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Hello students will to this review lecture to in this lecture I will briefly review the signal 

estimation by optimal linear filters. We discussed optimal linear filters then adaptive 

implementation adaptive filters and Kalman filters, we will briefly discuss those. 
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Wiener filter assumes a linear filter structure for the estimator and estimate the filter coefficients 

by applying the minimum mean square error principle. So, Wiener filter already is a linear filter 

structure this is Xn is the signal Vn is some additive white noise Yn is the observed signal it is 

passed through this linear filter we get the estimated signal. This estimated signal should be 

optimum under the minimum mean square error criterion with this linear filter structure. 

 

Given random observations Y n - M + 1 Yn - M + 2 up to Yn and then upto Y n + N so we have 

a block of signal from time instant n - M + 1 to n + N. So, for this duration signal is available our 

minimization problem will be now minimize E of Xn - this filter output that is summation hi into 

Y n - i Yn is input signal i going from - n to M - 1 whole Square this we have to minimize over 

hj j going from - n to M - 1 and we derived a Wiener Hopf equation corresponding to this if we 



differentiate with respect to E sub h i it is E sub hj we get Weiner Hopf equations given by Rxy j 

is equal to summation hi into R Y j - i i going from - n to M – 1. 

 

We discussed the FIR Weiner filter FIR Wiener filter here we have to minimize filter is X hat n 

is equal to summation hi into Y n - i i going from 0 to M - 1 this is the M type a fire filter we 

considered and the filter parameters were obtained by applying the orthogonality principle what 

was that E of signal minus the filtered output that is hi into Y n - i i going from 0 to M – 1, so 

this is the error, this error is orthogonal to data the Y of n - j that is equal to 0. 

 

So from this, this is the orthogonality condition from this we will get that R XY of j is equal to 

summation hi into R Y of j - i i doing from 0 to M - 1 so R X sub j is equal to summation hi into 

R Y of j - i i going from 0 to M - 1 that is true for j is equal to 0, 1 up to M - 1 because these are 

our data point. So, that way this Weiner Hopf equation we derived for a fire filter. And similarly 

minimum mean squared error also we can find out MMSE minimum minimum mean square you 

know that is given by E of e square n and this is same as E of X n - summation hi Y n - i i going 

from 0 to n – 1 this is the error into X of n. 

 

So because remaining data are orthogonal to this error so that way we got it as R X of 0 - 

summation hi into R Y of i i doing from 0 to M - 1 so this is the minimum mean square error. 
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We also considered it non-causal I our Wiener filter in that case impulse response sequence is 

infinite therefore X of n is equal to summation hi into Y n - i i going from minus infinity to plus 

infinity. So, in this case the mean square error will be E of Xn - summation Delta into Y n - i i 

going from minus infinity to plus infinity whole Square and this mean square error we have to 

minimize with respect to each hj. 

 

Again we apply the orthogonality principle, what is orthogonality principle? Error is orthogonal 

to data E of Xn - summation hi into Y n - i i going from minus infinity to plus infinity this is the 

error is orthogonal to Delta Y of n - j j going from minus infinity to plus infinity so this must be 

equal to 0. So, this is the orthogonality condition and this orthogonality condition will give us 

that is R XY of the j E of Xn into Y n- j that will be R XY of j that will be equal to this 

summation hi into Eof Y n - i into Y n - j that will be R Y of j – i. 

 

So that we summation hi into R Y of j - i i going from minus infinity to infinity that will be equal 

to R XY of j this is the Wiener Hopf equation which is obtained by applying the orthogonality 

principle and here we have two sequences hi is known to be a two-sided sequence because 

impulse response is from minus infinity to plus infinity and autocorrelation function is also a 

two-sided sequence therefore we can perform convolution and then solve this problem in that 

from domain. 
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So noncausal IIR Wiener filter is therefore given by hj controlled with R Y j is equal to R XY j j 

are going from minus infinity to plus infinity then applying that transform we will get this is that 

H sequence transfer function is Hz here S yz is equal to S XY z, so from this we get that it 

transfer function of the noncausal Wiener filter is given by Hz is equal to S XY z divided by S Y 

z that cross power spectral density divided by the power spectral density of Y. 

 

And once we have Hz we can apply inverse transform to point hn. Now how to find out the MSE 

again same orthogonality principle we can apply that is E of MSE is equal to E of en is Xn - 

summation hi into Y n - i i going from minus infinity through infinity into Xn because remaining 

part of the error will be orthogonal to this part so because the remaining that apart will be their Z 

part will be orthogonal to this error therefore only this expression will come and that is equal to 

R X of 0 first term and remaining term will be summation hi into R XY i i going in from minus 

infinity to infinity that is R X of 0 - summation hi R XY cross-correlation i going from minus 

infinity to plus infinity. 
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Then we discussed Causal Weiner IIR filter in this case the estimator X of n is given by X of n is 

equal to summation hi into Y n - i i going from 0 to infinity because the filter is causal this filter 

sequence is defined from i is equal to 0 to infinity so that way it is causal. And the mean square 

error is given by E of e square n that is E of Xn - X hat n whole square and this is to be 

minimized with respect to all hi’s. 



 

So Weiner Hopf equation again here is given by E of error is orthogonal to data that is Xn - 

summation hi Yn - i i going from 0 to infinity into error is orthogonal to data Y of n - j j is equal 

to 0, 1 up to infinity so that way we will get first term will be R XY j and then remaining term 

will be summation hi i going from 0 to infinity into R Y j – i. So, if I take the difference between 

this and this will get j – I, so that was same as hi into R Y j - i i going from 0 to infinity is equal 

to R XY j. So, this is the winner Hopf equation corresponding to Causal IIR Weiner filter. 

 

So now you know that here is hj j is equal to 0 to infinity is a right-sided or causal sequence but 

RY here is 2 sided sequence RY is two sided sequence therefore direct convolution is not 

possible so therefore which cannot be solved directly in the transform domain. And now we will 

apply the spectral factorization theorem to the power spectral density of Y that is Sy z is equal to 

sigma V square into Hc z into Hc z inverse so that way we will use this relationship to get it 

whitening filter. 
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So, that we apply the whitening filter H on z is equal to 1 by Hz to generate the innovation 

process so we apply suppose this is my Yn pass it through 1 by Hc z that is the innovation filter 

or whitening filter to get the innovation sequence. And now using this innovation sequence Xn 

now can be estimated using Vn and this was shown this and the corresponding filter is given by 



Hz is equal to 1 by Sigma v square into the causal part of S XY z divided by Hc z inversion this 

is the Wiener filter to estimate Xn from the white noise sequence. 

 

And finally we got the Causal IIR Wiener filter as the Cascade of this filter 1 by Hc z and then 

into H2 z, so Vn is passed through is 2 n this is P n Vn is passed through this H2 z that is the 

filter we have already obtained then we will get this estimator Hz and that way it is cascade of 

two filters one is 1by Hc z and of course this sigma v square is also there 1 by sigma v square 

into; so, spectral factorization gives the whitening filter H1 z is equal to 1 by Hc z. And this 

generates innovation sequence Vn’s of variance sigma v square. 

 

And this innovation sequence is used or used to estimate X of n from Vn so that way the transfer 

function of this filter H2 z which is optimum is given by this expression 1 by sigma v square into 

the causal part of S XY z divided by Hc z inverse. So, this is the Weiner estimator of Xn from 

the Vn sequence. Now once we have this Hz part we can cascade it to 1 by Hc z to get the 

combined Wiener filter. 

 

Therefore Weiner filter will be Cascade of this and this and it is given by 1 by sigma v square Hc 

z into S XY z divided by Hc z inverse and then we have to take the causal part.  
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We considered one application that is linear prediction of signals. The linear prediction problem 

was formulated as follows Y hat n is equal to summation hi into Yn - i i going from 1 to M so 

this is the linear prediction or it is forward prediction problem. Again we apply the orthogonality 

condition that is E of here actual data is Yn and we are predicting Y hat n that is orthogonal this 

is the error is orthogonal to date the data is y of n - j because it is M they are going from 1 to M 

because we are using only past data up to n – M. 

 

So that way from n - 1 to n - M therefore this is the orthogonality relation we get here yn - 

summation Y hat n into Y n - j is equal to 0 you know it is orthogonal to data and from that we 

directly get the Weiner Hopf equation or normal equation and this is given by RY j is equal to 

summation hi into RY j - i i going from 1 to M and this is there are M equations corresponding to 

M values of j. And in matrix notation this equation we write like this. 

 

This is the autocorrelation matrix into coefficient vector is equal to the autocorrelation vector. 

So, this autocorrelation matrix we see that it has very attractive property it is symmetric and it is 

topless. For example this sub diagonal will be same this time it will be same like that, so this is a 

symmetric topless matrix into A specter is equal to R Y vector. And similarly the mean square 

prediction error also can be obtained by applying the orthogonality principle that is MMSPE 

minimum mean square prediction error is given right E of that is error is Yn - summation hi into 

Y n - i i going from 1 to M into yn. 

 

And the remaining part of error that that will include yn - 1 yn - 2 etcetera they are orthogonal to 

this error therefore their contribution will become 0 and we get this on the minimum mean 

square prediction error is equal to E of Yn - summation hi into Yn - i i going from 1 to M into y 

n so remaining term will contribute 0. So, that way it will be equal to R Y 0 - summation hi into 

RY of i i going from 1 to M - 1 so this is the expression for minimum mean square prediction 

error. 
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Similarly we also discussed the backward prediction problem here given Y n Yn - 1 up to Y n - 

m + 1 we predict Y hat n - M so Y hat n - M is summation b Mi this is the backward prediction 

coefficient into Y of n + 1 - i i going from 1 to M this is the backward prediction problem and 

here also we apply the orthogonality again error is orthogonal to data and that we applied there 

are M data y n yn - 1 up to Y n - 1 + M so that way M that are there and corresponding to that we 

will have this Weiner Hopf equations. 

 

And from this Wiener Hopf equation and linear prediction Weiner Hopf equation or forward 

prediction Weiner Hopf establish an important result that is backward prediction coefficient at 

instant i is same as forward prediction coefficient h M M + 1 - i so this is the relationship and 

also we established at backward and forward minimum in mean square prediction errors are 

equal. So, we use this result and also this symmetric topless structure of this matrix to derive the 

famous Levinson Durbin algorithm that we have discussed in detail. 
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We also discussed adaptive filter the basic setup for the adaptive filter is like this, this is Yn is 

the input and this, this filter structure generally it is a FIR filter structure and this is the absorbed 

signal and we get some output here that we call it as d hat n. And there is an reference signal in 

the case of adaptive filter this is dn the we want to match the output of this filter with this dn so 

that way the dn is the desired output which we know somehow and we want to match the output 

of the adaptive filter with this dn. 

 

And whenever there is no matching that error will be there that error is paid back to update the 

adaptive algorithm which will compute the filter coefficients adaptively. So, this adaptive filter 

coefficients will be computed by this adaptive algorithm based on this error en and the input 

signal Yn. And then this updated filter will be used again to filter this yn and to be the estimate 

of the desired signal. 

 

The adaptation of the filter coefficients is based on the error en between the filter output and a 

reference signal dn usually call the desired signal, so the in dn is tricky it depends on this specific 

application. For example we showed how we can choose dn in the case of adaptive channel 

equalization and adaptive system identification. 
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We considered one basic adaptive filter what is known as LMS adaptive filter and it is updating 

rule was this h of n + 1 is equal to hn + mu into en into yn we get this by applying this steepest 

descent algorithm to minimize this cost function e square n, so minimize e square n with respect 

to hi n n is equal to 0, 1 up to M - 1 so this optimization problem when we apply this steepest 

descent algorithm we will get this updating rule. 

 

So this is the LMS updating rule so yn is the input and this is the FIR filter and then d hat n is the 

output and this is compared to digital signal output. This is compared with the desired signal and 

the error is fedback to the LMS algorithm. So, LMS algorithm update the filter coefficient by this 

rule it computes the error you know error is nothing but yn will be filtered at instant n with filter 

parameter of; so I will get d hat n that is summation hi n into yn - i i going from 0 to n - 1 so we 

filter the signal yn with the filter coefficient at instant n. 

 

And then after that we will get the error, error is equal to en is equal to dn - d hat n, so this error 

is used to update the filter coefficient h of n + 1 that is obtained as that previous filter hn + mu 

into en into yn and we discussed several modification of this algorithm that is NLMS algorithm 

leaky LLMS algorithm that is leaky LMS algorithm, then for a efficient implementation will 

consider block LMS algorithm and sign error LMS algorithm. 

 



The LMS is a very simple adaptive filter but problem is how to suit this step length parameter 

mu so this depends on the eigen value of the autocorrelation matrix. Suppose we are filtering it 

WSS signal Y n then the eigenvalues of the corresponding autocorrelation function of yn will 

determine this filter step length parameter. So, that way we establish some relationship that is mu 

should be lying between 0 and 2 by lambda max this type of relationship we establish and then 

also with this chosen mu the LMS adaptive filter will not convert to XL Wiener filter there will 

be always some excess error that excess error will also depend on the parameter mu. 

 

And we also observed that the rate of convergence depends on the eigen value spread. If it is 

high convergence rate will be low and that was a serious problem in the case of LMS filter. 
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And to overcome this we consider the RLS adaptive filter. So, in the case of RLS adaptive filter 

the error is sum square error. We discussed the least square estimation principle same principle is 

applied here also and here the error to be minimized is sum square error weighted by factor 

lambda to the power n – k, so that way the error to be minimizes epsilon n is equal to summation 

lambda to the power n - k into e square k k going from 0 to n. 

 

So from the beginning n is equal to 0 to current n all the errors are considered and this is given 

by summation lambda to the power n - k into dk - y transpose k into h n whole square k going 

from 0 to M and this is important that we are filtering the all the passed signal values which 



respect to hn current estimate of the filter and that way we are determining the error and this 

error are weighted by the what is known as the forgetting factor lambda to the power n - k and 

this lambda lies between 0 and 1. 

 

In the case of WSS signal we can take lambda is equal to 1 and this is used to take care of non 

stationarity of the data. So, for example since lambda is a fraction as n tends to infinity so 

lambda to the power n - k for k is equal to 0 it will become lambda to the power n it will be close 

to 0 when n is large. So, therefore for large value of n it will give less and less weight to the 

previous errors that is the idea behind tackling the non stationarity of the data. 

 

Past errors are given less with present errors are given more weight and that way we derive the 

RLS adaptive filter we got a corresponding normal equation by filtering that is del epsilon n into 

del hn that is equal to 0, so from this we got a matrix normal form of normal equation matrix 

form of normal equation and which is solved by the matrix inversion lemma we go get a 

recursive estimate or using the matrix inversion lemma. 

 

So that way we discussed the RLS algorithm and this RLS algorithm estimates the signal 

estimate the signal recursively. So, it is a recursive least square method. 
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We discussed two form of Kalman filter that is scalar Kalman filter and vector Kalman filter. 

This scalar Kalman filter this uses the applies the model what is the model? Model is AR1 signal 

so Xn is equal to A times X of n - 1 + W n so W n is a white noise and A the constant which is 

known and it can be considered as a function of n so that non stationarity can be tackled. And 

observed data Yn is equal to Xn + Vn. 

 

And we discussed that we derived it derived using the innovation representation that is get the 

innovation what was the innovation in Kalman filter will got it s and that is Yn prediction error 

minus summation hi into Yn - i i going from 0 to n - 1 so this is the prediction error and this 

prediction error we saw that this prediction error is an orthogonal sequence that way we 

generated the innovation sequence. 

 

And we also considered the vector Kalman filter it is a recursive state estimator and uses a state 

space model for the signal that is Xn is equal to An into Xn - 1 + W n if we consider An to be 

time variant then this state space model is Xn that is the signal vector is equal to A n into X of n - 

1 + Wn, Wn is noise known as process noise. And the observed data Yn is equal to Cn a matrix 

Cn is a matrix multiplied by Xn, Xn is the state vector + Vn. 

 

Vn is again another noise vector which is observation noise vector which is uncorrelated with 

Wn and uncorrelated with Xn. So, that where Wn is assumed to be white noise vector does the 

covariance matrix Qw is a diagonal matrix. Vn is also assumed to be a white noise vector with 

covariance matrix Qv further Vn is independent of Xn and Wn. The Kalman filter structure is 

given by this block diagram.  

(Refer Slide Time: 35:33) 



 

So, Yn this is the input signal and this is the output signal and normally we denote it by X of n 

given n estimation of the signal at instant n. And this is delayed by one unit here we will get X of 

n - 1 given n - 1 and then if we multiplied by An matrix we will get the predicted signal. So, this 

is the X of n given n - 1 this is the predicted signal. Now to get the estimate we use this predicted 

signal in the observation equation there is a multiplication of Cn and this state vector. 

 

Therefore this predicted state vector is multiplied by Cn and we will get this predicted input 

vector this is the predicted input. So, Yn we are predicting here this prediction will result error 

that is the prediction error this is the innovation, so this is the innovation output. And this 

innovation output is scaled by the Kalman gain and then this corrected value this part is the 

correction term and this correction term will be added to the predicted value. 

 

So this X of n given n - 1 plus this below that is kn n times y tilde n that will be added and we 

will get X of n given n, so that way we see that here there is a prediction part and there is a 

correction part that collection part is obtained by passing the predicted signal through that output 

matrix multiplier and then we get the predicted input that predicted input is subtracted from the 

input and we will get the innovation and this innovation is used to forget that collection term. 

 

This innovation is used to get deep correction term that way Kalman filter is a prediction 

character filter. I will conclude my lecture here and this is the end of the course I hope that this 



course gave you a background on statistical signal processing. There are advanced techniques of 

statistical signal processing which was not possible to cover in this course, thank you.  

 

 


