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Welcome  to  the  NPTEL  MOOCs  course  on  Computer  Vision  and  Image  Processing  –

Fundamentals  and  Application.  In  my  last  class  I  discussed  the  concept  of  image

transformation,  the transformation converts  the spatial  domain information into frequency

domain information. Mainly, it is the mapping from spatial domain into frequency domain.

The  transformation  does  not  sync  the  information  content  present  in  a  signal  and

transformation is quite useful for compact representation of data.

And  also,  I  discussed  the  concept  of  orthogonal  transformation.  So,  in  the  orthogonal

transformation, I define the transformation matrix that is T inverse is equal to T transpose

then, in this case, it is called the orthogonal matrix and the transformation will be orthogonal

transformation. And if I consider the T the transformation matrix is a complex matrix then T

inverse  is  equal  to  T  complex  conjugate  transpose  that  is  called  unitary  matrix  and  the

corresponding transformation is called the unitary transformation.

And I also highlighted that DFT the discrete Fourier transform that is not unitary. So, I can

make DFT unitary by defining the DFT, so that I am getting the unitary DFT transformation.

After this, I discussed the properties of unitary transformation. So, three main properties I

want to highlight again1 is energy preserving property. So, in the energy preserving property

if I do the transformation from the spatial domain into frequency domain, so I will be getting

transform coefficients.

So, most of the energy is available in few transform coefficients that is called the energy

compaction property and one is the energy preserving property that is mainly the energy into

data  domain  is  equal  to  energy  in  the  frequency  domain.  So,  that  is  called  the  energy

preserving property, energy in the data domain is equal to energy in the transform domain.

Also, I discussed another important property that is that Decorrelating property.

So, my original data is highly correlated and after the transformation, the transform data will

be less correlated. So, for this, I define the covariance matrix. So, based on the property of the

covariance matrix, I can define the decorrelating property. Last class, I define the DFT, the

DFT unitary matrix. Now, today I will discuss one transformation that is called the DCT the



discrete  cosine  transform  and  after  this,  I  will  discuss  another  transformation  that

transformation is KL transformation.

The DCT transformation is an orthogonal transformation, orthogonal means the T inverse is

equal to T transpose that is the orthogonal matrix and the transformation is the orthogonal

transformation. So, let us see what is the DCT, the discrete cosine transform.

(Refer Slide Time: 03:47)

So, first I am considering 1D-Discrete Cosine Transform here. So, I am considering the data

vector, the data vector is F I am considering, so it is f 0, f1 like this f (N – 1), and I am

considering the transpose because column vector I am considering. After this, the DCT can

be defined like this. 

So, DCT F c (k), the DCT of the input sequence, the input sequences f (n) is defined by this

equation, here you can see the F c k is equal to alpha k n is equal to 0 to N minus 1 f n cos pi

k divided by twice n twice n plus 1. So, in DCT this cos pi k divided by twice n twice n plus

1 that is the transformation kernel and I can also get the reconstructed data that is the inverse

transformation, the inverse DCT I can determine, this is the inverse DCT. 

So, F  c (k) from F  c (k) I am determining f (n), f (n) is the original data vector that I can

determine by inverse discrete cosine transform. And in this case, I can define alpha k, alpha k

is equal to 1 by root N corresponding to k is equal to 0 and it is equal to root 2 by N for k is

equal to 1, 2, to N - 1. So, this is the definition of 1D-Discrete Cosine Transformation



(Refer Slide Time: 05:17)

And this transformation I can write like this. So, F is the DCT that is the transformed data and

T C is the transformation matrix corresponding to Discrete Cosine Transform and f is the

original data. And in this case, the transformation matrix T C and corresponding elements of

the transformation matrix I can write like this. So, t k l the elements of the transformation

matrix, so t k l is equal to alpha k cos pi k divided by twice N twice l plus 1.

So, this  is  the elements  of the transformation matrix  and in this  case,  the transformation

matrix is real, because I am considering cos pi k divided by twice N. So, that means, in this

case, I am having the real values. So, that is why the DCT is a real transform but in case of

the Fourier transform I have the both cosine and the sine component, the real component, and

the imaginary component, so that is why it is complex.

But in case of the DCT I have only the cos component, the cos pi k divided by twice N twice

l plus 1. So, that is why the DCT is a real transformation and the DCT is an orthogonal

transformation. So, here you see, the T c inverse is equal to T c transpose. So, that is why it is

the orthogonal transformation.



(Refer Slide Time: 06:44)

Now, I want to show the relationship between the DCT and the DFT. So, in my first equation,

you can see here, this is the definition of the DCT F c k is equal to alpha k, f n is the input

data sequence n is equal to from zero to N minus 1, f n cos pi k divided by twice N twice n

plus 1, so this is my F c k, F c k is the DCT. 

Now, this equation I can write in this form you can see, because, already I have explained

that in case of the DCT we have only the cos term there is no sine term that is, there is no

imaginary component. So, that is why I am considering only the real part of the exponential

function, this exponential function I am considering.

So, I am considering a Real that means, the cos term I am considering then neglecting the

imaginary term that is a sine term and after this, I am considering another sequence. The new

sequence  I  am considering  is  f  dash  n.  So,  what  is  f  dash  n?  f  dash  n  is  equal  to  f  n

corresponding to n equal to 0 to N minus 1, and otherwise it is 0. So, I am defining a new

sequence, the new sequence is f dash n.

After this, this DCT expression, I can represent in this form, you can see F c k Real and, in

this case, I am considering n is equal to 0 to twice N minus 1 because in this case, you can

see this 0, that means I am doing the zero padding, zero padding up to twice N minus 1. So, f

n, f dash n is equal to f n for n is equal to 0 to N minus 1 and 0 up to twice N minus 1. So,

what will be the length of my sequence?

The length of a sequence is from 0 to twice N minus 1 that means, it is a twice N point

sequence. So, in this case for corresponding to the new sequence, the new sequence is f dash



n, I can write this expression, the expression for the DCT. So, if you see this expression and

you  can  see  this  term  if  you  see  these  terms  from this  to  this  because  you  know  this

expression.

Suppose, if I consider the DFT, DFT is n is equal to 0 to N minus 1, f n and e to the power

minus j twice pi divided by N n k, this is the definition of N point DFT. So, if you compare

this one and this one then it is nothing but it is the twice N point DFT, that expression is

nothing but it is a twice N point DFT. So, from this expression, you can see the relationship

between DCT and the DFT.

So, how to get the DCT from the DFT? If you see this block diagram, you can see the input

data sequence is f naught, f1, up to f N minus 1 this is my input data sequence. After this I

want to get a new data sequence, the new data sequence is f dash n. So, for this, I have to do

zero padding, so I am doing zero padding. So, what will be the length of the new sequence?

The length of the new sequence will be twice N, so it is from zero to twice N minus 1 and

after this, I am computing the twice N point DFT. So, that means I am completing this part

twice N point DFT. After this you can see my I am doing the multiplication by alpha k and

also by this e to the power minus j pi k divided by twice N. So, that is why I am doing

multiplication by alpha k e to the power minus j pi k divided by twice N.

And after this, I am considering one operation that operation is the Real. So, I am considering

the real part of this and I am getting the DCT, the DCT of that sequence. So, you can see that,

you can obtain the DCT from the DFT by this process. So, first I have to do the zero padding,

so that the length of the sequence will be twice N and after this, I have to calculate the twice

N point DFT.

And after this I have to do multiplication, the multiplication is alpha k e to the power minus j

pi k divided by twice N and after this, I am doing one operation that is the real part I am

considering and I am getting that DCT. So, that means the DCT can be computed by using

the DFT.
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So, in this slide, I am showing another interpretation that is the relationship between the DCT

and the DFT. In this case, you can see again I am considering one new sequence, the new

sequence is generated from the original sequence, the original sequence is f n. So, this is my

new sequence f dash n. So, what is f dash n? f dash n is equal to f n corresponding to n equal

to 0,1, up to N minus 1 and it is f twice N minus 1 minus n corresponding to n, n plus 1 up to

twice N minus 1.

So, what will be the length of the new sequence? The length of a new sequence is twice N

point.  After  this,  I  can  determine  the  DFT  of  this  sequence.  Thus,  you  can  see  the

mathematics. After determining the DFT of the new sequence, finally, I am getting the F c k,

F c k is nothing but the DCT of the sequence. So, I am getting the DCT of the sequence that

is equal to e to the power minus j pi N into n k alpha k into f k.

So, this is I am writing here. So, this is a very important representation. So, how to get the

DCT from the DFT? So, what is F c k? F c k is nothing but the DCT of the sequence is equal

to e to the power minus j pi N n k alpha k F k. So, you can see. So, by using this approach

also you can determine the DCT from the DFT because the DFT already, you know how to

compute the DFT.

So, there are many algorithms like FFT also you can use to determine the DFT and by using

the DFT you can determine the DCT of a particular sequence. So, for this I have to define the

new sequence, the new sequence is f dash n, so this is a new sequence and that is the twice N

point sequence. So, by using this method, I can determine the DCT from the DFT.
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Now, if you see this extension, the extension what I have done the extension is something

like this f dash n, I am having the new sequence f dash n is equal to f n corresponding to n is

equal to 0,1, up to N minus 1 and f is equal to twice N minus 1 minus n for n is equal to N, N

and plus 1 up to twice N minus 1. 

So, I am getting a new sequence like this, the DFT is nothing but the periodic extension of

data. This is the case for the DFT, in case of the DCT if you see the second case, this is

nothing but the symmetric  extension of data.  What I have done here that  is  a symmetric

extension of data. So, in case of the DFT, it is nothing but the periodic extension of data but

in case of the DCT I have the symmetric extension of data.

(Refer Slide Time: 15:15)



Now, in this case, you can see the previous discussion you can see, the input sequence was

the N point sequence and after this, I am generating a new sequence that is the twice N point

sequence and after this, I am determining that DFT. So, there is a twice N point DFT and

from a twice N point DFT I am getting the N point DCT.

So, what I discussed in my last slides that from the input sequence, the input sequence is the

N point sequence after this I am having the new sequence, the new sequence is twice N point

sequence and after this, I am determining the twice N point DFT. So, this DFT is the twice N

point DFT and from the twice N point DFT I am calculating the N point DCT.

So, you can see, in case of the DFT the N point data is represented by the twice N point DFT

but  this  N point  data  is  represented  by  N point  DCT.  So,  you can  compare  the  energy

compaction property. In the first case in the DFT case, the N point data is represented by the

twice N point and DFT that is if I considered a new sequence suppose that is the twice N

point data is represented by twice N point DFT.

And in case of the DCT these twice N point data is represented by only N point DCT. So, you

can compare the energy compaction property that is the energy compaction of DCT is better

than DFT because the twice N point data is represented by twice N point DFT, but in case of

DCT, the twice N point data is represented by N point DCT. 

So, that is why I can say that DCT is better  than DFT for a case, the case is the energy

comparison,  the  energy  comparison  property.  And  in  case  of  the  DCT,  I  have  already

explained this one, this is nothing but the symmetric extension of data around a point the

point is N minus 1, this is the case of the DCT I am doing the symmetric extension of data

around a point N minus 1.
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In this case, again I have shown the concept of the DFT and the DCT, DFT is nothing but the

periodic extension of data, and DCT you can see it is a symmetric extension of data around a

point N minus 1. So, you can see here, in case of the DFT because of the discontinuity, you

can see that discontinuity here, discontinuity, this is a discontinuity. So, there is a jump in the

discontinuity.

And in this case, we have the high-frequency distortion and this high-frequency distortion is

called the Gibbs phenomena, this is a high-frequency distortion, because there is a jump in

the extension, the extension is around the point N minus 1. In case of the DCT, you can see

the transition is pretty smooth around point N minus 1. So, transition is very smooth around

point N minus 1. So, that means the high-frequency distortion will be less in case of the DCT.

So, I have explained in the slide here that one is the high-frequency distortion. And in case of

the  DCT  high-frequency  distortion  is  less  because  we  have  smooth  transition  at  the

boundaries, around the point N minus 1. But in case of the DFT because of this abrupt change

of this value, you can see, that we have the high-frequency distortion and this is called a

Gibbs phenomenon.
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And in this case, you can see the energy compaction  property of the DFT and the DCT. In

this example, I have shown the input image is this and I am considering the DFT first, you

can see the energy compaction here I am showing in the graph. And in case of the DCT you

can see this energy compaction, energy compaction means, most of the energy is available in

few coefficients.

In DCT, it is better than the DFT and in this second example, in this case, I have shown the

image reconstruction after performing the discrete cosine transform. So, in this case, I am

considering one image, input image and I am determining the DCT of this image. So, I have

the transform coefficients, you can see the DCT coefficients here, all the DCT coefficients.

These are the DCT coefficients.

And I have already explained that most of the energy is available only in few coefficients. So,

that is why I am considering only the high-value coefficients, only this part I am considering

neglecting  all  the  remaining  coefficients,  only  this  portion  I  am  considering  and  after

considering these coefficients, I am reconstructing the image. So, this is the reconstructed

image and you can see if I compare visually this image and this image, visually you cannot

see the significant difference between the input image and the reconstructed image.

So,  you can  see here,  that  DCT and DFT I  have  explained.  So,  from the  DFT you can

determine the DCT I have shown to a process and first, you have to define a new sequence

from the new sequence, I have to calculate the DFT and from the DFT, I can determine the

DCT. DFT you can calculate by the popular algorithms like FFT the fast Fourier transform

and from this, you can easily determine the DCT.



And if I want to compare the DCT and the DFT you can see DCT has more advantages as

compare to DFT. The first advantage is the DCT is a real transformation DFT is not a real

transformation, the second point is the energy compaction property. So, if I compare the DFT

and the DCT, so DCT is better than DFT.

And after this, I have shown that one example, how to reconstruct the image from the DCT

coefficients. So, only we have to consider few coefficients based on the energy value and we

can neglect the remaining coefficients because most of the energy is available only in few

coefficients. So, you can see the difference between the DCT and the DFT.

(Refer Slide Time: 22:21)

Now, I am showing the 2D-DCT, the two-dimensional Discrete Cosine Transform. So, this is

the  extension  of  only  1D-DCT  you  can  see  here.  So,  F  c  k1,  k2,  so  k1  is  the  index

corresponding  to  the1  direction  that  is  the  x-direction  suppose,  and  K2  is  the  index

corresponding to the y-direction and I have alpha k1, alpha k2 and my input to the sequences

this f n1, n2 and my cos term, the two cos term cos pi k1 divided by twice N twice n plus 1

and cos pi k2 divided by twice N twice N2 plus 1.

And from this expression, I can determine the inverse DCT. So, I can determine the inverse

DCT by  using  this  equation.  Now,  already  I  have  explained  two  properties,  one  is  the

separable  property  of  the  kernel  and  also  the  symmetric  property.  So,  because  of  the

separable property, I can implement the transformation, the 2D transformation first along the

row direction in one direction, and after this I can perform the 1D transformation in another

direction.



So, that means, for a 2D-DCT that can be implemented by one-dimensional DCT. So, first I

can perform the 1D-DCT along with the columns and after this, I can perform the 1D-DCT

along the rows. So, this is because of the separable property of the kernel.

(Refer Slide Time: 23:54)

Here, I have shown the procedure. So, my input data sequence is f n1, n2 and first I have to

apply the DCT, one-dimensional DCT along the rows. So, in this case, I am getting this one f

k1 n2. So, DCT is applied along the rows and after this, I am applying the DCT along with

the columns. So, after this, I am getting the 2D-DCT that is that two-dimensional Discrete

Cosine Transform.

(Refer Slide Time: 24:24)



So, this is about the DCT the next I want to discuss the concept of dimensionality reduction

of data. So, up till now, I discussed that these two transformations one is the DFT another one

DCT. In case of the DFT and in case of the DCT the transformation kernel is fixed. Yeah,

already you know what is the transformation kernel for the DFT and also for the DCT. 

Now, I am going to discuss another transformation that is called the KL transformation. In

the  KL transformation,  the  transformation  kernel  is  not  fixed.  The transformation  kernel

depends  on  the  statistics  of  the  input  data.  That  is  the  difference  between  the  KL

transformation  and  the  DCT  and  the  DFT,  or  maybe  I  can  consider  that  discrete  sine

transform, I have not discussed the discrete sine transform. 

So, for all these transformations DCT, DST, and also the DFT. The transformation kernel is

fixed. In the KL transformation, the transformation kernel depends on statistics of the input

data. Now, let us discuss about the KL transformation.

(Refer Slide Time: 25:38)

So, that is the Karhunen Loeve Transformation, that is the KL transformation. So, what is the

principle here? So, first I am considering a population vector, suppose a vector is considered

that is the x is a vector, the population vector is considered x1, x2, x n, and for this vector, I

can determine the mean, the mean I can determine that is the mu x I can determine. 

So, this input vector is the n-dimensional corresponding to this n-dimensional vector I can

determine the mean that is mu x I can determine. And also, I can determine the covariance

matrix, the covariance matrix is C x. What is the dimension of the covariance matrix? It is N



cross N, so I  have the mean and the covariance.  Now, if  I  consider the elements  of the

covariance matrix suppose C i i corresponds to the variance between x i and x i.

Another one is C i j that is the covariance between x i and x j and one important point is the

covariance  matrix  that  is  C x is  a  real  matrix  and also the symmetric  matrix,  so it  is  a

symmetric matrix, then in this case it is possible to find a set of an orthonormal eigenvector.

So,  it  is  easy  to  find  the  n  number  of  orthonormal  eigenvectors.  So,  in  this  case,  I  am

considering e i as the eigenvectors, and corresponding to this eigenvector, my eigenvalue is

lambda i this is my eigenvalue.

So,  from  the  covariance  matrix  I  can  determine  the  eigenvector  and  after  this  the

corresponding eigenvalue I can determine. These eigenvalues I can arrange in the descending

order of the magnitude, you can see here the eigenvalues are arranged in the descending order

of the magnitude. So, lambda i is greater than equal to lambda i plus 1 corresponding to i is

equal to 0,2, n minus 1. Now, the next step is,

(Refer Slide Time: 28:18)

I want to determine the transformation matrix. The transformation matrix is A, so this is my

transformation  matrix.  The  first  row  of  the  transformation  matrix  is  the  eigenvector

corresponding to the largest eigenvalue. So, in this case, I am considering e 1 suppose, so this

is the first row of the transformation matrix is the eigenvector corresponding to the largest

eigenvalue and like this, I am considering what will be the last? 

The  last  row  of  the  transformation  matrix  is  the  e  n  T  n  that  is  the  last  row  of  that

transformation matrix is the eigenvector corresponding to smallest eigenvalue, because in this



case  already  I  have  explained  the  eigenvalues  are  arranged  in  the  descending  order  of

magnitude. Now, in this case, I am defining a transformation, the transformation is y is equal

to A x minus mu x that I am determining. 

And this transformation is called the KL transformation. So, this is my transformation matrix

x is  the input vector,  mean is  the mean already I have determined,  and I  am getting the

transform  data,  the  transformed  data  is  y.  So,  this  transformation  is  called  the  KL

transformation. So, now I want to see the properties of y, y means the transform data. 

So, the first property is the mean of y is equal to 0, the output will be 0 mean and also, I can

determine the covariance matrix of y. The covariance matrix of y is obtained from C x and

the transformation matrix A. So, I can determine the covariance matrix this I can determine

the covariance matrix of y that is nothing but the C y, it is nothing but the expected value of y

y transpose the mean of y is equal to 0.

So, that is what I can write like this. So, E is equal to I can write A x minus mu x and A x

minus mu x transpose So, it is equal to A expected value of E x minus mu x x minus mu x

transpose and A T. So, from this you can see the covariance matrix of y is equal to A C x, so

this part is nothing but C x and A T, so I have determined this. So, here you can see the

covariance matrix of y is equal to A C x A transpose, so this is the covariance matrix. And

you can see the covariance matrix of y is a diagonal matrix.

So, that means, you can see the only the diagonal elements are available and the off-diagonal

elements all these elements are 0, so C y is a diagonal matrix. So, what is the meaning of

this?  So,  already  I  have  explained  the  meaning  that  is,  after  the  transformation  that

transformed data will be uncorrelated the original data is highly correlated. 

But  after  the  transformation,  because  I  have  the  diagonal  covariance  matrix,  after  the

transformation the transformed data will be uncorrelated. So, that is the meaning of this, the

transformed data will be uncorrelated. And another thing is the eigenvalues of C y are the

same as that of C x and the eigenvectors of C y are the same as that of C x that you can

verify.
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Now, let us consider this case so, the reconstruction of the original data but before going to

the reconstruction of the original data, what I can show you? Suppose, I am considering one

image suppose, so in this image suppose, these are the points suppose 0,1,2,3,4,5, like this

0,1,2,3,4. Suppose, in this image I have these pixels.

So, 2D binary image I am considering and, in this case, white means object is present and

black means no object is present that means 0. So, in this case, I am considering white and

this is the white portion. Corresponding to this I can determine the population vector. So,

corresponding to which point the pixel is present. So, 2 and 2 suppose, because this point is 2

and 2.

Suppose, another point is 3 and 1, in this point it is present 3 and 1, the another one is 3 and

2, another point is 3 and 3 in this pixel the pixel is present that is white pixel is present.

Another  one  is  4  and  2,  so  I  can  consider.  So,  this  is  my  population  vector.  From the

population vector, I can determine the mean, the mean of this vector I can determine, and

also, I can determine the covariance matrix.

After determining the covariance matrix and the mean I can determine the eigenvalues and

eigenvectors  of  the covariance  matrix  that  I  can determine  the eigenvectors  and also the

eigenvalues I can determine and after this, I can determine the transformation matrix, the

transformation matrix is A, the transformation matrix is obtain by eigenvectors. After this I

can apply the transformation, the transformation is A x minus mu x I can apply, so this is my

transformation.



So, in this example, I am considering one image and, in this image, I am considering the

white pixels these pixels, and corresponding to these pixels I am having the vector x. So,

from this x I can determine mean, covariance, and the transformation matrix and after this I

can apply the transformation. So, after the transformation, what I am getting? I will be getting

a new coordinate system.

So,  my  new  coordinate  system  will  be  something  like  this,  this  is  the  direction  of  the

eigenvectors e1 and e2. So, application of this transformation I am getting a new coordinate

system whose origin is at the centroid of the object pixel. So, I can determine the centroid of

the object pixel it is the centroid of the object pixel and the axis of the new coordinate system

will be parallel to the direction of the eigenvectors.

So, here I have shown eigenvectors e1 and e2. So, one axis is e1 another axis is e2. So, I can

say the KL transformation is  nothing but the rotation transformation.  This is  the rotation

transformation  that  means  it  aligns  the  data  along  the  direction  of  the  eigenvectors  and

because of these alignments, different elements of y will be uncorrelated. So, I am repeating

this that means, I am doing the KL transformation.

The KL transformation is nothing but the rotation transformation, it aligns the data along the

direction of the eigenvectors, and because of this alignment different elements of y will be

uncorrelated, so that is the meaning of the KL transformation. After this, I am considering the

deconstruction of the original data. So, in this case, you can see, so from this transformation,

I can determine the reconstructed data that is the x I can determine, A transpose y plus mu x.

And in this case, I am considering the orthogonal transformation A inverse is equal to A

transpose, so I am having this one. So, I can reconstruct the original data and the perfect

reconstruction is possible. Now, let us consider the transformation matrix is something like

suppose A k, that is I can call as the truncated transformation matrix.

In this transformation matrix, I am not considering all the eigenvectors. In the first case, I

have considered all the eigenvectors for the construction of the transformation matrix. In the

second case,  I am considering A k. So, in this  case,  I am only considering k number of

eigenvectors of C x, C x is the covariance matrix of the input data. So, I am considering k

largest eigenvectors.

So, then in this case I have how many rows will be there now because I am only considering

k number of eigenvectors, so dimension of A k will be k cross n. So, here I have shown k



cross n. And in this case, I am applying that KL transformation. So, A k is nothing but the

truncated  transformation  matrix  x minus mu x and I  am getting  y.  So,  what  will  be the

dimension of y now, the dimension of y is the k.

So,  that  means  the  dimension  is  reduced,  the  original  dimension  was  n  and  after  the

transformation, I have the dimension k and n is greater than k. So, this is the principle of

dimensionality reduction. So, I can reduce the dimension of the data. So, in the second case,

if I want to reconstruct the original data that is not possible because I am not considering all

the eigenvectors.

So,  that  is  why  if  I  want  to  reconstruct  from  this  one,  I  am  getting  the  approximate

reconstruction. So, that is why this is x gap. So, you can see I have this A k transpose it is n

cross  k and it  is  k  the  dimension  of  the  y is  k,  and what  will  be  the  dimension of  the

reconstructed data, the reconstructed vector? The dimension will be n. So, in the second case,

the perfect reconstruction is not possible because I am not considering all the eigenvectors for

the construction of the transformation matrix.

Now, in this case, I can determine the mean square error because perfect reconstruction is not

possible. So, what will be the mean square error? So, you can see here, the first time you can

see that is the lambda j I am determining, this j is equal to 1 to n that means, I am considering

all the eigenvalues minus i is equal to 1 to k lambda i that means, I am considering only k

number of eigenvalues.

So, if I subtract these two you can see here, so I am getting this one. So, j is equal to k plus 1

up to n lambda j. So, that is nothing but some of the neglected eigenvalues. So, the mean

square error depends on the sum of the neglected eigenvalues.
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Now, implementation under KL transformation in an image. So, if I consider this is an image.

So, in this image I am considering N cross N image, in this N cross N image, you can see the

columns, the columns are x naught, x1 x2 like this. So, in this case, every column I can

consider as a vector. 

So, this column I can consider as a vector, this column I can consider a vector, and after

considering this is a vector corresponding to particular this column x i I can determine the

mean and also,  I  can determine the covariance corresponding to a particular  column, the

column is x i that I am considering.
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And after this I am determining the transformation matrix, the transformation matrix is A. So,

what is the e naught dash? e naught dash is the eigenvectors corresponding to the first largest

eigenvalue. What is e1 dash? So, e1 dash is the second eigenvectors corresponding to the

second largest eigenvalue. So, like this, I have to arrange all the eigenvalues that is in the

descending order of magnitude.

So,  I  am  arranging  all  the  eigenvalues  in  the  descending  order  of  the  magnitude  and

corresponding  to  the  lambda  naught  I  have  the  eigenvalue  eigenvector  e  naught,

corresponding to lambda 1 I have the eigenvector e1, corresponding to lambda 2 I have the

eigenvector  e2 like  this.  And from this,  I  am constructing  the transformation  matrix,  the

transformation matrix is A.

Also, I can consider the truncated transformation matrix that is the truncated transformation

matrix is A k. In this case, I am not considering all the eigenvectors, I am only considering

the first k number of eigenvectors corresponding to the eigenvalues.  So, I am having the

truncated transformation matrix, after this what I am doing.
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I am showing the transformation here, so y i is equal to k cross 1, A k k cross N and in this

case N cross 1, so I am doing this one. So, this is the transformation I am having. So, after the

transformation, my transform will be k cross 1, like this. So, in this case for the entire image

how to get this. So, if I collect all the y's mainly, so I have the y i corresponding to x i.

So, for all the columns if I can determine y i, in this case, for every x i of the image we get y

i. If the transformation of all the column vectors of the 2D image is done, then we will get the



N transform vector that is y i we will be getting with a dimension k. And in this case, you can

see it is an inverse transformation I am doing that is the reconstructed value of xi.

Approximate  reconstruction  because  in  this  case,  I  am  only  considering  the  truncated

transformation matrix. So, if I do the collection of all the x i's, then in this case I can get the

reconstructed image. So, collection of all the excise will give the N cross N transform image.
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So, in summary, I can say in the case of transformation, the eigenvalues are arranged in the

descending order of magnitude and the transformation matrix is formed by considering the

eigenvectors in the order of the eigenvalues. So, already I have explained this concept and

also the reconstructed below I can determine by using this expression and in this case, I am

considering the orthogonal transformation A inverse is equal to A transpose.

And in this case, suppose we want to retain only k transform coefficients we will retain the

transformation matrix formed by the k largest eigenvectors, and based on this I can define

one transformation that  is  the principal  component  analysis  that  is  nothing but  the linear

combination  of  largest  principal  eigenvectors.  So,  this  is  the  definition  of  the  principal

component analysis. So, this is a summary of the KL transformation.

So, what is the summary of the KL transformation? The first from the population vector I can

determine the mean and the covariance and from the covariance matrix I can determine the

eigenvectors  and  the  eigenvalues.  The  eigenvalues  are  arranged  in  descending  order  of

magnitude.  And  after  this  I  can  determine  the  transformation  matrix,  the  transformation

matrix is obtained from the eigenvectors and after this, I can do the KL transformation.



And  again,  I  can  reconstruct  the  original  data  and  also,  I  can  determine  the  truncated

transformation  matrix.  In  the  truncated  transformation  matrix,  I  can  only  consider  the  k

number  of  largest  eigenvectors,  and  based  on  this  I  can  determine  the  truncated

transformation matrix.

Now, you can see this if I want to do compression of data, the compression depends on the

value k. So, how many eigenvectors I am considering for making the transformation matrix.

And for reconstruction what information I need? I need the information of A k and also, I

need the information of y i that is the transformed data that information I need. From this I

can determine x, x is the input data that I can determine.

So, this is about the KL transformation the one problem of the KL transformation here you

see,  the  transformation  depends  on  the  statistics  of  the  input  data.  So,  already  I  have

mentioned that is in other transformations, the transformation kernel is fixed, but in this case,

you can see the  transformation  kernel  is  not  fixed it  is  derived from the input  data.  So,

suppose in the applications like the real-time applications, suppose the non-stationary data.

Then in this case what will happen for each and every instance I have to determine the mean

of  the  data  vector  and  after  this,  I  have  to  determine  the  covariance  matrix  from  the

covariance matrix, I have to determine the eigenvectors and eigenvalues and after this, I can

determine  a  transformation  matrix.  Since  the  data  is  non-stationary  for  each  and  every

instance, I have to do this. So, that is why the real-time implementation is very difficult it

cannot be applied.

So,  that  is  why  the  KL  transformation  is  not  applied  for  image  compression  or  video

compression because for non-stationary data, we have to compute all the parameters mainly

the mean covariance, and also, I have to determine the transformation matrix. So, that is why

real-time implementation is difficult. But, if I consider the decorrelating property, so it can

perfectly decorrelate the input data because I am having the diagonal covariance matrix. So,

that is why the perfect decorrelation is possible by considering the KL transformation.
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Now, I want to show the principal  component analysis. What is the principal component

analysis?  Already,  I  have  explained  the  principal  component  analysis  means  the  linear

combination of largest principal eigenvectors. So, in the principal component analysis again I

am showing the same thing in the KL transformation.

So, I can reduce the dimensionality of the data set by finding a new set of variables smaller

than the original set of variables and retains most of the sample’s information and useful

product compression and classification of data. 

So, you can see I have the input vector x and after this, I am reducing the dimensionality, so

the dimension is reduced, because in this case, the K is less than N. So, PCA the principal

component analysis allows us to compute a linear transformation that maps data from a high

dimensional space to a lower-dimensional subspace.
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And in this case, what is the high dimensional subspace you can see. So, this is my high

dimensional subspace and this is my low dimensional subspace. This v1, v2, v n you can see

here is a basis of the N-dimensional space and if I consider u1, u2, u k is the basis of the K-

dimensional space and suppose, if N is equal to K that means, in this case, the dimension is

not reduced. So, here I have shown this example, one in the high dimensional space another

one lower-dimensional space representation.
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And  the  information  loss,  what  is  the  information  loss?  Because  of  the  dimensionality

reduction, information will be lost. So, the goal of the PCA is to reduce dimensionality while

preserving as much information as possible. This is mainly the minimizing the error between

the projection in the new and older dimensions. 

So, that means, in this case, I have to minimize this, one is the original data another one is the

reconstructed  data,  that  I  have  to  minimize.  Now,  how  to  determine  the  best  lower-

dimensional subspace? The best low dimensional subspace can be determined by the best

eigenvector of the covariance matrix of x. 

So, already this concept I have explained and these eigenvectors corresponding to the largest

eigenvalue, and these are called the Principal Components.
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And here I have shown the principal components that is nothing but the eigenvectors. So,

orthogonal direction of the greatest variance in data. So, I have the first principal component

PC 1, the second principal component PC 2, and in this case, like this, I have the principal

components that is nothing but the direction of the eigenvectors, these are the eigenvectors.
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So, already,  I  have explained because of the KL transformation,  I  will  be getting a new

coordinate system. In the new coordinate system, my new axis will be the eigenvectors. So,

here you can see these are my eigenvectors e1, e2, these are eigenvectors. So, new axis are

orthogonal  and  represent  the  directions  with  maximum  variability,  and  the  principal

component analysis projects data along the direction where the data varies the most.



And  these  directions  are  determined  by  the  eigenvectors  of  the  covariance  matrix

corresponding  to  the  largest  eigenvalue.  So,  this  concept  already  I  have  explained.  The

magnitude of the eigenvalues corresponds to the variance of the data along the direction of

the eigenvectors.
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And here I  have shown that dimensionality  reduction.  Can ignore the components  of the

lesser significance. So, you can see I am considering the principal components PC1, PC2,

PC3, PC4 all the PC like this I am considering and you can see these principal components

have  the  maximum  information.  So,  I  can  neglect  the  remaining  principal  components

because already I  have explained the property,  that  property is  called energy compaction

property.

So, most of the energy is available only in few coefficients. So, in this case, I am considering

the largest eigenvalues and the corresponding eigenvectors. So, that means the PC1, PC2,

PC3,  PC4,  PC5 I  am considering  and  remaining  eigenvectors  I  am not  considering,  the

principal components, that is I can select the first p eigenvectors based on the eigenvalues and

I can neglect the remaining eigenvectors.
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So,  what  is  the method again I  am explaining  this  one.  So,  I  have the input  vector.  So,

dimension is N cross 1, from N cross 1 I can determine the mean of this and after this from

the original data, I can subtract the mean and after this, I can determine the covariance matrix

I can determine, from the covariance matrix I can determine the eigenvalues I can determine

and from the eigenvalues I can determine the eigenvectors.

So, this principle already this concept I have already explained. So, from the input data how

to determine the mean and how to determine the covariance, and from that covariance, how

to determine the eigenvalues and eigenvectors.
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After this, you can see if the C is symmetric then these eigenvectors u1, u2, u3 like this form

a basic, and in this case any vector x minus x bar that is the mean can be written as a linear

combination  of  the  eigenvectors  you  can  see  here  and  also  if  I  consider  the  truncated

transformation matrix, then, in this case, I can reduce the dimension in the step 6. 

So,  this  is  the,  I  am only considering  the K number of  eigenvectors.  In  the first  case,  I

considered the N number of eigenvectors. So, in the step 6, I am considering the dimension

reduction step.  So, you can see the dimension is  reduced by this  expression and how to

choose the principal component. 

So, already I have explained, so principal components are selected based on the eigenvalues,

the magnitude of the eigenvalues. And in this case, the one condition you can consider. So,

you can see here,  the  lambda i  this  should be  greater  than particularly  greater  than.  So,

lambda I am considering for the K number of eigenvectors from i is equal to 1 to K. 

And in the second case here you see the lambda I, I am considering from i is equal to n that is

for all the eigenvalues, then in this case, if this ratio is greater than a particular threshold, so

based on this condition,  I can select the value of K, so threshold I have to consider. For

example, I can consider point 9 or maybe point 95, and this ratio I can determine and from

this, I can select the value of K, K number of eigenvectors.
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And in this  case,  we have seen that  the original  vector  x can be reconstructed using the

principal components. So, this is my reconstructed information, so this is my reconstructed

vector. In this case, I considered a mean but in this case x approximate, and because I am



considering the truncated transformation matrix, so that is why I am getting the approximate

x that I can get.

And also, you can see the error also I can determine, the error means the low dimensional

basis  based  on  the  principal  component  minimizes  the  reconstruction  error.  So,  the

reconstruction error I can determine and the error can be determined like this, this is the

expression for the error, the error is equal to 1 by 2 and summation lambda i and in this case,

I am considering the neglected eigenvalues, the sum of the neglected eigenvalues that I am

considering.
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Now, I have shown one example, how to consider the PCA for face recognition? So, in this

example, I have shown in my first class, so this is the face recognition problem. So, we have

the database and we have the input images. So, in this case, I have to select whether this

particular face is available in a database or not. So, this is the task of face recognition. So, my

input images maybe like this, it may be occluded or maybe some illumination variation I may

consider and, in this case, I have to find that particular face in the database. 
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For this, I can apply the PCA for the face recognition. So, this is my input image and by

image that I can consider as N square into 1 vector that I can consider. And in this case, you

can see the original face is this, minus mean face I can determine, the average face I can

determine,  and that  can be approximately  represented  by this,  this  can be approximately

represented like this because I am only considering the K number of basis that is expressed

into low dimensionality space.
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So, you can see here, so each face minus the mean in the training set can be represented as a

linear combination of K eigenvectors. So, here you can see this is the representation. So, each

face minus the mean can be represented by a linear combination of the best eigenvectors. So,



I have the eigenfaces like this. So, from the eigenvectors I can determine the eigenfaces, these

are eigenfaces. So, each face, this face is represented as a linear combination of the K-based

eigenvectors.
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So, here in this case that means, if you see this slide here these are my widths. So, these are

my width vectors. So, representing faces onto this basis.



(Refer Slide Time: 57:06)

And for the testing what I have to do? For a test unknown image, the same procedure is

repeated. So, first I have to do the normalization and after this, I have to do the projection on

the  eigenspace  and  this  is  my  widths  corresponding  to  the  test  image,  and  for  a  face

identification what I have to consider? Only I have to compare the widths, the widths that

already I have explained for the training and for the testing also this width I have to compare.

Because already I have the eigenfaces and if this error is less than a particular threshold, then

a particular face is recognized or identified. So, this is the face recognition by the principle of

PCA. So, in  this  class,  I  discuss the concept  of the KL transformation,  a very important

concept the KL transformation and after this, I discuss the concept of the PCA the principal

component analysis and after this, I discussed on application. So, how to recognize face by

using the PCA? So, let me stop here today. Thank you.


