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Hello students. Welcome to this lecture on Adaptive Filters. Recall that the LMS algorithm 

updates the filter with according to this relation h of n + 1 = hn + mu times en into yn yn is 

the data vector, en is the error and hn is the filter coefficient at instant n. Under the 

independent assumption the LMS algorithm is convergent in the mean if the step size 

parameter mu satisfy this conditions we know that mu < 2/lambda max. 

 

And E of hn converges to the corresponding Wiener filter weights as hn tends to infinity E of 

hn converges to the corresponding Wiener filter weights. Under the independent assumption 

the MSE epsilon n converges if and only if again first condition is like this mu < 2/lambda 

max and the second condition summation mu lambda i/2 – mu lambda i, I going from 1 to m 

< 1. 
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We also noted that the convergence of the LMS algorithm is slow when the eigenvalue 

spread of the autocorrelation matrix is large and there is a misadjustment factor that is the 

ratio of the excess mean square error divided by minimum mean square error corresponding 

to Wiener filter and that is approximately = half of mu times Trace of RY. Therefore, this 

misadjustment factor will be large if mu is large therefore mu should be small. 

 

This lecture will cover the variance of LMS algorithm addressing the above issues 

convergence issues. We also see two simplifications of the LMS algorithm for faster 

implementation.  
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First we will start with the leaky LMS LLMS algorithm. We saw that the LMS iteration is 

convergent in the mean if the step size parameter mu satisfies the convergence condition in 



terms of the eigen values of RY matrix. So the convergence is determined by the eigen values 

of RY matrix. If some eigen values are small the convergence will be slow. Thus if anyone of 

the eigen values is small then the rate of convergence will be affected.  

 

Therefore, to improve the convergence rate the small eigen values maybe enhanced. One 

method to improve the convergent is the leaky LMS LLMS algorithm. It uses a leakage 

factors to control the values of the filter coefficient in LMS updation this is the LMS updation 

h of n + 1 = hn + mu en into yn vector. 
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Let us examine the cost function for LLMS algorithm the cost function of the leaky LMS 

algorithm includes a regularization term thus the minimization problems can be expressed as 

minimize e square n + alpha times norm of hn square with respect to hn where norm of hn 

square = h transpose n times hn this is the (()) (05:08) norm alpha is a positive quantity and 

en is dn minus that is the desired signal - h dash n into yn this is the filter output. 

 

So here e square n is the cost function corresponding to the LMS algorithm and this term 

alpha times norm of hn square is the regularization term. The term alpha times norm of hn 

square ensures that hn decreases faster because if it tries to increase because of this positive 

value the cost function will increase so our aim to minimize the cost function. Alpha is taken 

between 0 and 1 and the method of gradient descent is applied to minimize the above cost 

function just like in the case of LMS algorithm. 
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The corresponding update equation is given by h n + 1 = 1 – mu alpha times hn + mu alpha 

into en into yn vector. So the leakage term is introduced here now where mu alpha is chosen 

to be less than 1 because of this factor is to be positive so mu alpha must be less than 1. Using 

the independence assumption we can show that limit of E of hn as n tends to infinity will be = 

RY + alpha I inverse into rdY. 

 

Limit E of hn as n tends to infinity = RY + alpha I whole inverse into small rdY this is the 

cross correlation between d and Y. Note that this is different from the corresponding Wiener 

filter solution. We see that the matrix alpha I is added to the correlation matrix of LMS 

iteration. LMS iteration correlation matrix is RY in leaky LMS this matrix is added alpha 

times I matrix is added. 

 

We also note that alpha I, is the autocorrelation matrix of a white noise with variance alpha. 

So if we have a white noise with variance alpha then it is autocorrelation function will be 

alpha then rest of the elements in the first row will be 0 like that. Similarly second row this 

will be 0 then alpha 0 like that and finally the last row will be 0, 0, 0 and then last element 

will be alpha.  

 

So that way this will be the autocorrelation function of the white noise which is same as alpha 

times I. So, therefore the regularization process a white noise component is added to yn to the 

data a white noise component is added that way is pre whitening of data.  
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Now let us examine the convergence condition for the leaky LMS algorithm. If lambda i is an 

eigen value of RY then the corresponding eigen value of RY + alpha I will be lambda i + 

alpha. So if eigenvalue will be increase by alpha. Therefore, for convergence the constraint 

on mu is mu should lie between 0 and 2/lambda max + alpha.  
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Next algorithm we will consider the normalize LMS NLMS algorithm. Consider the LMS 

update equation given by h of n + 1 = hn + mu times e of n into yn vector. For converge this 

mu should be <  2 / lambda max and conservative bound for convergence is given by mu <  2 

/ Trace of RY and that = 2/M times M is the number of filter coefficients M times RY 0 and 

RY 0 we can write it as expected value of E of Y square n.  

 



Therefore for convergent mu should be < 2/M times E of Y square n. Note that RY is not 

generally known. Thus, lambda max or RY of 0 is to be estimated from the data. This 

expression E of Y square n is to be estimated from data.  
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We can avoid this problem by using the estimate 1/M times summation Y square n n going 

from 0 to M in place of E of Y square n and estimating the bound as 0 is < mu <  2 by this 

expression because M and 1/M will get cancelled therefore 0 is < mu <  2 by summation y 

square n – i, i going from 0 to M - 1 and this is = 2/norm of yn square. Now we can take mu 

because mu < 2 by norm of yn square.  

 

So we can take mu = beta times 1  norm of yn square where beta is a number between 0 and 

2. We can take any value of beta between 0 to 2, but it is so then to control the mis 

adjustment factors small r value of beta will give less misadjustment factor. The convergence 

of the NLMS algorithm is faster irrespective of the choice of beta in the above range. If we 

choose beta in this range the convergence of the NLMS algorithm will be faster than the 

corresponding speed of the LMS algorithm.  
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Thus the LMS updating becomes h of n + 1 = hn + beta times 1 / norm of yn square times en 

into yn. Note that multiplication by 1 / norm of yn square changes the step size according to 

the variance of the signal magnitude, but it does not change the direction of the gradient 

given by yn because yn will specify the direction of the gradient this yn is a vector and en is a 

scalar. 

 

Therefore yn species the direction of gradient and multiplying by this factor will not change 

the direction of the gradient. If yn is closed to zero then the denominator term let say norm of 

yn square here becomes very small and in that case this expression hn + beta times 1 / norm 

of yn square into en into yn may diverge because this term may blow up. A parameter gamma 

is included in the denominator to avoid large step size when norm of yn square becomes close 

to zero.  

 

So therefore ultimately h of n + 1 will be = hn + beta times 1/gamma + norm of yn square 

into en into yn vector. So this is the NLMS update rule. 
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We can briefly state the NLMS algorithm so here given the input signal yn desired signal dn, 

filter length M, beta < 2 and a small constant gamma. Initialization hi0 = 0 for i = 0 to M – 1 

all filter coefficients are initialized to 0. For n > 0 filter output will be d hat n = h transpose n 

times yn. This is the filter output. Estimation error en = dn – d hat n and filter coefficient is 

updated according to this relationship NLMS update rule. H of n + 1 = hn + beta times 

1/gamma + norm of yn square into en into yn vector.  
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We will consider one example of system identification with the LMS and NLMS algorithm. 

System identification problem we introduced in the first class of adaptive filters. The problem 

is like this you are given a 5-length FIR system with unknown parameters identified them 

using adaptive filters. So here it is a 5-length FIR system we know that there are 5 



coefficients in the FIR system model we have to identify those 5 parameters using a 5-length 

FIR adaptive filter.  

 

So here yn is the output to both the system and the adaptive filter and usually yn should be a 

white noise and the desired signal dn is the output of this unknown system and the adaptive 

filter will estimate this desired signal and this error signal is feedback to the LMS or NLMS 

update algorithm. So that way the 5-length adaptive filter is updated using the LMS and 

NLMS algorithm.  

(Refer Slide Time: 17:30) 

 

We show the simulation result so this is the original system 5-length FIR system these are the 

filter coefficient one coefficient is 0 here 0, this is the another coefficient third coefficient is 

like this, fourth coefficient is like this and fifth coefficient is like this and after identification 

by LMS algorithm with mu = 0.5 and data length is 200 we get this result. We see that this 

coefficient originally it was 0.44 like that here it is near 0.3.  

 

So it is not exactly estimative. Similarly, this coefficient also it is not exactly estimating if we 

identify the FIR system using the NLMS algorithm we get the estimate results like this. Now 

this value and this value similarly this value and this value are almost matching. There is a 

small difference, but because it is 200 data only with that itself it is matching very well. Thus, 

we see that the NLMS algorithm converges faster than the LMS algorithm.  
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Let us quickly discuss the merits of the NLMS algorithm under the independent assumption it 

can be shown that the NLMS algorithm converges in the mean square sense provided beta 

lies between 0 and 2. The NLMS algorithm has more computational complexity compared to 

the LMS algorithm because of the computation of norm at every instance. Note that norm of 

yn square = summation y square n – i i going from 0 to M -1.  

 

This summation we can rewrite as summation i going from 0 to M – 1 y square n – 1 – i. We 

are considering the earlier instances starting from n – 1 then we have to add y square n 

because here n – 1, i going from 0 so first term will be y square n – 1 so y square n we have 

to include. Similarly that last term here will be y square n – M -1 and therefore this term 

should be subtracted.  

 

Therefore, this norm of yn square can be written as norm of yn – 1 vector square + y square + 

y square and – y square n – M – 1. So that way norm of yn square can be estimated 

recursively only this part we have to calculate this part and this part and then add to earlier 

estimate of norm square. 
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If yn is close to zero the denominator term norm of yn square in NLMS equation becomes 

very small and this term hn + 1 = hn + beta times 1/norm of yn square into en into yn vector 

may diverge. To overcome this drawback a small positive number epsilon is added in the 

denominator term of the NLMS update equation. Thus h of n + 1 = hn + beta times 1/epsilon 

+ norm yn square into en into yn vector. This is the modified NLMS update rule.  
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Now we will discuss some LMS based algorithms with reduced complexity. In many 

applications like high speed digital communication, faster adaptation is needed. For such 

applications computational efficiency is very important for this purpose modifications are 

suggested to the LMS algorithm. A number of modifications are available. Some of these 

include block LMS algorithm sign LMS algorithm, signed data LMS algorithm, sign-sign 



LMS algorithm etcetera. We will briefly outline the block LMS algorithm and this signed 

error LMS algorithm.  
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First we will see the block LMS algorithm. In block LMS algorithm the input signal is 

divided into blocks of length L each. So processing will be done in a block of L inputs. The 

filtering output for the kth block is given by this d hat kL ++ i = h transpose k into y kL + i 

this is the vector data vector i going from 0, 1 upto L – 1. So that way we will be considering 

suppose this is fixed now. 

 

But for different data in this block that is kL + 0 kL + 1 etcetera those data vector we will be 

considering and filtering. Now this is the filtering operation since hk is fixed now because in 

one block only one filter coefficient vector will be used. Therefore the filtering operation is 

efficiently performed by using FFT. So you can use FFT to perform this.  The error is 

estimated as e of kL + i that = dkL + i – d hat kL + i i going from 0, 1 upto L – 1 this is the 

filtering error.  

 

Now the filter weights are  updated block-wise according to this updating rule  h of k + 1 

vector that = hk vector + mu times 1/L into summation e of kL + i into ykL + i vector i going 

from 0 to L – 1 this is done for each data point in the block. So that way here we see that the 

error into the data vector these are summed up and then divided by L to get the estimate for 

the error into the data vector.  

 



So this is the block LMS update in rule. Block LMS algorithm has the same convergence 

characteristics as the LMS algorithm with a larger excess mean square error It can be shown 

that each excess mean square error is larger.  
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Next algorithm is sign-error LMS algorithm. Consider the LMS update rule h of n + 1 = hn + 

mu into en into yn vector so this is the LMS update rule h of n + 1 = hn + mu into en into yn. 

Note that the estimated gradient direction is given by yn this is the vector this vector gives the 

estimated gradient direction and multiplication by en does not change this direction except 

when en changes sign.  

 

So if en is negative this direction will become negative so that way only that rule is 

performed by en. Therefore, for faster updating h of n + 1 = hn + mu into sign of en into yn. 

So where sign of en = 1 if en error is > 0 = 0 if en = 0 and – 1 if en < 0. This signed-error 

algorithm can be derived using mod of en in place of this LMS cost function e square n. If we 

use mod of en in place of e square n then by applying the (()) (27:28) we can derive this 

updating rule.  

 

So that way it necessarily follows from this cost function mod of en cost function absolute 

error cost function. The signed LMS algorithm is equivalent to the LMS algorithm with 2-bit 

quantization. So we have 3 values of error that is 1, 0 and -1 so that way it is 2-bit 

quantization. Therefore, the convergence is poorer in the case of this algorithm because 

instead of using the entire error we are using it in 3 values only.  
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Let us summarize the lecture. The cost function of the leaky LMS, LLMS algorithm includes 

a regularization term resulting in the problem that is minimize e square n + alpha times norm 

of h n square where alpha is a constant. The term alpha times norm of hn square ensures that 

hn converges faster. So, because of this regularizing term. So this is the regularizing term it 

ensures that there is no mass deviation between two iterations.  

 

The LLMS update equation is given by h of n + 1 = 1 – mu alpha times hn + mu into alpha 

into en into yn. So this is the update equation for LLMS algorithm. The normalized LMS 

NLMS algorithm uses a variable step size given this relationship mu = beta into 1/norm of yn 

square where beta lies between 0 and 2. To ensure convergence when norm of yn square is 

small because if yn become very small then this quantity will become small and this will 

diverge.  

 

Therefore, to ensure convergence when norm of yn square is small NLMS updating is 

modified as h of n + 1 = hn + beta times 1/epsilon + norm of yn square into en into yn. So 

this epsilon is a small positive constant which ensures that there is no divergence.  

(Refer Slide Time: 30:35) 



 

For some applications computational efficiency is very important. For this purpose 

modifications are suggested to LMS algorithm (()) (30:45) modifications are block LMS 

algorithm and signed error LMS algorithm are efficient for hardware implementation. We 

knew that block LMS the filter coefficient are updated after a block of data. In signed-error 

LMS algorithm instead of en sign of en is used in the LMS updating equation.  

 

So we have discussed about LMS algorithm. Next we will discuss another approach to 

adaptive filtering that is Recursive Least Square Algorithm. Thank you.  

 


