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Hello students. Welcome to this lecture on Recursive Least Squares, Adaptive Filter. Let us 

recall the. The LS estimation problem for signal estimation by adaptive filter is, this is the 

problem, minimize the weighted sum square error given by summation lambda to the power n - k 

into dk – y transpose k into h n whole square, k going from 0 to n with respect to the filter 

parameter h n. So we have to minimize this weighted sum square error with respect to the filter 

parameters. And here dk is the desired signal and yk is the input signal. 

 

The minimization gives the normal equation for the LS estimation and this is given by this 

equation, summation lambda to the power n – ky vector into yk transpose, k going from 0 to n 

into h n vector is equal to summation lambda to the power n – k into dk into yk vector k going 

from 0 to n. And this we write in usual notation that is R y hat n for this into h n rd y hat for this 

expression so is equal to rd y hat n. 

 



This solution, this is the normal equation and we can solve it by matrix inversion. H n is given by 

ry hat inverse n into small r dy hat n, so this is the inverse of the estimated autocorrelation 

function and this is the estimated cross correlation function. The RLS algorithm finds the above 

inverse this inverse recursively. 
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Let us recall the RLS algorithm. It is initialized this P matrix P of -1 = 1 / delta into identity 

matrix where delta is a small positive number and filter coefficients are initialize 0, we have to 

choose a proper value of lambda around 195.98 .99 like that. Now for n = 1 or 0 we will carry 

out these computations; first get dn, yn get dn and yn. This is the desired signal and this is the 

input vector. 

 

Compute the filter output d hat n is equal to that is previous filter estimate into yn vector. Then I 

will compute e n is equal to dn – d hat and d hat n we have computed dn is here, so we have to 

find out the error. Next step is to calculate the gain vector kn, kn is given by P n - 1 into yn that 

is the current data, P matrix into current data divided by lambda + y transpose n into P n - 1 into 

yn. So this is the current data, current data and past estimate of the P matrix. 

 

Then we will update the filter parameters by this relationship h n is equal to h n - 1 + kn times e 

n, so kn is the gain vector. Once we have calculated the filter coefficient we have to update the P 



matrix and this is given by P n = 1 by lambda times P n - 1 - kn into yn transpose into P n - 1. So 

this is the update equation for the inverse of the autocorrelation matrix. 
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This lecture will discuss the properties of the RLS filter and illustrate two applications of RLS 

adaptive filters. 
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Let us first see the relation of the RLS adaptive filter with Wiener filter. We have the optimality 

condition for RLS filters given by the normal equation that is R y hat n matrix multiplied by h n 

vector is equal to cross correlation vector that is R dy hat n. So where R y hat n is given by this 



relationship with a sum of yk into yk transpose yk into yk transpose is a matrix, so this matrix for 

different instant k are summed up. 

 

Similarly, r dy hat n is equal to summation lambda to the power n - k into dk into yk, k going 

from 0 to n. Here dk into yk is a vector and this vector summed up for different values of k and 

we get this estimate. Under stationary condition, we take lambda is equal to 1 dividing by n + 1 

this expression if we divide this expression by n + 1 we get R y hat n divided by n + 1 is equal to 

summation yk into yk transpose k going from 0 to n divided by n + 1 so this is the expression for 

R y hat n divided by n + 1. 

 

Now if we consider the elements of R y hat n by n + 1 we see that it is an estimator for the 

autocorrelation of specific lag. So for example the first element of this summation will be yk into 

yk, this will be the first element, summation k going from 0 to n and then divided by n + 1. So 

this will be the estimate for the variance. So this will be Sigma y square hat, so that way all the 

elements of this R y hat matrix divided by n + 1 will be the corresponding autocorrelation 

function at specific lag. So this is important observation. 
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Under stationarity assumption this matrix divided n + 1 as limit R y hat n divided by n + 1 as n 

tends to infinity will be R y. This is because the sample autocorrelation function is a consistent 

estimator of the true autocorrelation function under stationarity assumption. Similarly limit of r 



dy hat n divided by n + 1 as n tends to infinity will be d cross correlation vector r dy. Hence as n 

tends to infinity optimality condition can be written as R y matrix into h = r dy vector. That is, 

this is the Wiener of equation for the Wiener filter. Thus if the data is stationary the algorithm 

will converge to the Wiener solution. So this is important of the result.  
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Next we will see dependence on the initial values of P matrix. Because we initialize P matrix 

here P of -1 is equal to 1 by delta into identity matrix where delta is a small positive number. 

Consider the recursive relation that is R y hat n is equal to lambda times R y hat n - 1 + yn into 

yn transpose corresponding to the initialization R y hat inverse, - 1 is equal to delta I that is the; 

that is P of + - 1 is equal to delta I. This is P of - 1 is equal to delta into identity matrix. 

 

So corresponding to R y hat inverse at point -1 is equal to delta I we have, so inverse is delta I, so 

R y hat at point - 1 will be I by delta. With this initial condition the matrix difference equation 

that is the difference equation corresponding to the recursive estimation of autocorrelation 

function. So the matrix differential equation has this solution like this; R tilde n because we are 

assuming this initial condition is equal to lambda to the power n + 1 into R y hat - 1. 

 

So this is the initial condition plus summation lambda to the power n - k into yk into yk 

transpose k going from 0 to n, so these we can write like lambda to the power n + 1 into R y hat -

1 plus this is by definition R y hat n. So this will give us lambda to the power n + 1 into I by 



delta into R y hat n. So because of the; this initialization we have an additional factor like this. 

Now our autocorrelation at different instant will be given by this expression lambda to the power 

n + 1 into I / delta plus actual estimation R y hat n. 

(Refer Slide Time: 12:19) 

 

Hence the optimality condition of normal equation is modified to this; that is lambda to the 

power n + 1 into I / by delta + R y hat n into h tilde n must be equal to R dy hat n. So this is the 

modification in the left hand side because of the initialization of the P matrix as delta into I. So 

this is the modified normal equation where h tilde n is the modified solution due to the assumed 

initial value of the P matrix. 

 

Now taking the inverse, so this we get pre-multiplying R y inverse n. So we are pre-multiplying. 

Here, so R y hat inverse n; here we are pre-multiplying this will be now identity so h tilde n will 

be there and here pre-multiplied by R y hat inverse then we will get h n. So that way this 

relationship we get. Now if we take lambda less than 1, lambda is less than 1 then the bias term 

this is the bias term in the left hand side of the above equation will be eventually die down as n 

tends to infinity. 

 

This term will become 0 because lambda to the power n+1 will become 0 as n tends to infinity. 

And we will get h tilde n is equal to h n. So therefore, because of this initialization we have taken 

that is R y hat inverse n - 1 is equal to delta I. So this will not affect the solution. So ultimately, 



we will get h tilde n = h n. Unlike the LMS filter, the convergence is less sensitive to Eigen value 

spread; we will not; one more thing that unlike the LMS filter the convergence is less sensitive to 

Eigen value spread, this can be soon but we are; we take this as a result. This is a remarkable 

feature of the RLS algorithm. So we also note this, we note. Unlike the LMS filter the 

convergence is less sensitive to Eigen value spread.  And this is one of the remarkable property 

of RLS algorithm. 
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Next we will consider taking up non-stationarity. If lambda is small lambda to the power n - 1 

will be approximately equal to 0 for i must less than n, suppose for smaller value of i compared 

to n lambda 3 power n - 1 will be approximately 0. This implies that the filter is based on the 

most recent values only; because we are weighing every error by lambda require n - i therefore 

the filter will be based on the most recent values. 

 

This also qualitatively explains that the filter can track non-stationarity in data. So this is one 

important factor that because of this forgetting factor RLS filter can track non-stationarity in 

data. The rapid rate of convergence of the algorithm ensures that the algorithm tracks rapidly 

varying data. This is another observation; the rapid rate of convergence of the algorithm ensures 

that the algorithm tracks rapidly varying data. Thus, the RLs adaptive filter is preferred when the 

input data have rapid variations. So under this situation where input data have rapid variations 

RLS adaptive filters are prepared.  
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Next let us see the computational complexity of RLS filter. Several matrix multiplications result 

in a complexity proportional to M squared. This is the complexity; it is proportional to M 

squared because of different matrix multiplications involved in the algorithm. This complexity is 

quite high if the filter tab-length is high because it is M square so this complexity is high. So we 

have to go for faster versions of RLS algorithms. There are several faster RLS algorithms like 

the latest RLS adaptive filter. 

 

Another disadvantage of the RLS algorithm is its sensitivity to round-off errors. So because of 

the recursive nature of estimation the errors accumulate during recursions and may lead to 

instability of the algorithm. So this is one drawback and another drawback is the computational 

complexity. 
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Thus, we have seen that RLS adaptive filter has a better convergence characteristics compared to 

LMS filters but it has higher computational complexity. Let us consider one example. Adaptive 

linear prediction; consider the AR 2 signal decision AR 2 signal; Yn = 1.72Y n - 1 – 0.81Y n - 2 

+ Wn where Wn is a zero-mean unity variance white noise process. This is a auto regressive 

process of order 2 and the second-order linear predictor for this signal is given by this; Y hat n = 

h1 into Yn - 1 – h2 into Y n-2.  

 

So this is the linear predictor. And under optimality condition we can show that this linear 

predictor is equal to same as this AR process terms, so that way Y hat n = 1.71Yn – 0.81 into Yn 

- 2. Here the LP coefficients are to be computed adaptively. 
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And now for adaptive filtering this is y n. Now for linear prediction we have to consider the 

delayed version of this signal, suppose this is delay and this is the delayed version of the signal. 

And this delayed version of the signal is passed through the 2-tap FIR filter for linear prediction. 

So we will get suppose this is d hat n. Now this yn is the desired signal here, so this is the desired 

signal dn = yn. 

 

And this desired signal will be compared with the hat n and the error en will be computed. Now 

we have the adaptive filter algorithm that is RLS algorithm here, RLS algorithm. So this error 

will be passed here and this will be passed to here also and the filter coefficients will be updated 

and the filter coefficients; these are the filter coefficients. So this filter coefficients will be used 

to filter this signal delayed version of the signal to get d hat n.  

 

So this is the implementation of the second-order linear prediction. This is a 2-tap filter and this 

is the delayed version so that it will compute d hat n is equal to some h1 times y n - 1 + h2 times 

y n - 2. So we use RLS algorithm and we have to initialize lambda, lambda we use 0.98. And 

similarly the P matrix is initialize suppose P of -1 is equal to delta, delta we can take about 0.01 

into identity matrix. This is a 2 / 2 identity matrix. 
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So with this if we run the RLS algorithm then the solution will look like this. So this is the 

desired signal is this blue is the desired signal and red is the prediction using RLS filter of 

lambda is equal to 0.98. And we see that initially there is mismatch but as n increases the 

predicted value and the desired value of the signal are very close, they are almost matching. 
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We will consider second example, example 2; this is the example 2. System identification, you 

are given a 6 length FIR system with unknown parameters. We know it is FIR system but 

parameters are unknown, identify them; we have to identify them. Suppose this system is given 

by this, we are considering system, FIR system H z is given - 0.00078 + 0.064 into z to the 

power - 1 + 0.4433 into z to the power -2 + 0.4433 into z to the power -3 + 0.064 into z to the 



power - 4 – 0.0078 into z to the power -5. This is the transfer function of the unknown system 

which we want to identify. 
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So this adaptive system is like this. This is the; we have to send a broadband signal usually a 

white noise signal yn is input to both the system and any adaptive filter. Here we consider a 6-

length adaptive filter. This is the 6 length FIR system and if white noise yn is input to both. Now 

the output of the FIR system is dn this is the desired signal and we want to mimic the system by 

this adaptive filter and this adaptive filter output is d hat n. 

 

And this dn and d hat n are compared and the en will be passing through the adaptive algorithm. 

Suppose this is the adaptive algorithm, so this error is sent here and similarly yn will be sent here 

so the adaptive filter will be operating and then this error; this filter coefficient whatever are 

estimated that is paid here. So these filter coefficients are used to filter this signal and if there is 

error this error is again used to update the filter parameters. So this is the system identification, 

system we are using here this 6 length adaptive filter will model 6 length FIR system. Again we 

apply the RLS algorithm here, RLS and we take lambda is equal to 0.98. 
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So these are the simulation result or original system is like this. This is the transfer function of 

the original system and the estimated transfer function using the RLS algorithm we get this H z = 

- 0.078 this is same here also; this is a symmetric filter because of the linear phase so here also - 

0.0078 this is same, similarly this is 0.064 here 0.0645, only difference in the four decimal place. 

 

Similarly, these are equal, this also equal so that way at this RLS filter identify the given system. 

We also examine the convergence characteristics. This is the error, absolute error after each 

iteration and we see that in the case of LMS algorithm with Mu = 0.2 this blue values are the 

error values and these are the error values when RLS with lambda is equal to 0.2 is used. So this 

is RLS so we see that this error is gradually decreasing at a very fast rate. So this is one 

important observation in the case of RLS filter. 
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Let us summarize the lecture; the RLS adaptive filter has several attractive properties. Under 

stationarity of the data the RLS solution converges to the Wiener solution, this is very important. 

Unlike the LMS filter, the convergence is less sensitive to Eigen value spread. This is a 

remarkable feature of the RLS algorithm. Unlike the LMS algorithm, RLS algorithm is 

computationally complex; this is the disadvantage of the RLS filters. 

 

Several matrix multiplications result in a complexity proportional to M square. So this algorithm 

may also suffer instability because of the accumulation of round-off error during recursion. In 

the next lecture we will discuss one more important filtering technique that is known as the 

Kalman Filter. Thank you. 


