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     Probability and Random Variables 

 

Hello students, in this lecture we will discuss the basic concepts of probability and random 

variables. These concepts are essential to build up the theory of statistical signal processing. 

We start with probability basics. 
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To define probability, we need a sample space S with the elements called the sample points 

and event A which is a subset of S. A is the subset of S. We are illustrating this with an 

example this is suppose, this is the sample space and it has four sample points S1, S2, S3 and 

S4. These are the sample points now probability PA can be assigned to A, satisfying three 

axioms. Number one is P of A is greater than equal to zero probability is always positive.  

 

P of S is equal to 1 probability of this sample space is always equal to 1. If A and B are 

disjoint events, P of A union B is equal to PA+PB, this is the third axiom. So it says that, if 

two events are disjoint then there the probability of their union is the sum of their 

probabilities. To have a more consistent definition of probability the third axioms need to be 

modified.  

 



However for that we need the concept of Sigma algebra therefore we will not discuss that 

form of the third axiom here, so we have defined probability, now let us see what is 

conditional probability.  
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Suppose A and B are two events such that P of A is not equal to 0. Then the probability of B 

under the condition that event A has occurred is called the conditional probability of B given 

A. So it is defined by probability of B given A is equal to probability of A intersection B 

divided by P A.  So what is the probability of the intersection of A and B that divided by P A, 

normalized by PA that will give us the conditional probability. 

 

Similarly we can define probability of A given B from the definition of conditional 

probability. Now we can find joint probability P of A intersection B is equal to PA into B 

given A and that is also equal to P of B into P of A given B. Events A and B are called 

independent. If P of  A intersection B is equal to P A into PB in the case of independent 

event, the joint probability is product of the individual probability. 

 

This is very important concept independents. What does it imply; it is a property of 

probability that probability of joint event is the product of the probability of individual event. 
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Total probability theorem, total probability theorem is one of the most important theorems in 

basic probability. Let us step this theorem, let the events A1, A2 up to An form a partition in 

S. So what is partition in S.? It means that S is equal to union of all these Ai’s and Ai and Aj 

are mutually disjoint. So Ai intersection Aj is equal to Phi for i not equal to j. Then for any 

event B if we have a partition. 

 

Then for any event B probability of B is equal to sum i going from 1 to N of P of Ai into P of 

B given Ai. Let us illustrate this suppose, this is my S and I have these events A1, A2 and A3. 

So A1, A2 and A3 forms a partition in S. Okay, because A1 and A2 are disjoint A1 and A3 

are disjoint and all events are disjoint. Now you consider any event B. This is the event B. 

Now the probability of this event B is equal to the sum of the probabilities of this event.  

 

Then, if I consider this event and then probability of this event. So that way probability of B 

is equal to probability of this, probability of this event is all the of A1 into a of B given A1 

probability of this event is equal to probability of A2 into probability of B given A2 plus 

probability of this event that is equal to probability of A3 into probability of B given A3. So 

this illustrates the total probability theorem. 
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Now we will go to one of the very important result what is known as the Bayes rule. Suppose 

the events A1, A2 up to An form a partition on S. We know what is a partition and PAi is not 

equal to 0 for i is equal to 1 to n. So each of these probabilities are nonzero and these 

probabilities are called a priori probability.  We know these events A1, A2 up to An and there 

are probabilities also that way these are a priori probabilities.  

 

Then for any event B with P B probability of B greater than 0.  We can write P of Ak given 

B. Suppose this event B is given then what is the probability of this prior event Ak. 

Probability of Ak given B and this by definition is equal to probability of Ak intersection B 

divided by PB.  Now we apply the total probability theorem here, so this PB can be written in 

terms of the a priori probabilities and the conditional probability by this sum.  

 

Similarly this intersection can be written in terms of the probability PAk into probability of B 

given Ak.This is true for k is equal to 1 to up to n. So this probability is now the a posteriori 

probability. A posteriori probability or posterior probability and it has extensive use in the 

estimation and decision theory. We have Bayesian estimation theory, we have Bayesian 

decision theory and we will be discussing Bayesian estimation theory 
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With this concepts of basic probability. Let us go to define random variable. Random variable 

it is abbreviated as RV. A random variable X is a function from the sample space S to the set 

of real number R.  So actually it is a function. It is a mapping from the sample space S to the 

set of set of real numbers R. Thus X is a mapping from S to R. So since it is a mapping we 

have to define what is the domain?  

 

S is the domain and the range Rx is a subset of R and given by Rx is equal to Xs. Such that X 

belongs to S. So those points are on R we said which has a corresponding point in s. So these 

points constitute the range. So we know what is the domain? Domain is S, range is R X 

which is a subset of R. We use an upper-case letter to denote a random variable and the 

lowercase letter to denote its value. 

 

Thus X(s) is equal to x,  a means that x is the value of a random variable X at a point s. 

Argument s is usually omitted and we simply write X is equal to small x instead of X s is 

equal to small x. So we have defined random variable. It is a mapping from the sample space 

to the real line.  
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Now, how to describe probability in the real life .So we will define cumulative distribution 

function CDF.  The CDF also called the probability distribution function of a random 

variable X is defined at a point X belonging to R as capital Fx of x. That is the CDF is the 

probability of those sample point s. Such that, X s is less than equal to small X. So we have to 

consider all s for which X s is less than equal to small X.  

 

So that in that sense it is a cumulative probability. And instead of writing this symbol we 

write simply probability of X capital X less than equal to small X.This is the CDF. So since it 

is a cumulative probability.If we plot it if it is a sample space is finite then we may have this 

type of CDF staircase type of function. We says maximum below 1 and minimum below is 

always 0.  

 

Similarly we may have a continuous CDF function. Where X will be ranging from minus 

infinity to plus infinity and we also observed that this this CDF here, here CDF is a non 

decreasing function also note that Fx of minus infinity is equal to 0 and Fx of plus infinity is 

equal to 1. CDF is a complete characterization of random variable X and any probability 

involving the values of x can be obtained from Fx of x.  

 

Particularly suppose for x2 greater than x1, suppose we are interested to find out the 

probability what is the probability that X lies between x1 and x2.  So this probability is equal 

to Fx of x2 - Fx of x1. 
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So we have discussed CDF which is a complete description of the random variables. We may 

have simpler description for example in the case of discrete random variables. We have the 

probability mass function. A discrete random variable X with this range, because discrete 

means it range is only discrete points comprises of discrete points. So such a random variable 

is completely specified by the probability mass function. 

 

What is the probability mass function? That is we use the symbol small px of X.  That is 

equal to probability. That those s such that X s is equal to small x. So that is equal to we write 

it in simple notation probability that X is equal to small x. So since probability mass 

represents a probability function therefore clearly we get summation Px of x over x belonging 

to Rx is equal to 1.  

 

If we sum up all the probability mass function, this sum must be equal to 1.We can give an 

example binomial random variable, all random variables have specific symbol. This is Bi, n, 

p, binomial random variable with parameter n and p. So the probability mass function is 

described by small px of x, that is equal to n Cx P to the power x into 1- P to the power n-x.. 

For x equal to 0, 1 up to n.  

 

So here we have plotted the PMF card, for P is equal to 0 it is a binomial random variable 

with P is equal to 0.8 and n is equal to 6. So this is the plot. So that way we can describe a 

discrete random variable in terms of probability mass function.  
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Next, continuous random variable and probability density function. PDF for a continuous 

random variable X ,the CDF fx of x can be expressed as the integral, this is the basic result. 

That CDF Fx of x can be expressed as the integral from minus infinity to x of fxu du. Now 

this quantity fx of x is a non-negative function and it is called the probability density function 

PDF. 

 

If fx of x is differentiable,we can write PDF small fx of x derivative of CDF of x dFx of 

capital Fx of x. So if the PDF is the differentiable curve in that case we can find out the PDF 

at the derivative of the CDF and also we know that integration of because if I put a minus  

infinity and x infinity here this will be infinity and that is equal to 1. So that way integration 

of PDF over the entire range from minus infinity to infinity is equal to one.  
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We will give an example Gaussian random variable or normal random variable. This random 

variable is the most important continuous random variable and it is described by two 

parameters mu and sigma square and the PDF is given by this expression small fx of x PDF at 

point x is e to the power minus this quadratic x- mu by sigma whole square divided by 2, and 

this term is normalized because it is a PDF normalized by root over 2 pi into sigma. 

 

So this distribution occurs in many practical situation necessarily and we denote the normal 

distribution by X distributed as normal with parameters mu and sigma square. Here is a plot 

of this PDF.it is a bell-shaped curve and the parameter sigma will determine the extent of this 

distribution and mu is the central point. That is this, this is the mean or even mode of this 

curve or median of this curve is given by mu. 

 

So we have defined a single random variable and how to characterize this random variable in 

terms of CDF and if it is continuous in terms of PDF and if it is described in terms of PMF. 

Now let us go to multiple random variables. 

(Refer Slide Time: 18:11) 

                           

Suppose two random variables X and Y are defined on the same sample space S. In other 

words, Xs and Ys are two functions defined from S to the real line. As usual the argument s is 

omitted. Now X and Y are called joint random variables. We may also represent a joint 

random variable as a 2-dimensional vector. We can this is the vector notation, usually vectors 

are represented by a column matrix and here two component x and y. 

 



We can extend the above definition of two random variables to any dimension. Particularly, n 

random variables X1, X2 up to Xn define n-dimensional joint random variables or n 

dimensional random vector denoted by X is equal to this is the these are the components X1, 

X2 up to Xn.  This is a random vector with component X1, X2, up to Xn. Now how to 

characterize multiple random variables?. 
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We have the joint CDF. The joint CDF of X and Y, denoted by this is the notation capital Fxy 

at point x,y is defined as how do we define this is the probability that s probability of those s 

for which X s is less than equal to small x and Ys is less than equal to small y. This come up 

in fact means and and we can write this in terms of this intersection event probability of the 

event s. 

 

Such that Xs is less than equal to small x intersection s such that Ys is less than equal to small 

y. So this is the definition of joint CDF and this joint CDF completely described tool and 

random variables x and y. Now if we see Fxy at minus infinity y that is the intersection of this 

event s. Such that Xs is less than equal to minus infinity and s such that Ys is less than equal 

to Y. 

 

Since this part is Phi therefore this intersection will be equal to Phi and therefore 

corresponding probability will be equal to 0. So joint CDF at minus infinity y is equal to 0. 

Similarly joint CDF at X minus infinity equal to joint CDF at minus infinity minus infinity is 

equal to 0. Also we can saw that the joint CDF at infinity infinity is equal to 1. As I said, the 

joint CDF completely described two random variables x and y. 



 

we can determine any probability involving x and y using this CDF. Particularly if we 

consider f x y at point x infinity by definition this is equal to probability of s. Such that X s is 

less than equal to small X and Ys is less than equal to infinity. This Y s less than equal to 

infinity it will corresponding to it will correspond to this sample space. Therefore we will get 

probability of s. 

 

Such that X s is less than equal to small x intersection with the sample space and and this will 

be any event if we intersect with s you will get that event only therefore it will be probability 

of s. Such that Xs is less than equal to small x and which is equal to C the F of x at Point 

small x. so therefore from the joint CDF we can find out the individual CDF effects of X and 

it is called the marginal CDF. 

 

So the marginal CDF can be obtained from this joint CDF. Now we will go to continuous 

random variables, If the joint CDF is continuous. 
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Then it can be expressed in terms of the joint PDF. This is the basic expression the joint PDF 

can be expressed as a double integral minus infinity to x and minus infinity to y of small F x 

y uv dv du. So this is the limiting expression between the CDF and the PDF and this PDF 

joint PDF is a non-negative quantity and if suppose CDF has the partial derivatives. 

 

Then we can write the joint PDF at point x y as the second order mixed partial derivative. del 

square del X del Y of this CDF at point x y.Thus two continuous random variables x and y 



can be represented in terms of they are joint PDF small effects of y at point x y defined by 

this relationship. Similarly for discrete random variables x and y we can define joint 

probability mass function and it is the denoted by small Px y at point x y.  

 

So same definition of suppose probability mass function can be extended to two dimension 

and to get the joint probability mass function.  
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Now as I said joint CDF or joint PDF is a complete description of two random variables and 

from design CDF. We can get the individual CDF in individual PDF and so on. For example, 

FX of x that is the CDF of X and we saw that it is equal to joint CDF of XY at point X 

infinity. If we write in terms of the PDF this will be d integral. Integral minus infinity to X 

and since it is infinity integral from minus infinity to infinity of this PDF, PDF of the PDF.  

 

So this is equal to the joint CDF of X Y at X infinity and which is the double integral from 

minus infinity to x and y infinity there from minus infinity to infinity of f xy that is the PDF 

at point u,y dy du. This is the expression for the CDF fx of x, now also see therefore fx of x 

has this expression this is the integration from minus infinity to x of the PDF at point u du. So 

therefore if we compare this expression and this expression then this bracketed term must be 

equal to fx of u.  

 

The CDF fx of x is given by integration from minus infinity to infinity here minus infinity to 

infinity of the joint PDF with respect to dy. So if we have to find out fx of x, see the PDF at 

point x then it is the integration of the joint PDF with respect to the other random variable y. 



Similarly if we have to find out the PDF of y in that case it will be the integration with 

respect to x. So that way marginal density concerns can be obtained from the joint density 

function. 
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Now let us go to a more general case joint CDF of n random variables.The CDF of random 

vector x denoted by X1, X2 up to Xn is defined as this joint CDF. This is a CDF, because we 

are considering a random vector single quantity at the joint CDF of X1, X2 up to Xn and 

given by this is the expression of join CDF at point X1, X2 up to Xn and this is the CDF of 

the random vector and this is by definition probability. 

 

That X1 is less than equal to small X1, X2 is less than equal to small X2 and up to Xn is less 

than equal to small Xn. So this is the joint event and probability of the disjoint event is this 

joint CDF, like in the two dimensional case the joint CDF is the complete description of 

random variable X1, X2 up to Xn and we can get the CDF of any sub collection of random 

variables from this set.  

 

For example if we have to find out only CDF of X 1 so this is the joint CDF at point X 1 and 

rest of the point at infinity. Similarly if we have to find out this joint CDF of X1, X2 at Point 

small X1, X2 then this is the n-dimensional CDF at point X1, X2 and rest of the point set in 

this way we can find out the joint CDF of any order.  If the joint CDF at point X1, X2 up to 

Xn has the partial derivatives and design PDF.  

 



Now we can defend it on PDF can be written as this is the symbol small F X1, X2 up to Xn at 

point X1, X2 up to Xn and this is the PDF of the random vector at points small X vector and 

this is the NS order mixed partial derivative. del n del X 1 del X 2 up to del Xn of the CDF. 

In this way we can relate the PDF and the CDF of multiple random variables. 
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Independent random variables, we know what are independent events. The same definition is 

generalized here x and y are independent if the joint CDF at point x y is equal to Fx of x into 

Fy of y . This is true for for all XY belonging to R2.  So that way this definition is a very 

strict definition because this relationship should be valid at every pair of point xy belonging 

to r 2 or equivalently in terms of PDF joint PDF is the product of marginal PDF. 

 

This definition of independent random variables can be extended to n random variables in 

that case n dimensional CDF will be the product of n marginal CDF and n dimensional PDF 

will be the product of and marginal PDF. 
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So we have seen how to characterize random variables in terms of they are CDF, PDF, PMF 

or in the case of multiple random variables in terms of joint CDF, joint PMF and joint PDF. 

Next we'll be discussing how to partially represent a random variable in terms of expectation 

operation. Suppose Y is equal to gX is a real valued function of a random variable X. Then, E 

of gX is defined by this integral g x into CDF PDF of x dx. 

 

If x is continuous and this is a summation if X is discrete. So in the case of discrete 

summation of our X of gX into PMF of X. Particularly if gX equal to X, we have gX is equal 

to X.  Then we have Ex is equal to that is called the mean mu X and this is by definition this 

is equal to integral minus infinity to infinity X FX of X DX. If X is continuous and 

summation over X of X px of X if X is discrete.So we know what is the mean of a random 

variable. 
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We also defined a moment's of random variables. Moments and central moment will be 

defining for a positive integer n, the n’th moment and the n’th central moment of a random 

variable X is defined by the following relations. E of X to the power n that is the nth moment 

and I know the definition of expectation. So this will be integration minus infinity to infinity 

X to the power n PDF of x into dx. 

 

Similarly, central moment that is the NS order moment about the mean. So we have to 

consider E of X minus mu X to the power of n. So that way we will get the central moment 

and particularly these moments are important for us mu X that is the first order moment that 

is equal to EX. Mean square value E of X square and similarly variance is Sigma x squared 

that is E of X minus mu X whole square and this is also equal to we can use the property of 

expectation and establish that this is equal to E of X square minus E of X whole square. 
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Similarly in the case of multiple random variables for example joint random variables X and 

Y. We can define the joint moment of order m+ n and this is given by E of X to the power m 

into Y to the power of n and you are taking the mth power of X into a nth power of Y and 

then taking the average value and this is given by this integral. Particularly if m is equal to 1 

and n is equal to 1, we have the second order moment E of X Y. 

 

So here it will be x y and multiplied by the joint PDF and even integrate from minus infinity 

to infinity. The second order moment E of X Y, it is also called the correlation between X and 

Y. So now we can define the second order central moment that is the covariance of X and Y 

and it is defined as covariance of X Y is equal to E of X - mu x into Y - mu y,  and it can be 

shown that this is equal to E of XY - mu X into mu Y.  

 

This is the covariance of random variable X and Y. Now covariance is a very important 

operation and it leads us to the definition of uncorrelated random variables X and Y are called 

uncorrelated, iff covariance of X Y is equal to 0 or equivalently E of XY is equal to mu x into 

mu y.  So this is a relationship or this is a definition in terms of the average value unlike 

independence which is defined in terms of PDF or CDF. Here uncorrelated, this is defined in 

terms of covariance.  

 

This is an average value so that that way this definition is more realist and it has a lot of 

importance in any signal processing application and also we can show that if random 

variables are independent. Then they will be uncorrelated. But the converse is not generally 



true. Now let us see how to characterize random vectors in terms of mean correlation and 

covariance. 
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So for random vector X, this is the random vector. We defined a mean mu x. mu x is again a 

vector and its components are individual mean. So mu x is a vector consisting of EX1, EX2 

up to EXn and correlation. Now in the case of two random variables you can find out 

correlation. Now since there are n random variables we have the correlation matrix. So how 

to get the matrix. 

 

So we multiply X by X transpose and then we will take the expectation of the individual 

components. So that way the diagonal elements will be the mean square value E of X1 

square, E of X2 square like that E of Xn square. This is E of Xn square and the off diagonal 

elements will give the correlation E of X1, X2, Similarly E of X2, X1. Similarly we can 

define the covariance matrix. 

 

Covariance matrix again to get the matrix we have X minus mu X vector into X minus mu X 

vector transpose and then we will take the expectation of the individual terms. So that way 

we get a matrix with diagonal elements as the variances. Variance of X1, here variance of X 

2, here here variance of Xn and of diagonal elements are the covariance values. So that way 

we get the in the case of random multiple random variables the correlation structure can be 

expressed succinctly in terms of the correlation matrix and the covariance matrix.  
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We will define jointly Gaussian random variables.X and Y are jointly Gaussian random 

variables distributed as normal with parameters mu1, mu2, sigma1 square, sigma2 square, 

raw and the joint PDF is given by this expression it is exponential with negative quadratics in 

x and y and there is a normalizing factor 2Pi, Sigma1, Sigma2 into root over 1 minus raw 

square and thus this joint PDF joint gaussian PDF is this determined by Pi parameters. 

 

Means mu1 and mu2, it can be shown that mu1 is the mean of X X and mu2 is the mean of Y 

variance is Sigma1 square, Sigma2 square. Sigma 1 square is the variance of X and Sigma 2 

square is the variance of Y and the correlation coefficient raw. That is covariance of XY 

divided by Sigma X into Sigma Y in this case it is Sigma 1 into Sigma 2. So these five 

parameters describe this jointly gaussian random variables x and y. We can also define the 

gaussian random vector X. 
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It is distributed as normal with parameter mu vector, mean vector and it covariance matrix. 

So if suppose this is the random vector and mean is mu X and the covariance matrix is CX 

then this is the expression for day joint gaussian PDF and this is again this is X minus 

exponential minus 1/2 of X minus mu X transpose C X inverse.This CX inverse is the inverse 

of the covariance matrix into X minus mu X. 

 

Now normalizing factor is root over 2 pi to the power n into determinant of the matrix CX, 

CX is a matrix and we can find the determinant of CX so that way this is the joint gaussian 

PDF of n random variables. 
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We have characterized multiple random variables in terms of joint CDF joint PDF joint PMF 

etc. Now let us see how to describe the conditional probabilities, suppose if x and y are 



continuous random variables then the conditional density function of Y given X is equal to 

small x is given by this this is the conditional PDF of Y given X and this is a joint PDF 

divided by the marginal PDF at point X of course we need the condition that fx of x not equal 

to 0, fx of x not equal to 0. 

 

Similarly if X and Y are discrete random variables then the probability mass function of Y 

given X is equal to small x is given by this expression this is the conditional probability mass 

function again this is the ratio of the joint probability mass function divided by the marginal 

probability mass function and we can use this definition of conditional PDF to derive the 

Bayes rule for continuous random variable. 

 

This is given by F Y given X at point y given small X. That is by definition, this is the joint 

PDF of X Y divided by the marginal PDF of Y and now if we can write joint PDF in terms of 

conditional PDF.We will get the numerator and again this marginal PDF can be written in 

terms of the joint PDF. This is given by this so that way we get the Bayes rule for continuous 

random variables with the definition of conditional PDF and conditional PMF. We can also 

get, 
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The conditional expectation, the conditional expectation of Y given X is equal to small x is 

defined by, E of Y given X is equal to small x.We are finding out the conditional expectation 

of Y given X is equal to small x. So this is defined by this integral in the case of continuous 

random variables, this is the integration, it is expectation with respect to Y therefore it is 

integration of Y multiplied by the conditional PDF and then you integrate with respect to dy. 



 

Similarly this if we have to take the sum in the case of discrete random variable this is y 

multiplied by the probability mass function of Y given that X is equal to small X. so that way 

we can determine the conditional PMF, we can determine the conditional expectation and it 

has importance in estimation theory because this conditional expectation gives the optimal 

prediction of Y given X is equal to X. What is optimal we have to explain further and 

therefore it is very important in estimation theory. 
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Let us summarize what we have done today we defined probability using three axioms.Then 

we defined conditional probability by this expression conditional probability of B given a is 

equal to probability of A intersection B divided by P A, events A and B are independent.If 

and only if probability of a intersection B is equal to PA into PB and finally in the probability 

case we defined a Bayes rule. 

 

 By this relationship, this is the posterior probability and it can be found in terms of prior 

probabilities. Probability of Ak into probability of B given Ak divided by sum of i going 

from 1 to n of P Ai into probability of B given Ai.This is the expression we obtain through 

total probability theorem.we also noted that a random variable X is characterized by CDF, fx 

of x. 

 

That is defined by probability of those sample point for which X s is less than equal to small 

x. Similarly we defind probability mass function; probability of s such that X s is equal to 

small X and this is for discrete case. Similarly we defined the PDF probability density 



function; it is given by this expression.We also noted that joint random variables X and Y are 

characterized by joint CDF, joint PMF and joint PDF. 

 

These are the corresponding functions we have defined joint CDF, joint PMF and joint PDF 

and we introduced one very important concept x and y are independent if and only if the joint 

CDF is equal to product of marginal CDF for all XY belonging to R2. Similarly the same can 

be defined in terms of joint PDF joint PDF is the product of the marginal PDF for all XY 

belonging to R2. 

 

So this is the definition of a independent random variables.X and Y will be independent if 

join if joint CDF is product of marginal CDF or equivalently joint PDF is the product of 

marginal PDF. 
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How we define the expectation of the function by this relationship E of gX is integration from 

minus infinity to infinity of gx fx of x dx. Then correlation of X Y is given by E of X Y 

covariance of X Y is given by E of X minus mu x into y minus mu y. We define what is 

called lesson?Whatis covenants for a random vector X? The correlation matrix Rx and the 

covariance matrix. 

 

Correlation matrix Rx is equal to E of X X transpose and the covariance matrix Cx is equal to 

E of X minus mu X into X minus mu X transpose. These are the description of correlation 

structure in the case of random vectors.And we introduced the n dimensional Gaussian 



random vectors which is given by X it is a normal distribution with mean mu vector and 

covariance Cx matrix and this is the PDF of the Gaussian random vector.  

 

Conditional PDF and the conditional PMF are used to define the conditional expectation 

finally we define the conditional expectation E of Y given X is equal to small x. It can be 

defined in terms of the conditional PDF and conditional PMF. In the next lecture we will 

discuss the linear algebra of random variables. Thank you. 


