
Statistical Signal Processing 

Prof. Prabin Kumar Bora 

Department of Electronics and Electrical Engineering 

Indian Institute of Technology – Guwahati 

 

Lecture – 23 

Linear Prediction of Signals 3 

 

(Refer Slide Time: 00:45) 

 

Hello students welcome to this lecture linear prediction of signals. Let us review Levinson – 

Durbin algorithm we are given the order of prediction M and the autocorrelation functions Rym 

m going from 0 to M. First, we have to initialize the predictor coefficients hm 0 =- 1 for all m 

and epsilon 0 that is the mean square prediction error = Ry 0 for prediction order 0. Now for M 

=1 up to M. 

 

First we will determine the prediction coefficient km which is given by summation  h m - 1 i into 

Rym – i, i going from 0 to m - 1 whole thing divided by epsilon m - 1 that is the mean square 

prediction error at stage m - 1 then we will update the filter coefficient hm i = h m - 1 i + km into 

hm - 1 at m – i i going from 1 to up to m - 1 and the last filter coefficient hm m will be updated 

as - km and finally we will update the mean score prediction error epsilon m =epsilon m - 1 into 

1 - km square. So km we have determined here. 
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Let us consider the review example on Levinson -Durbin algorithm in the last class suppose the 

ACFs of a WSS process are given by this Ry of 0 is 2.89 Ry of 1 is 1.51 and Ry of  2 is 1.21 find 

the second-order LP coefficients directly by matrix inversion and applying the Levinson-Durbin 

algorithm. So solution is like this we have to first establish the WH equation.  

 

Wiener Hopf equation in matrix form that is given by this autocorrelation matrix into the 

coefficient vector is equal to the autocorrelation vector so that way here it is Ry0, Ry1, Ry1, Ry0 

and similarly coefficients are h1, h2. Therefore, if we substitute these values from here so 

autocorrelation matrix is 2.89,1.51,1.51,2.89 then multiply the coefficient vector h1, h2 and this 

must be equal to Ry1 is 1.51, Ry2 is 1.21 and we can directly take the matrix inverse and then 

multiply with this 1.51, 1.21 and we will get the filter coefficients h1 will be = 0.4178, h2 

=0.2004. 
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In this lecture, we will derive recursive expressions for forward and backward prediction errors 

using the Levinson-Durbin algorithm and we will use those prediction errors for an efficient 

implementation of the prediction error filter.  
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I will derive the expression for forward and backward prediction errors recursively. Let us 

denote emfn that is the prediction error of a mth order forward prediction. Similarly 

corresponding backward prediction is given by embn that is the prediction error of a mth order 

backward prediction clearly forward prediction error emfn = yn - summation hm i into y n – i i 

going from 1 to m. 

 



So this is the mth order prediction, so the difference is the prediction error similarly embn that is 

the mth order backward prediction error now we are predicting y n - m by this relationship. So, 

that way the backward prediction error is given by yn - m - backward prediction, which is given 

by summation hm m + 1 - i y n + 1 - i i going from 1 to m. We want to establish the recursive 

relation between the prediction errors emfn = em - 1 fn + k m times m – 1bn - 1 similarly 

backward prediction error embn = em – 1bn - 1 + km times em - 1 fn. 

 

So that way for our prediction error emfn is given by the forward prediction error for order m – 

1, em - 1 fn + m times the backward prediction error of order m - 1 which is delayed by 1. So 

this is a delayed version of the backward prediction error. Similarly backward prediction error 

also delayed version of the backward prediction error of order m - 1 + km times forward 

prediction error of order m - 1 at instant n. 
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And now we will prove the recursion of forward error emfn = yn - summation hmi yn – i i go in 

from 1 to m and now we can write emf and as yn minus that last coefficient here I am taking out 

hm and into yn - m so when we put m here hmm into yn- m that I am taking it out and then 

summation is same i into y m- i i going from 1 to m – 1. Now we know that this - hmn = km by 

definition and here we can apply the Levinson - Durbin recursion. 

 



Applying Levinson- Durbin recursion we get emf of n = yn + km into y n- m - summation i 

going from 1 to m - 1 of now we are substituting hmi = sm - y i + k m times hm - 1 ,m - i so this 

is the recursion we are using for hmi which is true for i = 1 to m - 1 and then whole thing into yn 

– i. So this is the relationship we get from here now we can bring these terms containing km 

together so that way yn minus. 

 

This will bring here, yn - summation hm – 1 i into y n- i i going from 1 to m - 1 + km times yn – 

m minus this term summation h of m - 1 m - i y n - i i going from 1 to m – 1. Now this part is the 

forward prediction error of order m – 1. So this expression will be em - 1 fn + km times now this 

term is yn - m that is the true value, and this is the backward predicted value. So that where this 

is the backward prediction error at n – 1. 

 

So that way this will be km times em - 1 b and - 1 because this is m - 1 at order prediction and 

prediction starts at y n - 1 so that way this is backward prediction at time n – 1.So that way we 

have arrived in relationship that emfn = em-1 fn + km times em-1b at n-1.  
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Similarly, using the backward prediction error which is given by embn =y n - m - summation is 

same m + 1 - i into y n + 1 – i i going from 1 to m. This is the backward prediction error and now 

here also we will be using the Levinson-Durbin recursion then we can show that embn = em – 1 

bn - 1 + km times em – 1 fn. Thus we have established a recursive relations emfn = em - 1fn + 



km times em – 1 bn – 1. Similarly embn = em – 1 bn - 1 + km times em - 1fn and these errors 

have interesting properties which are very useful for practical purposes. 
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Now we will derive an alternative expression for the reflection coefficients in terms of the 

forward and backward prediction errors. Recall that km was defined in the Levinson - Durbin 

recursion as km = -hm of m. So if it is a mth order prediction that last coefficient is with negative 

sign is km. Since km is derived from the optimal LP coefficients it is optimal with respect to the 

mean square prediction error. 

 

Now let us consider the forward prediction error that is emfn = em-1 fn + km times em - 1 b n - 1 

we have a of emfn whole square that is the mean square prediction error = e of em - 1fn + km 

times em - 1 bn - 1 whole square. So this is the forward prediction error and for km to be optimal 

the derivative of the mean squared with respect to km must be = 0. 
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Thus we get the dkm of E of em-1fn + km times em – 1 bn - 1 whole square =0 so we take the 

derivative so it is a derivative of this and then again inside it is a function so that way we will get  

E of m - 1fn + km times e of m - 1 bn- 1 now this expression when we take the derivative with 

respect to km we will get em - 1 bn - 1 that must be = 0 implies that k m is =- E of em-1 fn into e 

m – 1bn - 1 divided by em - 1 bn - 1 whole square. 

 

We can get a similar expression by considering the mean square backward prediction error and 

in that case, km can be shown to be like this. So same value of km we can either get through this 

expression or this expression. 
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Now let us try to interpret the reflection coefficient km so km is given by we are considering the 

this expression km is given by this the denominator is MMSPE and is a normalizing term em-1fn 

is the residual part of Yn after removing the correlation with Yn – 1 Yn - 2 etc up to Yn - m + 1. 

So after removing the correlation of the intermediate data whatever residual is there that is em - 1 

fn similarly em – 1, bn - 1 is the residual part of Yn - m after removing the part correlated with Y 

n – 1 Yn -2 up to Yn - m + 1 same set of data. 

 

Thus the numerator this expression e of en - 1 fn into em - 1 bn - 1 is the cross correlation of Yn 

and Yn - m after the correlation due to the intermediate data already moved. Hence km is called 

the partial correlation coefficient. So you have remove the correlation because the intermediate 

data and then you were determining the correlation between em - 1 fn and em - 1 b n - 1 so these 

are the residuals after removing the correlation due to the intermediate data. So that is right the 

name is PARCOR coefficient. 
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Now we will prove one important result witness update backward prediction errors consider 2 

backward prediction errors suppose embn = yn - m - summation hm, m + 1 - i into Yn + 1 – i i 

going from 1 to m and suppose at kth order backward prediction error ekbn = yn - k in 

summation hk k + 1 - i into y n+ 1 – i, i going from 1 to k. So this is for suppose k is some 

number between 0 and m clearly from this E of embn is orthogonal to yn + 1 – i, i lying between 

1 and m because of the linear minimum mean square error estimation. 



 

And therefore since our k is less than m so E of embn into y and + 1 - i will be = 0 for all i less 

than = k where k is less than m. Now this backward prediction error is the combination of data 

between 1 and k. So therefore from this expression we will get that this backward prediction 

error Embn will be orthogonal to ekbn for all l lying within 1 and m because this ekbn is a linear 

combination of y n + 1 – i, i lying between 1 to k. Therefore, expected value of Embn into ekbn 

will be = 0 for k lying between 1 and m thus the backward prediction error signal is white and is 

efficient for the compression purpose. 
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Now let us see Lattice filter realization of linear prediction error filters, prediction error filter can 

be efficiently implemented in lattice structure consider the recursion relations emfn = em – 1 fn  

+ km times em - 1 bn - 1 and similarly embn = em - 1 bn - 1 + km times em - 1fn. The above 

filter equations can be implemented in a lattice structure as follows. Because this is the output of 

the filter section that is emfn and input is em - 1 fn + em - 1 bn – 1. 

 

Therefore emfn is the sum of e m - 1fn and km times em – 1 b n-1. So this we can write using 

filter elements like emfn = em - 1fn plus this is the delayed version of em-1bn. So here output 

will be em – 1 bn-1 and that will be multiplied by km and it will be added so that way emfn is 

the sum of this signal plus this signal delayed by 1 unit and then multiplied by km. So that way 

we see that this expression can be implemented by this part. 



 

Similarly this backward prediction can be implemented embn is equal to this delayed backward 

prediction error this plus the forward prediction error multiplied by km. So that way embn will 

be equal to this part e m-1 b n-1 because it is delayed here + em - 1fn multiplied by km and that 

will give us embn and so this is a simple implementation because same multiplier is used here 

and there is there somewhere here somewhere here and then this delay unit. Thus we have seen 

that this recursive relation can be implemented by this filter section. 
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How to initialize this lattice we know that suppose derivation order prediction in that case 

forward prediction error will be Yn - 0 that is =Yn similarly backward prediction error also will 

be = Yn - 0 that = Yn hence ef 0 = eb 0 is = Yn and this can be the initial input and the first 

lattice section will be as follows. So Yn it will be passing through this path it will be passing 

through this path and then when delayed version multiplied by k1 is added here you will get e1fn 

and similarly when delayed version and this part Yn multiplied by k1 is added here this sum will 

be you e1bn. So that way initialization also we have seen. 
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Therefore complete filter can be realized by cascading all these sections like this. So input will 

be Yn here and then first checks on output will be suppose e1fn and here e1bn and like that 

suppose last section because we are interested to find out the mth order prediction errors, So both 

forward and backward prediction errors will be obtained by the last section. So this last section 

input will be em - 1fn + em - 1bn thus we can get the forward and backward prediction errors 

using this lattice filter structure with yn at the input. 
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So this diagram shows the latest filter implementation the Lattice structure has several 

advantages it is a modular structure it can be extended by cascading another section. New stages 

can be added without modifying the earlier stages. Same elements are used in each stage that is 



multiplier and some are used so efficient for VLSI implementation. It is numerically efficient 

because this came coefficient reflection coefficient magnitude is always less than 1 therefore 

quantization error will be less here. 

 

The backward prediction errors being white can be efficiently stored in a in Hardware 

implementation and inverse filter can also easily be implemented these are some advantages of 

this lattice realization. 
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Let us summarize this lecture the Levinson-Durbin algorithm can be used to compute LP 

coefficients. The Levinson Darwin recursion is used to directly recursion of the prediction error 

these are the expression we obtained. The reflection coefficient km measures the cross 

correlation between Yn and Yn - m after removing the correlation because of the intermediate 

data Yn – 1 Yn - 2 up to Yn - m + 1. 

 

The backward prediction error embn for different m are uncorrelated that also we established. 

The prediction error filter can be efficiently implemented in the lattice structure. 
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Looking ahead so far, we have assumed that the random signals are WSS wide-sense stationary 

so that they are characterized by the autocorrelation and cross correlation functions. The wiener 

filters are time invariant because of the above assumption. Practical signals are non-stationary, 

and the optimal filter should be time varying. One solution is the familiar of filters known as the 

adaptive filter we will study these filters next. Thank you. 


