is

equal to n tau naught s naught to the power minus m, so I am considering this one. And in

this case, if I considered a discrete wavelet transformation, if the scale and the translation

take place in discrete steps, then in this case, I can consider this expression as like this.

Because I am considering the discrete wavelet transformation, if the scale and the translation

take place in discrete steps, then in this case, just I can write like this, if I consider s naught is

equal to 2 and tau naught is equal to 1, then corresponding to this, I have this expression and

this is called the dyadic wavelet. So, this is about the wavelet series expansion.
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And in this case, the signal f t can be represented as a series combination of the wavelet. So,

you can see the signal f t is represented as a series combination of the wavelets. So, I have the

wavelet coefficients and this is my wavelet. So, the wavelet coefficients is nothing but the

inner for the between f t and f t is the signal and psi m n is the tau wavelet, I am considering.

Next, I am considering multi resolution analysis. So, in this case, I am giving one example of

an image. So, an image may contain the big objects or maybe the small-small  objects or

maybe the low contrast region or maybe the high contrast region, the good contrast region.

So, if I want to see or if I want to analyze a particular image and suppose the small objects or

presents, then in this case I have to consider high resolution.

Because in the high resolution, I can see small objects and also the regions of the bad contrast

and if I want to consider the big objects or maybe the good contrast regions, then in this case

I can consider low resolutions, that means, an image can be analyzed in different resolutions,

maybe in the high resolution or maybe in the lower resolutions.

For different cases, I have I have given this example, for the big objects, I can consider low

resolutions. For the good contrast region, I can consider the low resolution and if I consider

small objects, then I have to consider the high resolution, if I consider low contrast region,

then  in  this  case  also  I  have  to  consider  high  resolution.  So,  that  means,  at  different

resolution, I can analyze a particular image. And based on this concept, you can see here.
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I am considering different resolutions for different image regions. So, you can see the N by N

image I am considering that corresponds to the highest resolution and after this if you see this



pyramid, the resolution is decreased. The next resolution is N by 2 cross N by 2 and finally, I

have that 1 by 1 resolution. So, this is the approximation pyramid I am considering. So, an

image I am considering or maybe the signal I am considering, and in this case, the signal or

the image can be analyzed at different resolutions.
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So, that is the objective of the multi resolution analysis. So, analyze the signal at different

frequencies with different resolutions. Analyzing a signal both in time domain and frequency

domain is needed in many times. But resolution in both domains is limited by the uncertainty

principle. And already I have explained good time resolution and poor frequency resolution at

high frequencies and good frequency resolution and poor time resolution at low frequencies.
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So, you can see this example here, I am considering one signal here and I am doing the

reconstruction of the signal. So, this is my original signal I am doing the reconstruction from

the  low  frequency  component  and  the  high  frequency  component.  So,  this  is  my  low

frequency information of the signal, this low frequency information is combined with the

detail information.

The detail information is D1 and based on this I am doing the reconstruction. So, these are

reconstruction so far. After this, I am again considering the detail information that is the high

frequency information and this is the reconstruction I am doing. And after this, again I am

considering more detailed information, then after this I am getting the reconstructed signal.

So,  that  means,  with  the  low  frequency  signal,  I  am  considering  the  high  frequency

information  for  reconstruction.  So,  a  signal  can  be  also  decomposed  into  low frequency

information and the high frequency information. In this example, I have shown the synthesis

of the signal that is the reconstruction of the signal,  but for analysis, I can decompose a

particular signal into low frequency signal and the high frequency components. So, in this

case I have shown the synthesis.

(Refer Slide Time: 43:08)

So,  that  means,  a  particular  signal  can  be  represented  like  this,  the  first  one  is  the  low

frequency component. And after this, the D1, D2, D, so that is the detailed information. So,

that means, in wavelet representation of a function consist of a course overall approximation

that means the low frequency information. Next, I have the detail coefficients that influence

the function at various scales.



So, the meaning of this discussion is the signal is represented by this, that is I have the low

frequency information and after this we have the all the detail information of that signal that

is for the analysis. For synthesis, for the reconstruction, we have to use the low frequency

information and the detailed information we have to use.
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In this case, you can see here the same thing I am showing here. This is I am showing the low

frequency  information  and  the  low  frequency  information  is  added  with  the  detail

information. So, I am getting the reconstructed signal and after it is the next I am considering

the reconstructed signal and the detail  information I am considering D2. So, I can do the

reconstruction.

After this, again I am considering the detail information D3 and this is the reconstruction I

am doing. So, already I have shown this one and that is the synthesis of the signal, based on

the low frequency signal and the detailed information the detailed information is nothing but

the high frequency information. So, I can give one example here. Suppose, how to consider

the image? Suppose, if I consider one input.
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And I am considering an array of 8 data, so 1,2,3,4,5,6,7,8 like this and if I consider the level

one approximation, then in this case, I can determine the average plus detail information I can

determine. So, average will be 3 by 2, 7 by 2, 11 by 2, 15 by 2. And the details will be minus

1 by 2, minus 1 by 2, minus 1 by 2, and minus 1 by 2. So, you can see how to get the average.

So, between this sample and this, I am determining the average. So, average I am getting 3 by

2, 3 and 4 I am considering.

So, average I am getting 7 by 2, 5 and 6 I am considering, the average I am getting 11 by 2

and 7 and 8 I  am considering,  the average  is  15 by 2.  And after  this,  I  want  to  find a

difference that is the details. So, 1 minus 2 divided by 2, so I am getting minus half, 3 minus

4 divided by 2, I am getting minus half like this, I am considering the detail information, so

this is level 1.

Similarly, level 2, I can also determine the average component and the detail component. So,

it is 5 by 2, 13 by 2, minus 1, minus 1, minus half, minus half, minus half and minus half. So,

in  level  2  also,  I  am  determining  the  average,  average  between  this  and  the  this  I  am

determining and also I am determining the difference between 3 by 2 and 7 by 2, 11 by 2

minus 15 by 2, so I am getting minus 1, minus 1.

And similarly, level 3 I am having this one average minus 2, minus 1, minus 1, minus half,

minus half, minus half, minus half. So, in this case you can see, I am determining the average

value  and  the  detail  information.  In  this  class,  I  discuss  the  concept  of  the  Fourier

transformation and also I have highlighted the drawbacks of the Fourier transformation and



after  this  I  discussed the concept  of the STFT and also I  discussed the concept  of multi

resolution analysis.

So, in my next class, I will continue the same discussion, the multi resolution analysis and

finally,  I  will  discuss the discrete  wavelet  transformation.  How to apply the DWT in an

image, that concept I will explain in my next class. So, that is all for today. Let me stop here

today. Thank you.


