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Welcome  to  the  NPTEL  MOOCs  course  on  Computer  Vision  and  Image  Processing  –

Fundamentals and Application. Already I have defined mathematically the image, the image

is represented by f (x, y), f( x, y) means intensity at a particular point the point is x ,y that is

called  the  spatial  domain  representation  of  an  image.  In  an  image,  we  have  frequency

information. Suppose, if I consider edges or a boundary that is nothing but the high-frequency

information.

In edges in the boundary, there is an abrupt change of grayscale intensity value, that is why

the high-frequency information  is  present  in the edges in the boundary.  If  I  consider  the

constant  intensity  region,  the  homogeneous region that  corresponds to  the low-frequency

information. 

So, I can convert the spatial domain information into the frequency domain information for

better analysis of an image, I can do some transformation, I can apply the DFT the discrete

Fourier transform, I can apply the DCT the discrete cosine transform like this so that the

spatial domain information can be converted into a frequency domain information.

In the case of the frequency,  what  is  the definition  of  the frequency? Frequency means,

spatial  rate of change of grayscale value that is the definition of frequency. Now, in this

transformation, that signal is represented as a vector and the transformation changes the basis

of the signal space, that is the definition of the image transformation.

And the transformation is quite useful for compact representation of data. So, that means, the

image can be represented by using few transformation coefficients. So, I can apply DFT, I

can apply Discrete Cosine transform and the image can be represented by using transform

coefficients  that  means,  the  compact  representation  of  an  image  that  is  the  image

transformation.

And  because  of  this  transformation,  it  is  easy  to  calculate  convolution  or  maybe  the

correlation I can compute because convolution means in the frequency domain it is nothing

but  the  multiplication,  in  spatial  domain  it  is  the  convolution.  So,  because  of  this



transformation, I can easily do convolution and let us see what is the meaning of the image

transformation. So, in my next slide, I can explain the concept of image transformation.

(Refer Time Slide: 03:01)

So, in this block diagram you have seen the input is f (x, y) that is the image, after this, we

are doing some transformation. Operator transformation I am getting F (u, v), so F (u, v) is

nothing but that is the transformed image, u is the spatial frequency along the x-direction and

v is the spatial frequency along the y-direction. 

After this, we can do some operations in the frequency domain that is the operation R I am

doing in the frequency domain and after this, I am doing inverse transformation. So, that we

will get the spatial domain information after processing. So, I am getting g (x, y). So, in the



case  of  the  inverse  transformation  signal  data  that  is  represented  as  vectors  and  the

transformation changes the basis of the signal space. 

And one important point is the transformation is usually linear but not shift-invariant. And

already I had explained that it is useful for a compact representation of data and because of

these transformations, I can separate noise and the salient image features because the image is

represented by few transform coefficients.

So, it is easy to separate noise and the salient image features, and also it is useful for image

compression because the image I am considering by only considering few coefficients that is

which are more important than we are considering and neglecting the remaining coefficients,

so like this, we can do the image compression.  And the transform may be orthogonal or

maybe the non-orthogonal.

So, suppose if I consider one transformation matrix, the transformation matrix is T that is a

complex matrix and if I take that T inverse that is equal to T complex conjugate transpose

then this matrix T is called the unitary matrix. It is called the unitary matrix and in this case,

the  transformation  is  called  the  unitary  transformation.  And  suppose  that  T  is  real,  the

transformation matrix is real then T inverse is equal to T transpose then in this case and this

matrix is called the orthogonal matrix.

So, I have defined unitary matrix  and the orthogonal matrix.  Based on this condition my

transformation maybe unitary transformation or maybe the orthogonal  transformation.  So,

transformation may be orthogonal if this condition is satisfied or maybe the unitary and if this

condition is not satisfied then in this case it will be non-unitary or maybe the non-orthogonal

transformation.

One  definition  is  the  transformation  may  be  complete  or  under  complete.  What  is  the

meaning  of  this?  Suppose,  let  us  consider  x  n,  I  am representing  the  input  data  x  n  is

represented like this, N minus 1 K is equal to 0 to N minus 1, X K and phi n K and this is the

basis function. So, my input data that is input vector is represented like this x n is equal to X

K that means, I am doing some transformation X K and the basis function is this.

So, in this case, K is equal to 0 to N minus 1. This x n can be approximately represented like

this, this is the approximate representation of x n. So, K is equal to 0 to M minus 1, now it is

M  minus  1,  X  K  phi  n  K.  So,  in  the  second  representation  that  is  the  approximate

representation I am only considering K is equal to 0 to M minus 1. In the first case I am



considering K is equal to 0 to N minus 1 that means,  I am considering the n number of

coefficients that means, x0, x1 x2 like this I am considering.

But in the second case I am considering only M number of coefficients then in this case that

your M is less than N. Now if I consider the first one, that my transformation will be the

complete transformation, and if I considered the second case that is the under complete case

and in both the cases if I see, I can determine the mean square error is nothing but 1 by N

summation n is equal to 0 to N minus 1.

And in this case the mean square error also I can determine,  so a transformation may be

complete  or  under  complete,  so  you  can  understand  this.  And  another  one  is  the

transformation can be applied for the whole image that means, if I consider a whole image,

this is the whole image, this N-by-N image.

So, for the entire image, I can apply to the transformation, or otherwise, I can apply the block

by block. So, suppose if I consider is the block, one block I am applying the transformation,

next block I am applying the transformation like this I can apply the transformation block by

block. So, that the information may be applied to image blocks or maybe to the whole image. 

So,  this  is  the  definition  of  the  image  transformation  and  the  transformation  may  be

orthogonal or the non-orthogonal, complete or under complete, applied to the image blocks or

the whole image. Now, based on this orthogonality concept, I can show you a different type

of transformation. So, what are the different types of the transformation?

(Refer Time Slide: 09:44)



So, images permission, so first one is I am considering orthogonal sinusoidal basis function.

The first  case is orthogonal sinusoidal  basis  function,  the second case is  orthogonal  non-

sinusoidal basis function, or I can consider the basis function depends on the statistics of the

input  signal  and  another  one  is  the  directional  transformation.  So,  I  can  classify  image

transformation  like  this,  the  first  one  is  orthogonal  sinusoidal  basis  function.  My

transformation function is orthogonal and also, I am considering the sinusoidal basis function.

So, examples like the DFT the Discrete Fourier Transform, or the DCT the Discrete Cosine

Transform, or maybe the Discrete Sine Transform DST these are the examples. So, basis

function  is  orthogonal  and  also  the  sinusoidal  function.  Another  one  is  orthogonal  non-

sinusoidal basis function. So, I can give some examples like the Harr transformation, Harr

transform that is we will discuss in the wavelet transform.

In the wavelet transform you can understand what is Harr transformation, another transform

like  Walsh transform, Hadamard transform, or maybe slant  transform. In this  case,  basis

function is orthogonal but, in this case, it is non-sinusoidal basis function. Another case, the

next one is the basis function depends on the statistics of the input data. Then in this case, I

can  give  you  one  example  one  is  the  KL  transformation,  I  will  discuss  about  the  KL

transform  and  another  one  is  singular  value  decomposition  SVD,  so  I  can  give  these

examples.

So, basis function is not fixed, but basis function depends on the statistics of the input data,

the input signal that is the examples like the KL transform and singular value decomposition.

And regarding the directional transformation, so already I have discussed about the Radon

transform that is one example is the Radon transform and another example I can give I will

discuss later on that is the Hough transform.

So,  I  have  these  types  of  transformations  one  is  the  DFT,  DCT,  and  DST  that  is  the

orthogonal  sinusoidal  basis  function  and  another  one  is  the  Harr  transformation,  Walsh

transformation,  Hadamard  transformation,  Slant  transformation  orthogonal  non-sinusoidal

basis function and another one is the basis function depends on the statistics of the input

signal  that  is  the  KL transform and  the  SVD and  directional  transformation  like  Radon

transform and the Hough transform.



(Refer Time Slide: 14:21)

Now, let us consider one-dimensional sequence, the one-dimensional sequence is x n. So, it is

n is from 0 to N minus 1. Now, I am doing some transformation, the transformation is x is

equal to T x, so this transformation I am considering. This x is the, small x is the input data

and in this case, the X capital is equal to t x, t is the transformation matrix. So, I can write

like this X k is equal to t k n, t k n is this, this is the transformation kernel x n is the input

data, the input sequence.

And in this case, if I consider a transformation is something like this the T inverse equal to T

complex conjugate transpose. So, already I have defined this is called the unitary matrix and

the transformation will be the unitary transformation. And for the reconstruction I can use

this formula that is reconstruction of the original sequence small x is equal to T complex

conjugate transpose X because the T complex conjugate transpose is nothing but T inverse.

So, in this case, the reconstruction formula I can get this, this is the reconstruction formula.

So, x n is equal to k is equal to 0 to N minus 1 t complex conjugate transpose k comma n X k

and the N is from 0 to N minus 1.



(Refer Time Slide: 15:44)

Now, let us consider this case, the X is equal to T x, so X capital X and that is the transform

data, T is the transformation and x is the input sequence, so already I have defined this one.

So, in the matrix from I can represent in this form, the first one is the transform data. So, this

equation I am writing in the matrix from. 

So, the first  one is  the transform data and after  this  I  am considering the transformation

matrix and after this, I am considering the input data. In this case that x naught the small x

naught,  x1,  xn minus  1  that  is  the  input  data  and x naught,  x1,  xn  minus 1  that  is  the

transform data there is a capital and I am considering that this permission matrix.

(Refer Time Slide: 16:34)



Now, let us consider 1D transformation. So, I think already you know the DFT, so how to

write a DFT. So, 1D DFT I am considering first, 1D DFT. So, one-directional DFT I can

write like this X K is equal to n is equal to 0 to N minus 1 x n e to the power minus j twice pi

divided by N n k. That is the I can write like this n is equal to 0 to N minus 1 x n W n K. 

So, in this case, W is the twiddle factor, you know W is the twiddle factor DFT and x n I can

write like this, x n also I can write x n is nothing but 1 by N, K is equal to 0 to N minus 1, K

is equal to 0 to N minus 1 and it is X K W minus n k, so I can write like this, this is a 1D

DFT. So, in this case, I am considering the data vector, these are the data vector and I am

considering the 1D DFT in the matrix form, so 1D DFT into matrix form I can write like this.

So, this is the DFT already I have defined the DFT, 1d DFT I have defined and in the matrix

from I can represent like this. So, this is my transform data and this is the transformation

matrix and this is my input data. And regarding the inverse one, if I consider the inverse DFT,

so the inverse DFT is nothing but this, this is the inverse DFT, this is the IDFT, so inverse

DFT I can represent like this. 

And in this case, if I see this transformation,  the transformation matrix is suppose W, W

inverse is equal to W complex conjugate transpose and divided by n that means, as part of

definition of the unitary matrix the DFT matrix is not unitary, so it is not unitary the DFT

matrix is not unitary. So, I can make the DFT matrix unitary, if you see my second slide you

can understand this one.

(Refer Time Slide: 19:14)



So, I am defining the DFT like this now. So, DFT is F k 1 by root N, f n w nk and this is my

inverse DFT. So, if I consider this then in this case my transformation matrix will be like this.

So, T inverse is equal to T complex conjugate transpose that means, in this case I am getting

the  unitary  DFT.  So,  this  discussion  up to  this  discussion  you have  understood that  the

meaning of the unitary transformation and the orthogonal transformation.

In the case of the unitary transformation, if I consider a unitary matrix that means, the T

inverse is equal to T complex conjugate transpose that is the definition of the unitary matrix.

And suppose the matrix T is the real matrix then the T inverse is equal to T transpose that is

the definition of the orthogonal matrix and based on this I may have unitary transformation or

orthogonal transformation.

And in this example, I have shown the DFT transformation, the DFT transformation is not

unitary but I can make it unitary. I have defined the DFT like this DFT is 1 by root N like this

I have defined so that the DFT transformation matrix that will be unitary.  So, that is the

definition of the unitary transformation and the orthogonal transformation.

(Refer Time Slide: 20:36)

Now,  let  us  consider  the  unitary  transformation  and  basis.  So,  I  am  considering  one

transformation  matrix  that  transformation  matrix  is  T  and  I  am  considering  the  unitary

transformation. So, transformation matrix is the rules are like this t00, t01, t0 n minus 1, 310

like this I have the transformation matrix. Then what will be my T inverse? 

So, I am calculating the T inverse, T inverse is very easy to calculate because it is the unitary

matrix.  So,  in  this  case,  I  have  to  do  complex conjugate  and after  this,  I  am doing the



transpose, the transpose of the matrix. So, T inverse is equal to T complex conjugate and

transpose. So, I am getting T inverse.

(Refer Time Slide: 21:18)

And after this, I am showing the transformation here. So, this is the input data here and this is

the T inverse I have the T inverse and this is a transform data F naught, F1 the capital F1

these are the transform data. Now, in this case, I can represent like this. Now, in this case, the

columns of T inverse are independent. So, if I see the columns, these columns suppose these

columns  the  columns  of  T  inverse  are  independent  and  they  form  a  basis  for  the  N-

dimensional space. So, this column is independent, this is independent, this is independent.

(Refer Time Slide: 21:56)



And I can give one example of the unitary transformation, here the 2D DFT I am considering.

So,  the  transformation  matrix  is  something  like  suppose  1  by  root  2,  1,j,j,1,  this  is  the

transformation matrix. Then I can determine T inverse the T inverse will be 1 by root 2, 1

minus j, minus j, 1, so this is my T inverse. So, this is the definition of unitary transformation.

So, already I have explained, what are the examples of the unitary transformation. One is the

DCT, one is the DST Discrete Sine Transformation, and one is the Hadamard transformation,

and this KL transformation is also unitary. But in this case of the KL transformation, the

transformation matrix or the transformation kernel depends on the statistics of the input data.

In  the  case  of  the  DCT,  the  transformation  kernel  is  fixed.  But  in  the  case  of  the  KL

transformation, the transformation kernel is not fix it depends on the statistics of the input

data but it is orthogonal.

(Refer Time Slide: 23:02)

Now, the properties of the unitary transformation. The rows of the transformation matrix T

form  an  orthogonal  basis  for  the  N-dimensional  complex  space  that  is  very  important

property and one important thing is the determinant of T is equal to 1 that you can determine,

the determinant of T is equal to 1. All the Eigenvectors of T have a unit magnitude that is

another property, Tf is equal to lambda F by using this you can determine the Eigenvalues

and Eigenvectors, so all the Eigenvectors of T have unit magnitude.



(Refer Time Slide: 23:39)

Another important property is the Parseval’s theorem. That means, T is energy preserving,

the transformation is energy preserving because it is a unitary transformation which preserves

energy that is called the Parseval’s theorem. So, in this mathematics I have shown here, first I

am calculating the energy in the transform domain F complex conjugate transpose F that

corresponds to energy in transform domain.

And another one is I can determine the energy in data domain that small f complex conjugate

transpose f that is the energy in the Data Domain. After this, you can see these mathematics

and if  you see this  T complex conjugate  transpose and this  part,  this  is  nothing but  the

identity  matrix,  I  is  the  identity  matrix.  So,  from this,  here you can  see that  F complex

conjugate transpose F that is the energy into transform domain that is equal to the energy into

data domain, so energy into data domain is this, so energy is preserved.

The energy is conserved, but one thing is that most of the energies are unevenly distributed

among the coefficients. So, what is the meaning of this? Suppose the operator transformation,

I  am  getting  some  coefficients,  these  are  my  coefficients  but  most  of  the  energies  are

available in few coefficients. So, these energies are available like this and for the rest of the

coefficients, the energy is very negligible.

That means, energy is conserved but will be unevenly distributed among the coefficients. So,

most of the energies are available in these coefficients only, and remaining if you see the

coefficient the energy is negligible. So, in case of the image compression, I can neglect these

coefficients, because image compression is nothing but the compact representation of data.



So,  I  can  neglect  the  redundant  information.  So,  that  is  why  I  can  consider  only  these

coefficients,  the  coefficients  having  the  significant  energy  I  can  consider  and  remaining

coefficients I can neglect. So, this property is very important the energy is conserved, but

most of the energies are available in a few coefficients.

(Refer Time Slide: 25:59)

The next property is the  Decorrelating  property. So, in this property, you can see the input

data  is  highly  correlated,  but  after  the  transformation,  the  transform  data  will  be  less

correlated or maybe you can consider uncorrelated. So, input data is highly correlated and

after data transformation transform data will be uncorrelated that is the concept.

So, if I consider this is my data vector, corresponding to this data vector I can determine the

covariance  matrix  and  after  the  transformation,  I  am  getting  the  transform  data,  the

transformed data is F capital F, and my input device small f. So, for this transformed data also

I can determine the covariance matrix, the covariance matrix is C F t and for this also I can

determine the covariance matrix.

So, in this  case,  my original  data  is  highly correlated,  but after  the transformation,  I  am

having the covariance matrix something like this, this is the diagonal covariance matrix. The

off-diagonal elements all these elements will be 0, if you see this 0, all these are 0. So, that

means, the off-diagonal elements are 0 that corresponds to the perfect Decorrelating. So, that

is the meaning of decorrelating property.

So, after the transformation that transforms data will be less correlated or maybe if I consider

a perfect Decorrelation, then in this case the off-diagonal elements will be 0. So, these are the



properties of the unitary transformation, so the first property is quite important, the rows of

the transformation matrix they are independent and they form the basis for the N-dimensional

space that is one first property and determinate of the transformation matrix T is equal to 1.

There is one important property, one is the Parseval’s theorem, the energy in the transform

domain is  equal  to energy into data domain that  is  the very important  property.  Another

property  is  energy  complexion  property.  So,  most  of  the  energy  is  available  in  few

coefficients. So, after the transformation, I am getting the transform coefficients and most of

the energy is available in the few coefficients, so I can neglect the remaining coefficients for

compact representation of data that is called energy complexion property.

And another property is the Decorrelating property. So, my input data is highly correlated and

after the transformation, the transform data will be uncorrelated or maybe less correlated. So,

if I have the diagonal covariance matrix that means, it is completely uncorrelated. So, these

are the properties of the unitary transformation.

(Refer Time Slide: 28:40)

So, in this example, I have shown the first one is the image in the spatial domain. So, I have

shown the pixel position and the pixels I am showing. So, you can see the correlated data,

you  can  see  the  pixels  if  you  see  the  pixels,  so  input  is  correlated.  And  after  the

transformation, I am getting the transform coefficient; you can see the transform coefficient

here, so this portion is a transform corporation. 



And,  in  this  case,  I  am getting  the  uncorrelated  data.  So,  that  is  the  importance  of  the

transformation. So, my input data is correlated, but after the transformation, I am getting the

uncorrelated data.

(Refer Time Slide: 29:14)

Now,  let  us  consider  the  2D  transformation.  So,  one  example  I  can  give  the  2D

transformation mean in the image I can apply the 2D transformation.  So, what is the 2D

transformation here? So, first I am considering the data matrix f 00, f 01, f 0 N minus 1 this is

one row, like this another row is f 10, and up to this f 1 N minus 1, so I am considering the

data matrix.

Next  one is  I  am considering  the  transformation.  I  am getting  the  transformed data,  the

transformed data is Ft k1 k2, there in this case the Ft the transform coefficients. And in this

case,  k1  and  k2  are  the  row  and  the  column  indices  in  the  transform  array  and  I  am

considering the transformation kernel, the transformation kernel is t n1, n2, k1, and k2, so this

is my transformation kernel.

And if I want to reconstruct the original data after the transformation, so in this case, you can

see because I am considering the unitary transformation that means the t inverse is equal to

the t complex conjugate transpose. So, I am considering this kernel, so I can reconstruct the

original data.



(Refer Time Slide: 30:29)

Now, let us consider one property that is called the  Separable  property. So, already I have

defined the transformation kernel, the transformation kernel is this, this is my transformation

kernel and if I can do the separation like this the t1, the one kernel is t1 another kernel is t2.

So, that means that there is transformation kernel t1, that is the kernel for the horizontal

direction, and transformation kernel t2 that is for the vertical direction.

So, if I can separate like this, that is called the Separable property. One important point is

separable  transforms  are  easy  to  implement,  why  it  is  easy  to  implement?  Because  the

transformation  can  first  be  applied  along  the  rows  and  after  this,  I  can  apply  the

transformation along the columns. And in this case, if I consider the kernels along the rows

and  the  columns,  I  have  the  identical  function,  then  in  this  case  I  have  the  symmetric

function, the symmetric property.

What is the meaning of the symmetric? If the kernels along the row and the columns have the

identical function then this property is called a symmetric property. And if I considered a

kernel product to the 2D DFT, so this is the kernel for the 2D DFT, that is separable you can

see. So, based on the separable property, you can see, I can determine the 2D DFT by using

the 1D DFT. So, I can apply 1D DFT along the rows and after this, I can apply that 1D DFT

along with the columns because of this property the separable property.



(Refer Time Slide: 32:05)

So,  based  on  this  separable  and  symmetric  property  and  I  am  considering  the  unitary

transformation. If you see, already I have defined this, this is the transformation and f n1 is

the mind data input data, the 2D data and I am considering the transformation matrix these

are  transformation  kernel  and I  am considering  T is  the  transformation  kernel  and I  am

applying the separable property and the symmetric property.

So, if I apply the symmetric property and the separable property, I am having this one. So, I

can write these in the matrix from like this Ft is equal to T f T, and what about the inverse

transformation.  This  is  my  inverse  transformation  T  complex  conjugate  transpose  Ft  T

complex conjugate transpose that is my inverse transformation because I am considering the

unitary transformation.



(Refer Time Slide: 32:57)

So,  in  case  of  the  2D  transformation,  2D  separable  and  I  am  considering  the  unitary

transformation, and also I am considering the symmetric transformation. And this property

again  I  am  considering  that  this  property  already  I  have  explained,  one  is  the  energy

preserving property, the distance preserving property, energy compaction property and other

properties  like the decorrelating  property,  these properties  are again applicable  in the 2D

transformation.

(Refer Time Slide: 33:26)

And if I consider one image, image is nothing but the 2D array of numbers, then again I can

show you the 2D transformation. So, I am considering one image block, the image block is x



and the n1, n2, and that the size of the image is N cross N. So, for the transformation I am

getting the transform data, the transform data X k1, k2.

And in this case, this is my input image and this is my transformation kernel, and what is my

inverse transformation? Inverse transformation means, I am getting the input image from the

transform coefficients. These are my transform coefficients X k1, k2 and this is my kernel for

the inverse transformation. 

So, this can be represented into matrix form, if you consider this equation there will be n

square number of similar equations defined for each pixel element. So, that means, I have n

square number of similar equations.  So, that can be represented in the matrix form I can

represent like this.

(Refer Time Slide: 34:28)

So, again I am writing this one and what is my input image? The input image are like this.

These are mainly the pixels, pixels of x n1, n2. So, I am writing this one and this is my

matrix, the matrix is H k1, k2, so that is my matrix. So, this H k1, k2 is an N-by-N matrix

defined for the variables k1 and k2. So, the image block x can be represented by a weighted

summation of n square images, so I am repeating this.

So, a particular image block, x can be represented by a weighted summation of n square

images and each of the size N cross N and the width of these linear combinations are the

transform coefficients capital X k1, k2 and this H k1 matrix, this matrix is called is to the

basis image.



(Refer Time Slide: 35:39)

Now, let us consider the 2D Fourier transform. So, how to define the 2D Fourier transform,

here you can see. So, I am considering my input image f x y and this is my DFT pair. So, f x

y, If I take the 2D DFT then I will be getting F u v. The F u v means the Fourier transform of

the input image, the input image is f x y and this is my DFT formula that is in the continuous

domain F u v, I can get from f x y e to the power minus j xu plus yv dx dy and this is my

inverse Fourier transformation.

Now, in this case, you can see u and v, u and v is nothing but a spatial frequency in radian per

length. What is u? u is the spatial frequency in the x-direction and v is the spatial frequency

along the y-direction. So, in case of the f u v, I am considering two frequencies one is u

another one is v the spatial frequency, and but a Fourier transform I think already you know

this condition that f x y should be absolutely integrable. 

So, this condition is important for the Fourier transformation. Now, if you see this example, I

am determining the Fourier transform of the images, I am considering three images and you

can see what will be the Fourier transform of these images. So, first images you can see.



(Refer Time Slide: 37:12)

That is the first image, corresponding to the first image I have the Fourier transform that I am

getting the spatial frequencies, corresponding to the second image also, I have the horizontal

lines then, in this case, I have the Fourier transform you can see these points here. And for

that  this  image  also  the  third  image  I  have  the  Fourier  transform that  is  a  2D  Fourier

transform.

(Refer Time Slide: 37:35)

This  Fourier  transform can  be  represented  in  the  polar  form,  that  F  u  v  is  the  Fourier

transform that can be represented in the polar form. So, I have the magnitude part and also

the phase angle. So, I have two information one is the magnitude information and the other

one is the phase information. And in case of the F u v, it has two components one is the real



part another one the imaginary part, that is the Fourier spectrum of the input signal, the input

signal is f x y and by using this formula I can determine the phase angle.

(Refer Time Slide: 38:08)

Now, in this example, I want to show what is the meaning of the phase information and what

is  the  meaning  of  the  magnitude  information.  Phase  information  represents  the  edge

information or the boundary information of the objects that are present in the image and for

applications like medical image analysis, this phase information is very important. And what

is the meaning of the magnitude?

A magnitude tells how much of a certain frequency component is present in the image. And

phase  information  tells  where  the  frequency  component  is  present  in  the  image.

Corresponding to this example, if you see I have the input image f x y and I have two plot,

one plot is the magnitude information I am plotting, so first is the magnitude plot and second

one is the phase information I am plotting.

So, in case of the magnitude plot, I am using the log transformation, I will explain what is the

log transformation. Log transformation is used to compress the dynamic range of an image

for better visualization. So, you have seen here I have two information one is the magnitude

information, another one is the phase angle information. And in this case, you can see I am

doing the reconstruction of the original image from the 2D Fourier transform.

So, in the first case, I am considering the magnitude information, but I am not considering the

phase  angle  information,  phase  information  I  am  not  considering.  And  this  is  my

reconstructed image that means, you cannot reconstruct the image only by considering the



magnitude information. In the second case, I am considering the phase information, but I am

not  considering  the  magnitude  information,  magnitude  is  constant  then  also  this  is  the

reconstructed image.

So, in this example, you can see that I want to reconstruct the original image by considering

the magnitude information and the phase angle information. If I only consider the magnitude

information  or  if  I  only  considered  phase  information,  the  perfect  reconstruction  is  not

possible. So, for perfect reconstruction,  I need both magnitude information and the phase

information.

(Refer Time Slide: 40:14)

And in this example, I have shown the Fourier transform of a simple rectangular bar. So, my

input image this and corresponding to this I have the Fourier transform of this, because for a

rectangular function if I take the Fourier transform, the Fourier transform will be that sync

function. The second case I am considering the Fourier transform of a simple image with

Gaussian distributed intensity.

So, if you see the intensity of this one, this  is Gaussian distributed intensity,  the Fourier

transform of a Gaussian function is Gaussian. So, that means, in this case also I am getting

that  Gaussian distribution  here,  the third example  I  am considering two identical  objects

placed in different spatial position and corresponding to this if you see this here, this object is

placed here, this object is placed here, corresponding to this I am getting the exactly the same

Fourier spectrum, the Fourier spectrum I am getting.



And in our  last  example,  I  am considering  the rotation  invariant  property of the Fourier

transform. So, this object is rotated, if you see, then in this case, if it is rotated, the Fourier

transform  is  also  rotated  that  is  called  the  rotational  invariant  property  of  the  Fourier

transform.

So, up till now, I discussed about the concept of the Fourier transform. The Fourier transform

is quite important to see the frequency component present in the signal. So, in an image, I

have the high-frequency information and another one is the lower frequency information. So,

in my next class, I will discuss another important information that is the Discrete Cosine

Transformation.

And also, I may discuss the fundamental concept of the KL transformation. In case of Fourier

Transform and in case of the DCT, the transformation kernel is fixed. But in case of the KL

transformation, the transformation kernel is not fixed; it depends on the statistics of the input

data. So, next class, I will discuss about the DCT and the KL transformation. So, let me stop

here today. Thank you.


