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Recall that

% The LMS updates the filter weights according to
h(n+1)=h(n)+ ge(n)y(n)

‘.

% Under independence assumption, the LMS algorithm is convergent in
the mean if the step size parameter 4 satisfies the condition:
Je p< 2
e u Z
£h(n) converges to the corresponding Wiener filter weights.
Under the independence assumption the MSE &(n)convergesif and
only if
2 HA,

0 < u<— and

“nax

]
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Hello students. Welcome to this lecture on Adaptive Filters. Recall that the LMS algorithm
updates the filter with according to this relation h of n + 1 = hn + mu times en into yn yn is
the data vector, en is the error and hn is the filter coefficient at instant n. Under the
independent assumption the LMS algorithm is convergent in the mean if the step size

parameter mu satisfy this conditions we know that mu < 2/lambda max.

And E of hn converges to the corresponding Wiener filter weights as hn tends to infinity E of
hn converges to the corresponding Wiener filter weights. Under the independent assumption
the MSE epsilon n converges if and only if again first condition is like this mu < 2/lambda
max and the second condition summation mu lambda i/2 — mu lambda i, | going from 1 to m
<1
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Recall ...
% Convergence of the LMS algonthm 15 slow when the eigenvatue spread of the

antocorrelation matix is krge

A

% The misahusiment factor

im"- % ]; alrace(Ry)

& -
e

8 large unless g 18 much simaller

i lecture will cover vimunts of the TMS algonithm addressing the above issies
This Jecture will 15 of the TMS algonithm addressing the o

We will also seetwo simplifications of the LMS algorithm for faster implementation.

We also noted that the convergence of the LMS algorithm is slow when the eigenvalue
spread of the autocorrelation matrix is large and there is a misadjustment factor that is the
ratio of the excess mean square error divided by minimum mean square error corresponding
to Wiener filter and that is approximately = half of mu times Trace of RY. Therefore, this

misadjustment factor will be large if mu is large therefore mu should be small.

This lecture will cover the variance of LMS algorithm addressing the above issues
convergence issues. We also see two simplifications of the LMS algorithm for faster
implementation.
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Leaky LMS (LLMS) Algorithm
% We saw that the LMS iteration 15 canvergent i the mean 1f the step size
parameter g satisfies the convergence condition in terms of the eigen values of

the Rymalnx

% If some eigen values are small, the convergence will be slow. To improve the

convergence rate, the small esgen values may be enhanced..

% One method 1o improve the convergence is the  leaky LMS (LLMS)
algorithm. tuses a leakage factor to control the values of the [filter coefTicients

i LMS updation

h(n+1)=hin)+ m(n)y('[,)

First we will start with the leaky LMS LLMS algorithm. We saw that the LMS iteration is

convergent in the mean if the step size parameter mu satisfies the convergence condition in



terms of the eigen values of RY matrix. So the convergence is determined by the eigen values
of RY matrix. If some eigen values are small the convergence will be slow. Thus if anyone of
the eigen values is small then the rate of convergence will be affected.

Therefore, to improve the convergence rate the small eigen values maybe enhanced. One
method to improve the convergent is the leaky LMS LLMS algorithm. It uses a leakage
factors to control the values of the filter coefficient in LMS updation this is the LMS updation
h of n+ 1 =hn+ mu en into yn vector.
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Cost function LLMS Algorithm

% The cosl function of the leaky LMS algorithm meludes a regularizution term
I'hus, the mimmization problem can be expressed as
Minimize c*‘(rz)—n:lun]"7 with respect to h(z)
where ]h(n)ﬂ: =h'(m)h(n),
2 15 4 posilive quantity

and - e(m) = d(m) ~h'(n)y(n)
% The term uih[n}ﬂ' ensures that h(m) decreases faster

el <l

* The method of gradient descent 15 applied to mimmize the above cost

function

Let us examine the cost function for LLMS algorithm the cost function of the leaky LMS
algorithm includes a regularization term thus the minimization problems can be expressed as
minimize e square n + alpha times norm of hn square with respect to hn where norm of hn
square = h transpose n times hn this is the (()) (05:08) norm alpha is a positive quantity and

en is dn minus that is the desired signal - h dash n into yn this is the filter output.

So here e square n is the cost function corresponding to the LMS algorithm and this term
alpha times norm of hn square is the regularization term. The term alpha times norm of hn
square ensures that hn decreases faster because if it tries to increase because of this positive
value the cost function will increase so our aim to minimize the cost function. Alpha is taken
between 0 and 1 and the method of gradient descent is applied to minimize the above cost
function just like in the case of LMS algorithm.
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LLMS iteration
% I'he corresponding update equation 15 given by
hin=1)=(1= gee)hp) + jecee{n)y(n)

where gree 18 chosen 1o be less thin |

% Using the independence assumption, we can show that

!im Ehin)=(R, =al)" 1,

% We see that the mateix o1 is added to the correlation matrix of LMS iteration.

% We also note that ¢ is the autocorrelation matrix of a white noise with
varianee ¢, Thus the regulanization process adds & white noise component to

)

The corresponding update equation is given by hn + 1 = 1 — mu alpha times hn + mu alpha
into en into yn vector. So the leakage term is introduced here now where mu alpha is chosen
to be less than 1 because of this factor is to be positive so mu alpha must be less than 1. Using
the independence assumption we can show that limit of E of hn as n tends to infinity will be =
RY + alpha I inverse into rdY.

Limit E of hn as n tends to infinity = RY + alpha | whole inverse into small rdY this is the
cross correlation between d and Y. Note that this is different from the corresponding Wiener
filter solution. We see that the matrix alpha | is added to the correlation matrix of LMS
iteration. LMS iteration correlation matrix is RY in leaky LMS this matrix is added alpha

times | matrix is added.

We also note that alpha I, is the autocorrelation matrix of a white noise with variance alpha.
So if we have a white noise with variance alpha then it is autocorrelation function will be
alpha then rest of the elements in the first row will be O like that. Similarly second row this
will be 0 then alpha 0 like that and finally the last row will be 0, 0, 0 and then last element
will be alpha.

So that way this will be the autocorrelation function of the white noise which is same as alpha
times 1. So, therefore the regularization process a white noise component is added to yn to the
data a white noise component is added that way is pre whitening of data.
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Convergence condition for the Leaky LMS algorithm

s ; 3
“ |F 4 isan eigenvalue of Ry, then the corresponding eigen value of Ry +al

will be ,{' +a

% For convergence, the constraint on M5

)

R TR
Ay T

Now let us examine the convergence condition for the leaky LMS algorithm. If lambda i is an
eigen value of RY then the corresponding eigen value of RY + alpha | will be lambda i +
alpha. So if eigenvalue will be increase by alpha. Therefore, for convergence the constraint
on mu is mu should lie between 0 and 2/lambda max + alpha.
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Normalized LMS (NLMS) Algorithm

% Consider the LMS updating relation:
h{n+1)=h(n)+ ge(n)y(n)
% Tor convergence of the TMS algorithm
2
O & —
aux

and the conservative bound 1s given by

2

D<p< ‘
Trace(Ry)

2

TR, (0)

2

MEY* (n)

% R, isnot gencrally known. Thus, 4, 0r Ry (0) is to be estunated from data

Next algorithm we will consider the normalize LMS NLMS algorithm. Consider the LMS
update equation given by h of n + 1 = hn + mu times e of n into yn vector. For converge this
mu should be < 2/ lambda max and conservative bound for convergence is given by mu < 2
/ Trace of RY and that = 2/M times M is the number of filter coefficients M times RY 0 and

RY 0 we can write it as expected value of E of Y square n.



Therefore for convergent mu should be < 2/M times E of Y square n. Note that RY is not
generally known. Thus, lambda max or RY of O is to be estimated from the data. This
expression E of Y square n is to be estimated from data.
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NLMS algorithm
| Mo .
& Weean avord this problem by usimg the estimate =Y ¥(m) of E(F*(n)) and
Mo
estimating the bound as
b )
Dape _‘("_-_'_.
Y ¥ n=i) "-"(”'l
% Now we can take
|
p=f—s
[
where 0 <2
% B 15 chosen Lo control the mis-adiustment luctor
& The convergence ol the NLMS algorithin 15 fister wmespective of the choee of 8 in the

above mape

We can avoid this problem by using the estimate 1/M times summation Y square n n going
from 0 to M in place of E of Y square n and estimating the bound as 0 is < mu < 2 by this
expression because M and 1/M will get cancelled therefore 0 is < mu < 2 by summation y
square n — i, i going from 0 to M - 1 and this is = 2/norm of yn square. Now we can take mu

because mu < 2 by norm of yn square.

So we can take mu = beta times 1 norm of yn square where beta is a number between 0 and
2. We can take any value of beta between 0 to 2, but it is so then to control the mis
adjustment factors small r value of beta will give less misadjustment factor. The convergence
of the NLMS algorithm is faster irrespective of the choice of beta in the above range. If we
choose beta in this range the convergence of the NLMS algorithm will be faster than the
corresponding speed of the LMS algorithm.
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NLMS algorithm

*  The LMS updnting becomes

iz i 1) = hin) | ﬁl : |: elmvin)
Al

(n)

: 1 .
% Note thut the multiplication by — changes the step size according to the varnation
[v(m)

in the signal magnitude, but it does not change the direction of estimuted gradient given
by ym
@1 y(n) 15 close to zero, the denominator term { |L\Ux)|"» becomes very small and
|

hin+1y=h(n)+ f —e(n)yin) may diverge
ol

oA parameter 718 meluded m the denomnator 1o avoid large step sizes when |‘\'|'|,-‘)I
becomes close to zera

I
hin+1)=hin}+ ~e(m)y(n)
b Lt

Thus the LMS updating becomes h of n + 1 = hn + beta times 1 / norm of yn square times en
into yn. Note that multiplication by 1 / norm of yn square changes the step size according to
the variance of the signal magnitude, but it does not change the direction of the gradient
given by yn because yn will specify the direction of the gradient this yn is a vector and en is a

scalar.

Therefore yn species the direction of gradient and multiplying by this factor will not change
the direction of the gradient. If yn is closed to zero then the denominator term let say norm of
yn square here becomes very small and in that case this expression hn + beta times 1 / norm
of yn square into en into yn may diverge because this term may blow up. A parameter gamma
is included in the denominator to avoid large step size when norm of yn square becomes close

to zero.

So therefore ultimately h of n + 1 will be = hn + beta times 1/gamma + norm of yn square
into en into yn vector. So this is the NLMS update rule.
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NLMS algorithm steps
& (iven the mput signaly(n), desired  signal d(n), lilter length M
{3 < 2 and small constant 5
| Initiahzation h(0)=0, i=0,..,.M=1
2.Tor n=0
Filieroupul —— d(n)=h{(n)y(n)
Fstimation error (M) =d(n) - (}('1)
3. Filter coefficient adaptation

h{i+1)=h{n)= ﬁ—*l:—_e{n}y(n)
r 4

We can briefly state the NLMS algorithm so here given the input signal yn desired signal dn,
filter length M, beta < 2 and a small constant gamma. Initialization hi0=0fori=0to M -1
all filter coefficients are initialized to 0. For n > 0 filter output will be d hat n = h transpose n
times yn. This is the filter output. Estimation error en = dn — d hat n and filter coefficient is
updated according to this relationship NLMS update rule. H of n + 1 = hn + beta times
1/gamma + norm of yn square into en into yn vector.
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Example System identification;
You are givena S-length FIR system with unknown parameters, Identify them,

“ A whitenoise y{(n) 1 input to both the system and adaptive filter. The output of
the system 1s the desired signal o)

— d(n)
5-legth
P FIR System 11 ‘
wn 1 U dn)
S-length
Adaptive &
filter dr)

%The S-lenth adaptive filter 15 updated using the LMS and NLMs angorithm

We will consider one example of system identification with the LMS and NLMS algorithm.
System identification problem we introduced in the first class of adaptive filters. The problem
is like this you are given a 5-length FIR system with unknown parameters identified them

using adaptive filters. So here it is a 5-length FIR system we know that there are 5



coefficients in the FIR system model we have to identify those 5 parameters using a 5-length
FIR adaptive filter.

So here yn is the output to both the system and the adaptive filter and usually yn should be a
white noise and the desired signal dn is the output of this unknown system and the adaptive
filter will estimate this desired signal and this error signal is feedback to the LMS or NLMS
update algorithm. So that way the 5-length adaptive filter is updated using the LMS and
NLMS algorithm.
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Example. ..

We show the simulation result so this is the original system 5-length FIR system these are the
filter coefficient one coefficient is O here 0, this is the another coefficient third coefficient is
like this, fourth coefficient is like this and fifth coefficient is like this and after identification
by LMS algorithm with mu = 0.5 and data length is 200 we get this result. We see that this

coefficient originally it was 0.44 like that here it is near 0.3.

So it is not exactly estimative. Similarly, this coefficient also it is not exactly estimating if we
identify the FIR system using the NLMS algorithm we get the estimate results like this. Now
this value and this value similarly this value and this value are almost matching. There is a
small difference, but because it is 200 data only with that itself it is matching very well. Thus,
we see that the NLMS algorithm converges faster than the LMS algorithm.
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Discussion -NLMS

% Under independence assumptions, it can be shown that the NLMS algorithm

converges in the mean-square sense for 0< <2
% The NLMS algorithm has more computational complexity compared to the LMS
algonthm
% Nole that
o)
|]_\(H,)I' Z_\"m—/)
l-".l = . .
:2-\\' (m=1=0+y"(n)=y" (n-M-1)
o
=|y(n—|]||1 =y =y (p-M=1)

Ihus j|y( uj"'um be efticiently estimated using the recursive relation

Let us quickly discuss the merits of the NLMS algorithm under the independent assumption it
can be shown that the NLMS algorithm converges in the mean square sense provided beta
lies between 0 and 2. The NLMS algorithm has more computational complexity compared to
the LMS algorithm because of the computation of norm at every instance. Note that norm of

yn square = summation y square n —i i going from 0 to M -1.

This summation we can rewrite as summation i going from0to M — 1y squaren—1—1i. We
are considering the earlier instances starting from n — 1 then we have to add y square n
because here n — 1, i going from 0 so first term will be y square n — 1 so y square n we have
to include. Similarly that last term here will be y square n — M -1 and therefore this term

should be subtracted.

Therefore, this norm of yn square can be written as norm of yn — 1 vector square + y square +
y square and — y square n — M — 1. So that way norm of yn square can be estimated
recursively only this part we have to calculate this part and this part and then add to earlier
estimate of norm square.
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Discussion - LMS ...
% 11 y(n) is close to 7er, the denominator term ( i_\'{n)ﬂ- ) m NLMS equation
beeomes very small and

hiniy=hin)1 g ; se(my(n)  may diverge
v

% Toovercome this drawback a small positive number & s added w the

denommator term the NEMS equation, Thus

h(r=1)=hn)+ff e(n)y(n)

&+|v(m)

If yn is close to zero the denominator term norm of yn square in NLMS equation becomes
very small and this term hn + 1 = hn + beta times 1/norm of yn square into en into yn vector
may diverge. To overcome this drawback a small positive number epsilon is added in the
denominator term of the NLMS update equation. Thus h of n + 1 = hn + beta times 1/epsilon
+ norm yn square into en into yn vector. This is the modified NLMS update rule.
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LMS algorithm with reduced complexity

% |n many applications ike high speed communication, faster adaptation processes
1 needed
% Tor such applications, computational etficiency 18 very important,, For this

purpose, modifications arc suggested to the LMS algonthm

% A number of modifications are available. Some of these mclude hlack £ASS
algotithm, signed error LM algorithny. signed daia LMS algorithum | vigned-sign
[MS algorithm cle.

% Wewall briefly outline the block-1.MS algorithm and the signed eror LMS

algorithm

Now we will discuss some LMS based algorithms with reduced complexity. In many
applications like high speed digital communication, faster adaptation is needed. For such
applications computational efficiency is very important for this purpose modifications are
suggested to the LMS algorithm. A number of modifications are available. Some of these

include block LMS algorithm sign LMS algorithm, signed data LMS algorithm, sign-sign



LMS algorithm etcetera. We will briefly outline the block LMS algorithm and this signed
error LMS algorithm.
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Block LMS algorithm

< Inblock LMS algorith, the input signal is divided into blocks of lenath L each.

4 The Nltering output for the kih block s
AEL+) = WU (RL +7), = 0L L -1
The fillering operation 15 efficiently perfomed by wsing the FET.
% The error is estumated as

(kL + i} = dikL i) = d(kL+0), i=01,., -1
2 Now filter weights ane updated block-wise,
141
4 hik+1)=hik)+ (kT i)y (kL 41), k=01,
[ (k) + p Lgu fy(kL+1)

“Hlock [M3 algorithm has the ssme convengence characleriatics as the LMS

algorthm with a larger excess mean-square Srror

First we will see the block LMS algorithm. In block LMS algorithm the input signal is
divided into blocks of length L each. So processing will be done in a block of L inputs. The
filtering output for the kth block is given by this d hat KL ++ i = h transpose k into y kKL + i
this is the vector data vector i going from 0, 1 upto L — 1. So that way we will be considering

suppose this is fixed now.

But for different data in this block that is kL + 0 kL + 1 etcetera those data vector we will be
considering and filtering. Now this is the filtering operation since hk is fixed now because in
one block only one filter coefficient vector will be used. Therefore the filtering operation is
efficiently performed by using FFT. So you can use FFT to perform this. The error is
estimated as e of KL + i that = dkL + i —d hat kL + i i going from O, 1 upto L — 1 this is the

filtering error.

Now the filter weights are updated block-wise according to this updating rule h of k + 1
vector that = hk vector + mu times 1/L into summation e of kL + i into ykL + i vector i going
from 0 to L — 1 this is done for each data point in the block. So that way here we see that the
error into the data vector these are summed up and then divided by L to get the estimate for

the error into the data vector.



So this is the block LMS update in rule. Block LMS algorithm has the same convergence
characteristics as the LMS algorithm with a larger excess mean square error It can be shown
that each excess mean square error is larger.
(Refer Slide Time: 25:49)
Sign-error LMS algorithm
Consider the LMS update rule
hin+1)=hin)+ pe(n)yin)
*Note that, the estrmated gradient direction is given by y(n) and multiplication by
e(mydoes not chunge this direction, except when e(n) changes sign.
seTor faster updating,

hin+1)=hi(n)= usga(e(n)yin)

where

(1: e(m) =0
senfe(n)) =10, eln)=0
‘—|: e(n) <
o ['he stened-error algorithm can be derived using f:‘-?(n)l in place of the LMS cost
function &' (n)
# The signed LMS algonthm s equivalent to the LMS algorithm with 2-bit
quantization of the error. Therefore, the convergence is poorer 1 the case of this

algorithm

Next algorithm is sign-error LMS algorithm. Consider the LMS update rule hof n+ 1 =hn +
mu into en into yn vector so this is the LMS update rule h of n + 1 = hn + mu into en into yn.
Note that the estimated gradient direction is given by yn this is the vector this vector gives the
estimated gradient direction and multiplication by en does not change this direction except

when en changes sign.

So if en is negative this direction will become negative so that way only that rule is
performed by en. Therefore, for faster updating h of n + 1 = hn + mu into sign of en into yn.
So where sign of en =1 if enerroris>0=0ifen = 0 and — 1 if en < 0. This signed-error
algorithm can be derived using mod of en in place of this LMS cost function e square n. If we
use mod of en in place of e square n then by applying the (()) (27:28) we can derive this

updating rule.

So that way it necessarily follows from this cost function mod of en cost function absolute
error cost function. The signed LMS algorithm is equivalent to the LMS algorithm with 2-bit
quantization. So we have 3 values of error that is 1, 0 and -1 so that way it is 2-bit
quantization. Therefore, the convergence is poorer in the case of this algorithm because
instead of using the entire error we are using it in 3 values only.
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Summary
% The cost function of the leaky LMS (LLMS) algonthm includes a
regulanzation term resulting the problem

Mumimize a"(n)wxﬂh(n]"

% U'he lerm ’rlh[")l ensures that W) converges faster
“The LLMS updute equation 15 given by
bin =1)= (1~ wa)hin) + gae(n)y(n)

& The mormalized TMS (NTMS) algorithim wses a variable step size given hy

j=p I. O fie
ol

% T ensure convergence -'.'l'.::x”)(pjll'lx samll, NEMS vt 15 modified as
1

|I|Il+h—'|'llh‘|vﬁ ::(I)).\‘l:h]
£+yin]

Let us summarize the lecture. The cost function of the leaky LMS, LLMS algorithm includes
a regularization term resulting in the problem that is minimize e square n + alpha times norm
of h n square where alpha is a constant. The term alpha times norm of hn square ensures that
hn converges faster. So, because of this regularizing term. So this is the regularizing term it

ensures that there is no mass deviation between two iterations.

The LLMS update equation is given by h of n + 1 = 1 — mu alpha times hn + mu into alpha
into en into yn. So this is the update equation for LLMS algorithm. The normalized LMS
NLMS algorithm uses a variable step size given this relationship mu = beta into 1/norm of yn
square where beta lies between 0 and 2. To ensure convergence when norm of yn square is
small because if yn become very small then this quantity will become small and this will

diverge.

Therefore, to ensure convergence when norm of yn square is small NLMS updating is
modified as h of n + 1 = hn + beta times 1/epsilon + norm of yn square into en into yn. So
this epsilon is a small positive constant which ensures that there is no divergence.
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Summay

% For some applications, computational efficiency is very important. For this
purpose, modifications are suggested to the LMS algorithm.,

% The block LMS algorithm and signed error LMS algorithm are efficient for

hardware implementation.

For some applications computational efficiency is very important. For this purpose
modifications are suggested to LMS algorithm (()) (30:45) modifications are block LMS
algorithm and signed error LMS algorithm are efficient for hardware implementation. We
knew that block LMS the filter coefficient are updated after a block of data. In signed-error
LMS algorithm instead of en sign of en is used in the LMS updating equation.

So we have discussed about LMS algorithm. Next we will discuss another approach to

adaptive filtering that is Recursive Least Square Algorithm. Thank you.



