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Hello students, welcome to lecture 10 on Estimation theory 2 it will cover MVUE and Cramer 

Rao lower bound. Let us recall the observed random data X1, X2 up to XN are characterized by 

a joint PDF with depends on some unobserved parameter theta and estimator theta hat X is a 

function by which we guessed about the value of the unknown parameter theta. So, 

corresponding to suppose random data we have a PDF, which is characterized by a parameter 

theta. And estimator theta hat X is a function by which we guessed about the value of the 

unknown parameter theta.  

 

An estimator theta hat of parameter theta is unbiased if E theta hat = theta. So, this is the 

requirement for an unbiased estimator. A minimum variance unbiased estimator MVUE has the 

lowest variance in the class of unbiased estimators. So this is 1 of the important estimator that is 

minimum various unbiased estimator MVUE and theta hat that is estimator theta hat is called 

consistent if this probability of m arbitrary there is summation goes down to 0 as N tends to 

infinity.  



 

So, this is the definition of consistent estimator. Eventually as we have more and more data, theta 

as will grow more and more close to theta that is the interpretation of consistent estimator. If 

theta had this unbiased and limit of variance of theta hat = 0 then theta is consistent that is a 

simple test for consistent estimator when theta is unbiased. The mean square error MSE of an 

estimator is given by this MSE = E of theta – theta hat whole square and minimizing the MSE is 

an important estimation criteria.  
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This lecture will revisit the MVUE property and discuss 1 of the important bounds on the 

variance of the unbiased estimators the Cramer Rao lower bond it is abbreviated as CRLB.  
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Minimum Variance unbiased estimator that is MVUE recall that variance of theta as it define it 

as E of theta - theta hat whole squared. We can write it as theta hat - theta, but it does not matter. 

I mean both where we can write theta hat is an MVUE if E of theta hat = theta and variance of  

theta hat is less than equal to variants of theta hat depth where theta hat depth is any other 

unbiased estimator of theta MVUE also known as the best unbiased estimator because its 

variance is lowest. Therefore it is also known as the best unbiased estimator.  
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We will prove 1 important theorem and MVUE is unique. Suppose theta 1 hat and theta 2 hat are 

2 MVUE for the deterministic parameter theta clearly E of theta 1 hat = E of theta 2 hat = theta 

because of unbiased. Suppose variance of theta 1 hat = variance of theta 2 hat that = sigma 



squared because both have the same minimum variance. So Let that minimum variance the 

sigma squared assume another estimator theta 3 hat which is given by theta 1 hat + theta 2 hat 

divided by 2, then variance of theta 3 hat will be = variance of theta 1 hat + variance of theta 2 

hat + 2 times covariance of theta 1 hat theta 2 hat whole term divided by 4.  

 

Now, this expression is less than equal to variance of theta 1 hat + variance of theta 2 hat + 2 

times mod of covariance of theta 1 hat theta 2 hat divided by 4 because in a number is less than 

equal to its mod value. Now we will apply the Cauchy-Schwarz inequality, then our expression 

this expression will be less than equal to variance of theta 1 hat variance of theta 2 hat + 2 times 

square root of variance of theta 1 hat into variance of theta 2 hat.  

 

Because the magnitude of debt covariance of theta 1 hat theta 2 hat is less than equal to square 

root of variance of theta 1 hat into variance of theta 2 hat this expression is now = sigma squared 

+ sigma squared + this is sigma squared therefore + 2 sigma squared divided by 4, which = 

sigma squared. Therefore, what we have established at variance of theta 3 hat is less than equal 

to sigma squared, but it cannot be less than sigma squared.  

 

Because minimum variance is sigma squared, therefore variance of theta 3 hat is also = sigma 

squared. And if I substitute this value in this expression, then we will get that covariance of theta 

1 hat theta 2 hat is also = sigma squared. So, if there is another estimated theta 3 hat, which = 

theta 1 hat + theta 2 hat divided by 2, then its variance is sigma squared. And this source that 

covariance of theta 1 hat theta 2 hat must be = sigma squared.  

 

And now, let us examine these expression variance of theta 1 hat – theta 2 hat this will be = 

variance of theta 1 hat + variance of theta 2 hat - 2 times covariance of theta 1 hat theta 2 hat. 

Now, subsidiary the value will get this is sigma squared, this is sigma squared and this is sigma 

squared. Therefore this expression will be = 0 that is variance of theta 1 hat - theta 2 hat = 0. This 

implies that theta 1 hat must be = theta 2 hat with probability 1. Therefore an MVUE is unique, 

minimum variance unbiased estimator is always unique. The uniqueness of MVUE makes it the 

most desirable estimator.  
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Now we will discuss Cramer Rao lower bound CRLB the joint PDF or the joint PMF of the 

random vector X that is X1 X2 up to XN transpose determines the minimum variance the joint 

PDF will only determine the minimum variance of that hat is a function of this random this 

random variables. Let f x theta that = small f PDF X1 X2 up to XN; theta that is a it is a function 

of theta be the joint PDF which characterizes the random data vector x.  

 

This function is also called likelihood function. So, this is the likelihood function, which is a 

function of theta and we denoted by this is the likelihood function. Now, if we take the logarithm 

capital L x theta that is the log of this likelihood function is called a log likelihood function. 

Now, we define a term known as Fisher information statistics I theta is the expected value of del 

L del theta whole square.  

 

So, we take the partial derivative of L with respect to theta and then take square then they 

variance value of that quantity is a measure of average information and it is called Fisher 

information statistic like any information, whether it is also positive and we can solve that it is an 

increasing function Cramer Rao theorem gives a lower bound of the variance of an unbiased 

estimator theta hat in terms of I theta.  

 



So, the lower and the lower bound in the variance will be given in terms of I theta. So, we have 

discussed what is I theta that is the information Fisher information statistics that is E of del L del 

theta squared. 
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Suppose, theta hat is an unbiased estimator of theta and f x1 x2 up to xN theta satisfies the 

following regularity condition likelihood function satisfies the following regularity conditions. 

That is theta lies in open interval D theta there is an interval D theta on which theta is defined. 

The support chi, this is defined by x1, x2 up to xN such that this likelihood function is greater 

than 0 wherever likelihood function is 0, that support does not depend on theta.  

 

So essentially we will be using a integration that limited integration does not depend on theta del 

L del theta partial derivative of L with respect to theta exist and is finite so these 3 are the 

regularity conditions under the above regularity conditions, variants of theta hat is greater than 

equal to 1 by I theta where I theta is the Fisher information statistic the equality of CR bound, 

this is the Cramer Rao bound the equality of CR bound holds if del L del theta = scalar multiple 

of theta hat - theta where c is a constant scalar it may be a function of theta, but it does not 

involve theta hat.  

 

So, these regularity conditions are purely general it is not very restrictive and under this 

regularity conditions Cramer Rao theorem is variance of theta hat is greater than equal to 1 by I 



theta the equality holds when the partial derivative of log likelihood function can be written in 

this policy into theta hat - theta.  
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We will try to prove this theorem. The proof of CR theorem is based on simple calculus and the 

Cauchy Schwartz inequality that is a very important inequality, we have discussed about this 

earlier and this inequality is given by in norm product this is in norm product magnitude of the in 

norm product square is less than equal to norm of a squared into norm of b squared, where 

equality holds when a = c times b where c is any scalar.  

 

So, this is the statement of Cauchy Schwartz inequality in the case of square integrable functions 

on the real line, we can apply this CS inequality Cauchy Schwartz inequality to get this 

relationship that is integration from - infinity to infinity f 1 x into f 2 x dx whole squared. This 

was relation = integration - infinity to infinity f 1 squared x dx integration - infinity to infinity f 2 

squared x dx. So, this is the Cauchy Schwartz inequality in terms of 2 functions.  

 

So, here this in norm product is defined in terms of this integration and norm is defined by this 

integration. So, that way this is the result we get and this result will be using for deriving the 

processor inequality also in the case of 2 functions, the equality that is, this quantity will be equal 

to product of this only when 1 function is a scalar multiple of the other function.  
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Now will prove this theorem theta hat is an unbiased estimator of theta. This expression actually 

this is E of theta hat - theta must be = 0 so that if we write in terms of the definition. So we will 

get integration - infinity to infinity theta hat - theta into f of x theta dx = 0, this dx is a vector so 

this integral actually this is a multiple integral. So we have supposed and variables x1, x2 up to 

xN then this is an N holds integration.  

 

Now, since the limits of integration do not involve theta, we can take this partial derivative inside 

here it was outside the integration now we can take it inside del theta of theta hat - theta into f x 

theta dx, that must be = 0. This x is a factorial now since this is a product of 2 functions, we can 

apply the product rule and we will get integration - infinity to infinity theta hat - theta into partial 

derivative of f x theta with respect to theta into dx.  

 

Now theta hat - theta will have a partial derivative - 1 that way - integration - infinity to infinity, 

f of x theta dx must be = 0. So this is thus applying differentiation we get this. So we will take 

this quantity right hand side. So that way it will become positive and then also I know that this 

integration = 1. Therefore, this quantity integration theta hat - theta into del del theta f of x theta 

dx that must be = 1 this result is very important for us.  
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Now, we have established that integration - infinity to infinity theta hat - theta del del theta f of x 

theta dx that = 1 this is supposed to call this expression as 1 note that this partial derivative del 

del theta f x theta that is equal to we can write in terms of log likelihood function like this log of 

del del theta of f of x theta into f x theta. So, this will be same as this quantity because 1 by f x 

theta will come and that and this will get cancelled.  

 

So, that way this expression can be rewritten as this so that del theta of f x theta is same as del L 

x theta del theta into f x. So this is 1 important derivation. Therefore, this expression 1 can read 

as now integration - infinity to infinity theta hat - theta into del L x theta del theta into f x theta 

dx = 1. So, this is the modified form of this equation our aim is to apply the Cauchy Schwartz 

inequality to the left side of this expression.  

 

So, that way we Cauchy Schwartz this expression if I squared then also this will be = 1. Now, we 

have to write it as a product of 2 functions. And since this quantity is greater than equal to 0. We 

can take this square root and that way we can write it in terms of 2 function 1 is theta hat - theta 

into root over f x theta and other 1 is that partial derivative of L x theta into square root of; f x 

theta dx, so that way we have 2 functions.  

 

So this expression is rewritten as integration - infinity to infinity integration from - infinity to 

infinity of theta hat - theta in to root over f x theta into del del theta of L x theta into root over f x 



theta dx whole squared = 1. So, we have a known to product up to functions suppose if I call this 

as a, this is supposed this = a vector and this is b vector, this part is b vector, this part is a vector 

and this part is b vector, then we can apply this CS inequality.  

 

So, therefore, this is the inner product of 2 functions squared. So, that way this squared must be 

less than equal to if I consider the individual function norm of individual function, this will be 

integration - infinity to infinity theta hat - theta whole squared, this is theta hat – theta whole 

squared and this is square root of f x theta therefore, squaring will get f of x theta dx. So, this is 

part and first norm square and norm of the second function square will be integration from - 

infinity to infinity del L del theta whole square into f x theta dx.  

 

So, by definition, this is the variance of theta hat and this part is the Fisher information statistics, 

so, variance of theta hat into I theta so this because this expression is = 1, therefore, 1 must be 

less than equal to variance of theta hat into I theta. So, from this now we will get that variance of 

theta hat is greater than = 1 by I theta.  
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So does we have variance of theta hat is greater than = 1 by I theta the equality will hold when 1 

of the function that is suppose pulse function del L x theta del theta into root over f x theta that 

must be multiple of the other functions 3 times theta hat - theta into root over f x theta that is the 

condition for equality indicates of Cauchy Schwartz inequality. So, since this quantity, actually 



we want this to be greater than 0 in the region of support, that is the regularity condition 

therefore, we can cancel this to quantity.  

 

So what we will get this equality will hold when del L del theta = c times theta hat - theta. This is 

the condition for equality where c is independent of theta hat it is a scalar actually. And may be a 

function of theta c maybe a function of theta but c does not involve x or c does not involve to the 

hat. Now to find c if we take this square of this and they take the expectation then E of del L del 

theta whole square will be = c square times E of theta hat - theta whole square.  

 

So, that way c square will be equal to this divided by this E of del L del theta whole square 

divided by E of theta hat - theta whole square. This is the variance and this is the important 

statistics. So, that way I theta divided by variance of theta hat, so, c square = I theta divided by 

variance of theta. So, this scalar c is given by this.  
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Now, we know what is I theta but there is a better expression algebraically for I theta that we can 

derive now, that is integration of f dx = 1, then PDF likelihood function degraded to dx must be 

= 1. This implies that partial derivative of this quantity must be = 0. Again, under the regularity 

conditions, we can take this partial derivative inside therefore del del theta of f x theta dx. 

Integrating from - infinity to + infinity must be = 0.  

 



Now this we can write as this quantity, now we can write in terms of log likelihood function. So 

that way del so integration - infinity to + infinity, del L del theta into f dx that must be = 0. This 

is the expression we get from here, just violating this expression in terms of log likelihood 

function as we did earlier. So, now, what does this expression implies that expected value of the 

partial derivative of log likelihood function is always = 0 this is also 1 important result.  

 

But we are interested to the second partial derivative therefore, will again take the partial 

derivative of this expression that way will get, because now it is a product of 2 functions. So, if 

we take the partial derivative with respect to theta again and of course them that this partial 

derivatives exist. So, second order partial derivative of L with respect to theta into f x theta that 

is a part term plus again this term is into partial derivative of this so a known this again we will 

be writing in terms of log likelihood function that way we will get this square here into f x theta 

dx.  

 

So, from this expression now, if I consider this is nothing, but the expected value of this quantity 

and if I consider this is the expected value of this quantity. So, that way what I get is that because 

I know that expected value of this quantity this quantity is the information so, therefore, I theta = 

E of this quantity and that must be equal to if I take this quantity and said it will be negative, so 

that way - E of del square L del theta square.  

 

So, - E of del square L del theta square so that way this information statistic I theta can be 

expressed in terms of the second order partial derivative that is the whereas value of the second 

order partial derivative with a negative side and compared to taking the square of the partial 

derivative and then expected value this expected value is easier to compute.  
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So, therefore, you can write Cramer Rao lower bound for variants of theta = 1 by I theta that we 

have already established that = - 1 by E of del square L del theta square. So, that way we can 

simplify this expression and also we have a establish is that CRLB is released if this part of that 

partial derivative del L del theta = c times theta hat - theta. So, this is the Cramer Rao lower 

bound given by this expression and this CRLB with this, if this likelihood function satisfy this 

relationship.  
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Let us make some important remarks CRLB specifies the optimal bound that we can hope to 

achieve in terms of the variance of an unbiased estimator, it is an optimal bound. However, this 

bond may not always be achieved that is a now we may not release this bound if theta hat 



satisfies CRLB suppose we have an estimator with reset this CRLB then theta hat as is an 

MVUE because it is variance will be minimum we cannot have variance lower than that so, theta 

hat in that case is an MVUE and also called an efficient estimator. That we have defined earlier 

we have derived CRLB we using continuous random variables.  

 

So, because we derived assume in joint PDF, but the same can be derived for discrete random 

variables by replacing the PDF by PMF. And using this same regularity conditions so that way, 

CRLB is more general than what we derive here. It is true for both continuous and discrete 

random variables.  
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Further suppose X1 X2 up to XN are iid independent an identically distributed then suppose if I 

consider only 1 random variable I 1 theta = E of by definition, partial derivative of likelihood 

function whole square and that is also = - E of del 2 del theta square of log likelihood function. 

So that we have already established this therefore, if there is only 1 variable here I 1 theta I can 

write log this.  

 

Now I theta is a is log of satisfies we have to take the del 2 del theta square of log likelihood 

function of N random variables. So, now this joint PDF we can write in terms of marginal PDF 

like this like product of N marginal PDF. So, that way this will be del 2 del theta square of log of 

product of N marginal PDF f x I theta. And this product now we can because it is logarithm of 



the product we can write it as this term of logarithm so that way del square del theta Square of 

summation i going from 1 to n log likelihood functions ln f xi theta.  

 

Now this we can take inside this. So that way and all are identical all random variables are 

identical therefore they will have the same in summation that is I 1 theta therefore, it will be and 

there are N such as variables therefore it will be N times I 1 of theta so that way if X sides are iid 

independent and identically distributed, then and the pisser information statistic part is N random 

variables equal to N times the information statistic per single random variable. So, that is the 

result for iid this otherwise, if only independent then we have to add all this all in permission we 

have to it that is the additivity property of information.  
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We will give 1 example suppose X1 X2 XN are iid Gaussian with known variance sigma squared 

and unknown mean mu. Suppose mu hat = this summation Xi, i going from 1 to N divided by N 

this is the sample mean which is unbiased to have already proved. Find CR bound enhance so, 

that mu hat is an efficient estimator. So, f is the likelihood function log likelihood function for 

single variable it will be like this we are taking the logarithm therefore, it will be - half this 

because it here, 1 by is there and then – half of x1 - mu by sigma whole squared now we have to 

take this second partial derivative.  

 

So, only this term will involve x mu therefore, we take the partial derivative and then again 

derivative will get this = - 1 by sigma. Therefore, second order partial derivative del 2 L del mu 



square will be = - 1 by sigma square because this is this expression only  involved mu if you take 

twice derivative then it will be so, mu will not be there, so, it will be simply 1 divided by sigma 

squared.  

 

Therefore, I 1 theta if I consider only 1 random variable x1 then it information will be = 1 by 

sigma squared and since exercise are iid therefore, I theta will be N times I 1 theta that is equal N 

by sigma square therefore CRLB Cramer Rao lower bond = 1 by I theta that = 1 by N by sigma 

squared, that is sigma square by N. So, this is the Cramer Rao lower bound.  
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Same example, we are considering so, now, again we consider this likelihood function, this is 

given by this and if we take the log likelihood function is given by this and now, let us take the 

first derivative first partial derivative. So, this quantity will be equal to and that is del L del mu 

will be equal to summation because we will take the personal derivative of this 2 and 2 will get 

cancel so, that was summation x i - mu by sigma i going from 1 to N that is the partial derivative 

of the log likelihood function.  

 

So, now here sigma is there this sigma I will take out and I will write N here and divided by N 

here. So, that this expression can be simplified as N by sigma into mu hat - mu. So, we have seen 

that del L del mu that is the first partial derivative of log likelihood function is a product of 1 

constant term and by sigma into mu hat - mu. Therefore, according to the equality condition of 

Cramer Rao theorem mu hat will receive reaches CRLB. So, because this partial derivative is for 



log of this specter mu hat - mu and then scalar therefore mu hat reaches CRLB and hence mu hat 

is an efficient estimator.  
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Let us summarize the lecture the uniqueness of MVUE makes it the most desirable estimator. So, 

that uniqueness, we establish L x theta that = log of the likelihood function is called the log 

likelihood function mischaracterizes the observed data I theta that is the Fisher information 

statistic that = E of del L del theta squared and also related as I theta also we expressed theta = – 

E of del square L del theta square Cramer Rao theorem that also we established for an unbiased 

estimator theta hat under certain regularity conditions, variance of theta hat is greater than equal 

to 1 by I theta is given by this Fisher Information statistics. 
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Thus CRLB Cramer Rao lower bound of variance of theta hat is 1 by I theta that is the bound and 

that = - 1 by expected value of del 2 L del theta square CRLB is released if this partial derivative 

of log likelihood function is a product of c and theta hat - theta where is a constant. If theta hat 

reaches the CRLB then theta hat is an MVUE so that is very important. So, our MVUE and if 

theta as reaches Cramer Rao lower bound then it is an MVUE and therefore, it will be an 

efficient estimator. Thank you. 


